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Abstract: - This paper is concerned with the estimation of amplitude and phase of an analog multi-harmonic 
signal based on a series of differential values of the signal. To this end, assuming the signal fundamental 
frequency is known before hand (i.e., estimated in an independent stage), a complexity-reduced scheme is 
proposed here. The reduction in complexity is achieved owing to completely new analytical and summarized 
expressions that enable a quick estimation at a low numerical error. The propose algorithm for the calculation 
of the unknown parameters requires O((2M)2) flops, while the straightforward solution of the obtained 
equations takes O((2M)3) flops, where M is number of harmonic coefficients. It is proved that the estimation 
performance of the proposed algorithm can attain Cramer-Rao lower bound (CRLB) for sufficiently high 
signal-to-noise ratios. It is applied in signal reconstruction, spectral estimation, system identification, as well as 
in other important signal processing problems. The paper investigates the errors related to the signal parameter 
estimation, and there is a computer simulation that demonstrates the accuracy of these algorithms. 
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1 Introduction 
Estimating the amplitude and phase of a signal 
accurately even when the frequencies contained in 
the signal are already known is very important in 
many areas [1-2]. These include the dual-tone 
multiple frequencies (DTMF) signal detection in 
digital communications, ECG sinusoidal 
interference cancellation, recovery of biomedical 
signals, and pitch detection in automated 
transcription. In power systems, estimation of the 
harmonic components is necessary to ensure the 
quality of power supply. 

In signal processing, reconstruction usually means 
determination of an original continuous signal from 
a sequence of equally spaced samples. It is a well-
known fact that any real signal which is transmitted 
along a channel-like form will have a finite 
bandwidth. As the result, the received signal's 
spectrum cannot contain any frequencies above a 
maximum value, fmax=Mf (f is the fundamental 
frequency). Consequently, M frequencies provide a 
specification of everything we know about the 
signal spectrum in terms of a d.c. level plus the 
amplitudes and phases of just— i.e. all the 
information we have about the spectrum can be 
specified by 2M +1 numbers. Many attempts have 

been made in respect to application of sampling 
techniques supported by optimal methods of 
reconstruction of band-limited signals in the form of 
a Fourier series (trigonometric polynomials) [3-6]. 

In this paper, the application of differential 
processing (sampling) methods for periodic signal 
reconstruction is analyzed, as opposed to the method 
based on the integration of the input analogue signal 
[7], along with the problem of subsequent 
reconstruction of the processed signals. This kind of 
approach (integration) to the processing was also 
considered in [8], where the standard matrix 
inversion is used as the method for reconstruction, 
which requires very intensive numerical calculation. 
In [7] it was noticed that the ac signal integration 
method produces a regular matrix form in the 
derived system of equations, provided an adequate 
choice is made regarding the time parameters within 
which the integration is done; this makes it possible 
to have a much more efficient reconstruction 
procedure subsequently. 

If the differential value (samples) were assumed to 
be measured without errors, the presented algorithm 
without any further modifications can be used for 
signal reconstruction of periodic band-limited 
signals, which is the situation that occurs in 
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simulation. In a real environment and when the 
measuring is performed in practice, the samples are 
measured with error. The sampled values that are 
obtained in practice may not be the exact values of 
the signal at sampling points, but only averages of 
the signal near these points [6]. In this case, the 
suggested algorithm must be modified, in order to 
be able to determine the best signal estimate, 
according to the criterion assumed, just like in [6], 
[8] or [9-12]. 

The approach in this paper is based on the use of 
the values that were obtained as result of the 
differential processing of the continual input signal, 
in precisely defined time periods. This kind of 
processing was done, as many times as was needed 
to enable the reconstruction of the multi-harmonic 
signal that is the subject of the processing operation. 
In this way, it is possible to obtain a specific form of 
the linear equations system. This system can be 
simply solved by using the derived analytical and 
summarized expressions. For estimation of 
amplitude and phase of complex ac signal algorithm 
requires O((2M)2) flops, while the straightforward 
solution of the obtained equations takes O((2M)3) 
flops. For this reason, the proposed method offers a 
significant improvement in computational efficiency 
over the standard reconstruction algorithms, at a 
lower numerical error. 

Table 1: The nomenclature used in the following 
parts of the paper 

Symbol Meaning  

f 
fundamental frequency of processing 
signal 

s(t) 

 

 

band limited input analogue signal 

M 

 

the number of signal spectrum ac 
(harmonic) components 

ADC 

 

analogue to digital converter 

ak 

 

the amplitude of the kth harmonic 

k 

 

the number of the harmonic 

ψk 

 

the phase angle of the kth harmonic 

Unlike the IEEE standard that was analysed in 
[13], the algorithm proposed in this paper is 
significantly more stable and free of the propagation 
error. Namely, when using the procedure prescribed 
by the standard, the amplitude errors of the 
fundamental will propagate through the method 
since the amplitudes are used to reconstruct the 

detected sine wave and obtain the results before they 
are used to determine the next harmonic parameters. 
Overall, the frequency and amplitude errors from 
the first calculation are propagated to the higher 
harmonics and the calculation of the nth harmonic 
will invariably be contaminated by the errors of the 
phases and amplitudes from previous steps.  
 
 
2 Proposed Method for Processing 
Let us assume that the input signal of the 
fundamental frequency f is band limited to the first 
M harmonic components. This form of continuous 
signal with a complex harmonic content can be 
represented as a sum of the Fourier components as 
follows: 

( ) ( )∑
=
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M

k
kk ftkats

1
2sin ψπ    (1) 

By differentiating the signal (1) and by forming a 
system of equations of the same form, in order to 
determine the 2M unknowns (amplitudes and phases 
of the M harmonic), we get: 

( )( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( )[ ]∑

∑

∑

=

=

=

=

−=

+=

⇒=






 +

=

M

k
klklk

M

k
klkl

ltt

M

k
kk

ftkftkfka

ftkfkatx

tx
dt

ftkad

dt
tsd

l

1

1

1

sin2sincos2cos2

2cos2

2sin

ψπψππ

ψππ

ψπ

(2)

where l = 1, 2,..., 2M. The tl is time moment in 
which the differentiation of the input analogue 
signal is done, and depends on the speed of the 
block with which conversion will be done from the 
output of the circuit for differentiation. This moment 
must be shifted with every subsequent 
differentiation of the input signal. The x(tl) value 
represents the value of the differentiate of the 
processed signal. The obtained relation can be 
represented in the short form as: 

( ) ( )l

M

k
klkklkkk txaA =−∑

=1
,, sinsincoscos ψαψα (3) 

where: 
( )

( )Ml
MkftkAfk lklk

2,...,2,1
;,...,2,1;2;2 ,

=

=== αππ
  (4) 

Ak and αk,l are the variables which are the result of 
the differentiation of the signal in the real device as 
defined with equation (1), determined by the 
moment at which the sampling is done, as well as by 
the frequency of the corresponding harmonic of the 
input periodic signal. The system determinant for 
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the system of 2M (unknown parameters) can be 
represented as: 
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Here: 

, 2k l
l lft

k
α
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The similar form of the obtained determinant (6) 
was the object of study in [8], but this was only the 
first step for estimation of Fourier coefficients, 
which are estimated, from integrative samples and 

subsequently, in the second step, the estimators 
were corrected using the method of least squares 
and precision measurement of rectified-signal 
average. In its form, determinant (6) resembles the 
well-known Van der Monde determinant [7]. In this 
paper, we derived analytical and summarized 
expressions for solving system equations (3), 
exactly by using this determinant as the starting 
point of the analysis. Owing to relations derived in 
this way, it is not necessary to use the standard 
procedure for solving the system of equations. 
 
 

2.1 Derivation of the new relations for 
solving the observed system of equations 
In the case of the system of equations obtained from 
the suggested concept of processing of the input 
signals (equation (3)), instead of the x variables in 
the expressions derived in [7], it is necessary to take 
in the trigonometric values for M2321 ,...,,, ϕϕϕϕ , as 
defined in (7). The given determinant (equation (6)) 
can be transformed as it follows (by using Euler’s 
formulas): 
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The co-determinants required for reaching the 
solution of the given system of equations (5) are: 
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and so on. The co-determinants given above based 
on the following development can be written as: 
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such a column. For this purpose, we must determine 
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Hence, it follows that q
pX  is co-factor of matrix, 

whose determinant is ∆2M+1,M+1. 
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After the intensive mathematical calculation 
(Appendix) we obtain: 
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p

+F for 
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Based on (analytical) relation derived in this way 
the unknown parameters of the signal (amplitude, 
phase), can be determined through a simple division 
of the expression that represents a solution of the 
adequate co-determinants with the expression that 
represents an analytical solution to the system 
determinant: 
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The analyzed determinants and co-determinants of 
the system (3) were used only as the starting 
function (of the polynomial form), to the purpose of 
obtaining explicit and summarized analytical 
expressions which can be used further on to perform 
the calculation of the unknown signal parameters. It 
is a fact that the obtained system of equations (3) 
can be described, after the processing, by a special 
form of the determinant (which is summarized as 
the Van der Monde’s determinant). This fact enables 
factoring and application of transformations that can 
be applied only on determinants. Any other 
procedure would lead to a much more complex 
calculation and to relations that are mathematically 
much more demanding. Owing to this, any 
subsequent calculation conduct towards 
reconstructing a periodic signal will not be related 
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either to determinants themselves or to the 
procedures that are typically used in their solving. 
The obtained result clearly suggests that it is not 
necessary to use the standard procedure for solving 
the system of equations, as suggested in [8]. 

Due to the presence of the error in determining the 
differential samples x(tl), and variables Ak and ϕl 
which is caused by their dependence on the carrier 
frequency f of the processed signal (Figures 1-2), in 
the practical applications of the proposed algorithm 
we need to have the best estimate of the given 
values, according to the criterion assumed. This can 
be done by the means of recalculation of the values 
x(tl), Ak and ϕl, through N passages, (N is arbitrary). 
In this process we form series x(tl)n, Ank, and ϕnl 
(n=1,...,N), as it given in the proposed algorithm.  
The random errors ∆n of measurements are 
unbiased, E(∆n)=0 have the same variance 
var(∆n)=σ2, and are not mutually correlated. Under 
these assumptions, the least squares (LS) estimator 
minimizes the residual sum of squares [14]: 
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minimizing the function S, we obtain the LS 
estimators lkl Atx ϕ̂,ˆ),(ˆ  of the values x(tl),  Ak and ϕl 
all l=1, 2,..., 2M and k=1, 2,..., M as: 

( )
( )

∑

∑

∑

∑

∑

∑

=

=

=

=

=

= === N

n
n

N

n
nln

lN

n
n

N

n
nkn

kN

n
n

N

n
nln

l

p

p

p

Ap
A

p

txp
tx

1

1

1

1

1

1 ˆ;ˆ;ˆ
ϕ

ϕ (20) 

The value of N will depend on the required speed 
of processing – the higher the N, the more precise 
the estimation of the value is. In particular, the LS 
method has been applied to a variety of problems in 
the real engineering field due to its low 
computational complexity. In the concrete case, the 
estimation procedure does not require the matrix 
inversion and is considerably less demanding from 
the processor aspect, than the methods described in 
[15]. In addition to this, when the proposed 
algorithm is used in simulations, the estimation of 
the given variables (20) will not be necessary, which 
will significantly reduce the processing time needed 
for its realization. The proposed solution can be 
modified, in order to reduce the error in determining 
the differential of the input signal. In [16] it was 
shown that implementation of sampling and 
reconstruction with internal antialiasing filtering 

radically improves performances of digital 
receivers, enabling reconstruction with a much 
lower error. 

It is necessary to note that the frequencies of the 
proposed signal may show some differences in 
relation to the given ones – that is to say that a large 
or a small frequency mismatch (FM) may exist in 
real applications. In [17, 18], a new LMS-based 
Fourier analyser is proposed. This analyser works 
simultaneously – on one side, it estimates the 
discrete Fourier coefficients (DFCs) and on the 
other side, it accommodates the FM. This analyzer 
can very well compensate for the performance 
degeneration due to the FM. However, in the LS 
procedure proposed here, the estimation of the 
samples and variables is done by minimising the S 
function (equations (19)–(20)). Furthermore, when 
this is done, the derived analytical expressions are 
used to determine the unknown Fourier coefficients. 
In addition to this, with every passage of the 
described algorithm, the moment of sampling is 
referred to the detected zero-crossing of the 
processed signal, and its basic frequency is also 
calculated at the same time. In this way, the 
determination of the unknown parameters of the 
processed periodic signal is less dependent on the 
possible FM, when compared to the algorithm 
analyzed in [17, 18] (the parameters analyzed in this 
paper are less inter-dependent). However, if the 
signal-to-noise ratio were to be very low and 
accompanied by a marked FM, it would still be 
possible to modify the described estimation 
procedure in a way presented in [17, 18], without 
adding any requirements to the realization. 

If the input signal that is being processed contains 
a dc component, than this component can be simply 
separated (determined) by using a low frequency 
filter, after which it is measured, before the signal 
itself is subjected to differentiation. In this way, the 
reconstruction system suggested in this paper gives 
possibility to process the most general form of a 
periodic input signal. 

The results obtained for solving of observed 
determinants were compared with solution obtained 
from GEPP algorithm (Gaussian elimination with 
partial pivoting), offered in the Matlab program 
package itself (all of the calculations are done in 
IEEE standard double floating point arithmetic with 
unit round off 16101.1 −×≈u ). This represents a 
practical verification of the proposed algorithm for a 
case of ideal sampling (without an error in taking 
the value of the sample and determining the 
frequency of the processed signal). The difference in 
the obtained values and results obtained with GEPP 
algorithm was equal to 14101 −× , taking that M=7, 
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f=50 Hz, tl=0.001 s. The derived relations produce 
solutions that are practically identical to the 
procedure that is most commonly used in solving 
systems of linear equations. 
 
 
3 Proposed Reconstruction Algorithm 
and Error Analysis 
For the proposed algorithm, on the beginning, the 
order of the highest M harmonic component in the 
processed signal spectrum must be known in 
advance or adopted in advance, accepting that an M 
determined in this way is bigger than the expected 
(real) value. One of the well-known methods can be 
used to estimate the frequency spectrum. In [19] two 
accurate frequency estimation algorithms for 
multiple real sinusoids in white noise based on the 
linear prediction approach have been developed. 
The first algorithm minimizes the weighted least 
squares (WLS) cost function, subject to a 
generalized unit-norm constraint. At the same time, 
the second method is a WLS estimator with a monic 
constraint. Both algorithms give very close 
frequency estimates whose accuracies attain 
Cramér–Rao lower bound for white Gaussian noise. 
A modified parameter estimator based on a 
magnitude phase-locked loop principle was 
proposed in [20]. It showed that the modified 
algorithm provided tracking improvements for 
situations in which the fundamental component of 
the signal actually became small, or disappeared for 
certain periods of time. 

In order to recalculate unknown parameters 
(amplitude and phase) of the processed periodic 
signals, it is necessary to have the results of the 
differentiation of the input analogue signals x(tl), 
(equation (3)) [21]. The differential samples of the 
input signal are obtained by means of differentiation 
in a precisely defined time moments of the signal 
that is the object of the reconstruction, which are 
referred in relation to the detected moment of zero 
crossing. The values of the derived relations depend 
on the measured frequency f, because the values of 
the determinant elements are calculated based on 
coefficient αl, according to equation (4). For this 
reason, it is necessary that the frequency of the 
carrier signal be recalculated after the value of each 
new sample is determined, in a way that takes into 
consideration a possible change, introducing it in the 
process of recalculating the new variables Ak, and 
ϕl. In this way, we will reduce the possibility of 
error in the reconstruction process that appeared 
because of the variation in the frequency of the 
processed signal. 

Unlike the procedure described in [8], the 
algorithm proposed here is much less sensitive to 
the variation in the frequency of the carrier signal. 
The parameters of the derived system of equations 
will not be dependent on the starting moment of 
integration (sampling) of the input signal, as was the 
case in [8]. The moments tl in which the 
differentiation of the input signal is done are 
completely random (asynchronous) and independent 
of the frequency of the processed signal. These are 
actually dependent primarily on the speed of the 
circuit for differentiation, S/H (sample and hold) 
circuit and the AD conversion circuit, with which a 
numeric equivalent to the differential of the input 
signal is formed. 

Fig. 1 shows the influence of the error in 
determining the frequency of the carrier signal on 
the relative error in determining the value of system 
determinant, for various harmonic contents of the 
input periodic signal. The values of the Ak 
coefficients show much less dependency on the 
fundamental signal frequencies, Fig. 2. The 
immunity of algorithm could be improved by 
applying a more complex algorithm for the 
detection of signal zero crossing moments [22]. 
Special attention is given to uncertainty analysis for 
the calibration of high-speed calibration systems in 
[23]. The effect of the uncertainty created by the 
time base generator (jitter) can be modeled as non-
stationary additive noise. The paper [23] also 
develops a method to calculate an uncertainty bound 
around the reconstructed waveform, based on the 
required confidence level. The error that appears as 
a result of the supposed non-idealities that exist in 
the suggested reconstruction model is within the 
boundaries specified by the [23] and [24]. A 
sensitivity function is commonly formulated 
assuming noise-free data. This function provides 
point-wise information about the reliability of the 
reconstructed signal before the actual samples of the 
signal are taken. In [24], the minimum error bound 
of signal reconstruction is derived assuming noise 
data. 
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Fig. 1. Relative error in calculation of the system 
determinant as function of error in synchronization 

with frequency of fundamental harmonic of the 
input signal  

 

Fig. 2. Relative error in determination of variables 
Ak as function of error in synchronization with 

frequency of fundamental harmonic of the input 
signal 

 
 

3.1. Numerical complexity of proposed 
algorithm 
The derived relations require a total of 
( )( )1242 3 ++ MMM  multiplications and 

( ) 

















−

M
M

M M 2
2
122 2  additions, to be realized. 

However, due to the method used to determine the 
unknown parameters of the processed signals 
(equation (18)); the necessary number of numeric 
operations is significantly reduced. When the form 
of the derived relations (Appendix) is observed, it 

can be noticed that they contain products that are 
almost completely identical. In other words, only 
the products in the denominators of the derived 
relations have a slightly different form. After the 
calculation defined in (18), the common factors in 
the formed products are abbreviated during the 
division operations. For this reason, the total 
number of operations is reduced to 21218 2 ++ MM , 
meaning that the proposed algorithm required 

( )22
2
9 M  flops. 

This number of operations (operation counts) was 
obtained for the case involving N=1 (without an 
estimation procedure), which requires the additional 
( )( )MN 222 + multiplications and ( )MN 24  additions 
to be realized. If, in addition to this, the described 
estimation procedure is performed, then the 
proposed algorithm takes only ( ) ( )( )222 MMNO +  
flops, which is an approximate equivalent to the 
number of the operations (operation counts) which 
is required by the discrete Fourier transform, DFT. 
The derived analytical expressions are correct, while 
the error that occurs in their implementation appears 
because of the numeric procedure used in their 
calculation (in realizing adding and multiplication). 
The values of the possible error are defined and 
analyzed in [25], while it was also proved that the 
algorithms that solve the Vandermond-like systems 
(equation (3)) are much more accurate (but no more 
backward stable) than GEPP (which requires 

( )32
3
2 M flops) or algorithm with QR factorization 

(which requires ( )32
3
4 M  flops). 

It is well known that the computational load of the 
iterative step involving FFTs does not change with 
the number of sampling values for some of the non-
matrix implementations, but the speed of 
convergence is improved if more points are 
available [26]. A larger number of sampling points 
will result in the appearance of large matrices; the 
same will happen in the case of an input signal with 
large spectrum. Therefore the computational load 
for standard matrix methods (either iterative or 
those using pseudo-inverse matrices) increases 
quickly. Thus, they may be extremely efficient for 
the situation with a few sampling points, but fairly 
slow if there are many sampling points. Quite the 
contrary happens for the methods proposed here. In 
the suggested algorithm, there is no need to 
determine the inversion matrix – a fact that makes it 
much faster and have a much better convergence 
than other matrix-based methods. Inverting the Van 
der Monde matrix requires calculating very high 
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powers of the coefficients, which is always a 
problem with single precision or even double 
precision calculations. The suggested algorithm is 
non-iterative and therefore much faster. Only the 
number of the unknowns defines the number of 
integrative samples required by the proposed 
algorithm in order to perform the reconstruction in 
the observed system (3) (2M unknown’s 
parameters)- as opposed to the FFT, where the 
precision increases with the increased number of 
samples. This is the main reason why we think that 
our derived analytical solution is more 
computationally attractive for moderately sized 
problems [25]. Moreover, this feature makes it 
feasible for large reconstruction problems. In 
addition, the method is free from the effects of 
spectral leakage, which a common problem in 
reconstruction algorithm based on the use of FFT 
[26]. 
 
 

3.2 Computing time 
The suggested algorithm can be applied in operation 
with sigma-delta ADC, thus enabling high 
resolution and speed in processing of input signals. 
This is an important difference to be taken into 
consideration when comparing its implementation in 
this approach (to processing), to the results 
presented in [8]. The time needed to perform the 
necessary number of the differentiations of the input 
signal that is the object of reconstruction is defined 
as sampleMt2 , which represents the value approximate 
to the time needed for reconstruction (in 
simulation). In practical applications of the 
proposed algorithm, the determined time for the 
reconstruction of the processing signal ought to be 
increased by the time necessary to estimate the 
variables x(tl), Al and αl (this time is directly 
dependent on the value N), and the time interval ∆t 
which is necessary to perform all the other re-
calculations according to the proposed algorithm. 
Due to all that has been said, the reconstruction time 
can be defined as t

f
NttMN sample ∆+≈∆+⋅⋅

12 , 

because of the necessary synchronization with the 
zero crossing of the input signal. The speed of the 
proposed algorithm makes it as fast as the 
algorithms analyzed in [27, 28]. 

In order to demonstrate the efficiency of the new 
procedure there is a comparison of the computing 
time of the proposed algorithm to GEPP algorithm 
in solving the system of equations (3), Table 2 
(using Matlab program package, version R2010b). 

The circumstance of verifying real-time 
characteristic is in computer with Intel Pentium 
2.0G Dual CPU, 2Gb RAM, and Windows XP 2002 
operation system. The results given in Table 2 
practically present the estimate value of the time 
interval ∆t. The proposed procedure shortens the 
time needed for calculation by 2 to 3 times, 
depending on the number of the harmonic 
components of the processed signal. With a more 
powerful hardware platform and a different program 
environment, the time for the realization of the 
proposed algorithm will be many times shorter. 

Table 2. Comparison of the computing time 

Number of 
harmonic 

components, M 

Proposed 
algorithm 

GEPP algorithm 

5 0.00087 s 0.00171 s 

7 0.00094 s 0.00215 s 

8 0.00098 s 0.00251 s 

9 0.00106 s 0.00297 s 

11 0.00121 s 0.00399 s 

15 0.00188 s 0.00564 s 

The paper [29] gives a measurement of the 
required processor time, in the realization of the 
matrix method in the reconstruction of signals, in 
the form in which it is implemented in many 
program packages. The method suggested by this 
paper does not require any special memorization of 
the transformation matrix, nor does it require 
recalculation of the inversion matrix. In this way, it 
is much more efficient in implementation and it is 
not limited only to sparse matrices. In addition to 
this, the proposed solution becomes easier for 
hardware realization, while the proposed algorithm 
can be practically implemented on any platform. 
This procedure can be used for the spectral analysis 
as well, where it is possible to find out the 
amplitude and the phase values of the signal 
harmonic, based on the set (predicted) system of 
equations. By taking a step-by-step approach in 
conducting the described procedure, it is possible to 
establish the exact spectral content and, after this 
has been done, to perform the optimization of the 
proposed algorithm. With this, the algorithm will be 
adapted to the real form of the signal. The accuracy 
of signal reconstruction can be guaranteed in 
practical applications in noisy environments with 
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the use of a powerful processor with adequate 
filtering. 
 
 
4 Simulation Results 
The algorithm proposed in this paper is tested by 
means of the input data obtained through computer 
simulation. In order to investigate the statistical 
properties of the proposed estimator, noisy samples 
generated by computer simulation are used. Noisy 
samples are obtained by adding white noise samples 
to the samples of processing signal. For the 
estimation of deterministic parameters, a commonly 
used lower bound for the mean squared error (MSE) 
is the Cramer-Rao lower bound (CRLB), given by 
inverse of the Fisher information [30-32]. Fig. 3 and 
4 respectively depict the MSE of the amplitudes and 
frequency after 105 simulations. Results clearly 
show that the proposed estimation scheme 
asymptotically reach the CRLB as in [32, 33]. 

 

Fig. 3. MSE of the frequency as a function of SNR. 

 

Fig. 4. MSE of the three harmonic amplitudes as a 
function of SNR. 

Additional testing of the proposed algorithm was 
carried out by simulation in the program package 
Matlab and SIMULINK. Standard sigma-delta ADC 
with the effective resolution of 24 bit, and sampling 
rate fS=1 kHz was used as the ADC. During the 

simulation, the parameters of the input signal 
correspond to the values given in Table 3. The 
execution time of the proposed algorithm on 
hardware platform described earlier was 0.0167s. In 
the course of the simulation conducted in this way, 
the output PSD (Power Spectral Density) of the 
ideal, thermal noise affected and clock jitter affected 
was in the range of -100 to -170 dB for the signal-
to-noise distortion ratio (SNDR) ranged between 55 
dB and 76 dB. 
 

Table 3. Comparison of simulation results by the 
proposed reconstruction algorithm, FFT and 

continuous wavelet transformation (CWT) [37] 

Harmonic 
number 

Amplitude 
[VPP] 

Phase 
[rad] 

Proposed reconstruction 
algorithm 

Amp.error 
[%] 

Phase error 
[%] 

1 1 π 0.0018 0.0019 

2 0.81 π/3 0.0024 0.0022 

3 0.62 0 0.0022 0.0021 

4 0.58 π/6 0.0015 0.0016 

5 0.41 π/4 0.0015 0.0021 

6 0.33 π/12 0.0021 0.0019 

7 0.16 0 0.0020 0.0022 

 

Harmonic 
number 

FFT (sampling rate = 25 
kHz;data length = 

25000; time period = 1 s) 

CWT 

Amp.error 
[%] 

Phase 
error [%] 

Amp.error 
[%] 

Phase 
error [%] 

1 0.296 0.322 0.023 0.034 

2 0.035 0.038 0.032 0.028 

3 0.875 0.843 0.049 0.026 

4 0 0 0.144 0.012 

5 0 0 0.013 0.154 

6 0 0 0.012 0.017 

7 0 0 0.223 0.186 
A signal containing the first 7 harmonics was 

used, with the fundamental frequency f = 50 Hz. 
The superposed noise and jitter will, in simulation 
performed in this way, cause a relative error in 
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detection on fundamental frequency of 0.001 %. It 
can be seen that the accuracy of the proposed 
algorithm is within the limits that are attained in 
processing a signal of this form, in [28, 32, 34-36], 
and better then the one presented in [37]. In the time 
domain, the relative error between the signal and its 
reconstruction was 0.0025 %. The errors in the 
amplitude and phase detection are mainly due to the 
error in measuring of the input signal samples and 
the error in determining the value of the derived 
equations. 
 
 
4 Conclusion 
The algorithm proposed in this paper is a new 
complexity-reduced algorithm for estimation of the 
Fourier coefficient. The derived analytical 
expression opens a possibility to perform fast 
calculations of the basic parameters of signals (the 
phase and the amplitude), with a low numeric error. 
All the necessary hardware resources can be 
satisfied by a DSP of standard features and real 
sigma-delta ADC. The suggested concept can be 
used as a separate algorithm as well, for the spectral 
analysis of the processed signals. Based on the 
identified parameters of the ac signals, we can 
establish all the relevant values in the electric 
utilities (energy, power, RMS values). The 
measurement uncertainty is a function of the error in 
synchronization with fundamental frequency of 
processing signal (because of the no stationary 
nature of the jitter-related noise and white Gauss 
noise), and the error that occurs in determining the 
values of the differential samples of the processed 
signal. The simulation results show that the 
proposed algorithm can offer satisfactory precision 
in reconstruction of periodic signals in a real 
environment. 
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Appendix 

For MqMp ≤≤∧≤≤ 121 : 
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where ( )sr
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,
1,12 ++∆  is the determinant obtained from 1,12 ++∆ MM  after the r row and s column have been 
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When we determinate ( )sr
MM

,
1,12 ++∆ , we must eliminate r row and s column from 1,12 ++∆ MM , and if 1,12 ++∆ MM  is 

developed by r row, what we obtain is that ( ) ( )sr
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( ) ( )

( ) ( )

Msfor

xxxx
xxxx

xxxx
xxxx

xxxxxx

xxxxxxxxx
xxxxx

xxx
xxx

MMrr
sMMrr

MMrr
sMMrr

Mrr

rjk
Mj

jk
Mk

kj
sr

MM

MMrrrMMrr
rMrr

MM
M

≤≤





















⋅−

−⋅



















−=∆

⇒









+⋅⋅=

∑ ∑

∑ ∑
∏ ∏

∑ ∑∑

+−
+−+−

−+−
−+−

+−

≠
≤≤ ≤≤

++

−+−+−
+−

1

......
1......

......
1......

......

......
11

......
1......

...
1...

2111
122111

12111
22111

2111

,
21 21

,
1,12

121112111
2111

221
221



 (25) 

If we introduce the following symbols: 

( )

( ) ij
j

ij
j

ex
tMrr

t

extMrrt

xxxx
V

xxxxV

ϕ

ϕ

=+−

=+−

∑

∑

=

=

2111

2111

......
1

......

         (26) 

It follows that: 

( ) ( ) ( ) ( )( )

( )MppMM

exMqMMqMMpp

pjk
Mj

jk
Mk

kj
i

t
qMp
MM

xxxxVVMq

forwhileMqforVVVVxxxxxxex it
t

t

2111122

112111

,
21 21

1,
1,12

......;0

,11......

+−−

=+−−++−

≠
≤≤ ≤≤

+−
++

==⇒=

−≤≤−



















−==∆ ∏ ∏ ϕ
ϕ



 (27) 

We can write that: 

( ) ( ) ( ) ( )( )

1;011

,21......

010

112111

,
21 21

,
1,12

==⇒==⇒−=

−≤≤−













−−==∆

−

=−−−−+−

≠
≤≤ ≤≤

+
++ ∏ ∏

VVMqforandVMq

forwhileMqforVVVVxxxxxxex itetxMqMMqMMpp

pjk
Mj

jk
Mk

kj
it

t
qMp
MM ϕ

ϕ



 (28) 

From this, it follows that: 

( )
( )

( ) ( ) ( ) ( )
( ) itetx

MqMMqM

MqMMqM

Mpp

pjk
Mj

jk
Mk

kj
iMppMiM

M

MM

q
p VVVV

VVVV
xxxxxxee ϕ

ϕϕϕϕ
π

=
−−−−

−−++

+−

≠
≤≤ ≤≤

++++−++−−
+













−+

+−














−

−
= ∏ ∏

11

11

2111

,
21 21

2...11...12
2

1

......
2

1



F  (29) 

( ) ( )
( )

( )∏
∏∏

∏ ∏
≠
≤≤

+=

−

=

=

≠
≤≤ ≤≤ −

−
−=














−

pk
Mk

ikip

M

kj

M

k

ikij

p
itetx

pjk
Mj

jk
Mk

kj ee

ee
xx

21

2

1

12

1

,
21 21

1
ϕϕ

ϕϕ

ϕ



       (30) 

We can write that:  

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )
( ) ( ) ( ){ }1111

21

2

1

12

114222
1

21

2

1

12

12...11...1113222
1

,
21 21

21

2...11...12
1

2
12

2
12

12

21

2

1

12

1

2...12
12

212
2

1

12

1

2
sin

2
sin

211

2
sin

2
sin

21

2
sin2

2
sin21

−−−−−−++

≠
≤≤

+=

−

=+−
−

≠
≤≤

+=

−

=++++−+−+−−−

=

≠
≤≤ ≤≤

≠
≤≤

++++−+
−−

−

≠
≤≤

+=

−

=

++
−

−−

+=

−

=

−+−⋅
−

−

⋅−−=

⇒
−

−

−=













−

⇒
−

=−

−
−=−

∏

∏∏

∏

∏∏
∏ ∏

∏∏

∏∏∏∏

MqMMqMMqMMqM

pk
Mk

kp

M

kj

M

k

kj

MM
MMpq

p

pk
Mk

kp

M

kj

M

k

kj

iMppMMMiMp
itetx

pjk
Mj

jk
Mk

kj

pk
Mk

kpiMppip
MiM

M

pk
Mk

ikip

M

kj

M

k

kjiM
MiMMMM

M

kj

M

k

ikij

VVVVVVVVi

eexx

eeeee

eeee

ϕϕ

ϕϕ

ϕϕ

ϕϕ

ϕϕ

ϕϕ

ϕϕϕϕ
π

ϕ

ϕϕϕϕϕπϕϕ

ϕϕπ
ϕϕ

F



  (31) 
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It follows that: 

( ) ( ) ( ){ }
( ) ( )∑∏







 ++−++

⋅−+−
−

⋅
−

= −−−−−−++

≠
≤≤

−

MMMM

MqMMqMMqMMqM

pk
Mk

kp
M

q

M

q
p VVVVVVVVi

2121

1111

21

12
2 ......

2
1cos

1

2
sin2

1

ϕϕϕϕ
ϕϕX

X   (32) 

If we introduce the following symbols: 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )
( ) ( )qMqMMqMqMM

qMqMqMqMMqMqMqMqMMMqMMqMMqMMqM

MMMMMMMqMqMqMqM

qMqMqMqM

qMqMqM

MqMMqMMqMMqMMqMMqMMqMMqM

tMppMpptt
p

t

tMppMpptt
p

t

ttt

iMpp

t

AAiBBBiA
CCCCiBCCCCAVVVVVVVV

BBAAiBACCCCC

BBAA
iBAC

CCCCCCCCVVVVVVVV

BB

AA

iBAVeC

−−−−−−

−−−−−−−−−−−−−−−−−−++

−−−−−−−+−−+

−−+−−+

+++

−−−−−−++−−−−−−++

+−+−

+−+−

++++−++

++−=

=++++−+−=−+−

⇒−==+===

⇒−==

−=

−+−=−+−

⇒






 +++++−+++++==







 +++++−+++++==

+==

∑

∑

11

11111111

1111111

11

11111111

21112111

21112111

2...11...12
1

22

;;;;

;

............
2
1sin

............
2
1cos

ϕϕϕϕϕϕϕϕ

ϕϕϕϕϕϕϕϕ

ϕϕϕϕ

 (33) 

It follows that: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )

21;
......

2
1cos

2
sin2

1

2121
21

11

22

1

2

−≤≤







 ++−++

−
++−

⋅
−

=

∑∏
≠
≤≤

−−−−−−

−

+

Mqfor
AABBBA

MMMM

pk
Mk

kp

p
qM

p
qM

p
M

p
qM

p
qM

p
M

M

q

M

q
p

ϕϕϕϕ
ϕϕX

X
  (34) 

In addition, for: 

( )

( ) ( )
( )beforeassametheareBandABACVMq

BA

eCVMq

MppMpp

iMpp

001111

2111021110

2...11...12
1

00

0;00

......
2
1sin;......

2
1cos

;11

===⇒=⇒=

+++++=+++++=

==⇒−=

−−−−

+−+−

++++−++

ϕϕϕϕϕϕϕϕ

ϕϕϕϕ

   (35) 

Now, we can determine co-factors q
pF for MqMMp 21;21 ≤≤+≤≤ , and qM

p
+F for Mq ≤≤1 . As above, we 

obtain that: 

( )
( )

( ) ( ) ( ) ( )( ) ijejx
qMp
MM

qMp
MM

iMppMiM

M

MM

q
p ee ϕ

ϕϕϕϕ
π

=

+−
++

+
++

++++−++−−−
+

∆−∆
−

= 1,
1,12

,
1,12

2...11...12
12

1

2
1F    (36) 

From this, it follows that: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )∑∏







 ++−++⋅

−
++−

⋅
−

=

≠
≤≤

−−−−−−

−

++

MMMM

pk
Mk

kp

p
qM

p
qM

p
M

p
qM

p
qM

p
M

M

q

M

qM
p BBBAAA

2121
21

11
22

1

2 ......
2
1cos

2
sin2

1

ϕϕϕϕ
ϕϕX

X
    (37) 
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