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Abstract: - This paper is concerned with the estimation of amplitude and phase of an analog multi-harmonic
signal based on a series of differentia values of the signal. To this end, assuming the signal fundamental
frequency is known before hand (i.e., estimated in an independent stage), a complexity-reduced scheme is
proposed here. The reduction in complexity is achieved owing to completely new analytical and summarized
expressions that enable a quick estimation at a low numerical error. The propose algorithm for the calculation
of the unknown parameters requires O((2M)?) flops, while the straightforward solution of the obtained
equations takes O((2M)?) flops, where M is number of harmonic coefficients. It is proved that the estimation
performance of the proposed algorithm can attain Cramer-Rao lower bound (CRLB) for sufficiently high
signal-to-noise ratios. It is applied in signal reconstruction, spectra estimation, system identification, as well as
in other important signal processing problems. The paper investigates the errors related to the signal parameter
estimation, and there is a computer simulation that demonstrates the accuracy of these algorithms.
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1 Introduction been made in respect to application of sampling
Estimating the amplitude and phase of a signal techniques  supported by optimal methods  of
accurately even when the frequencies contained in reconsiruction of t_)and-llmlte_:d signas in the form of
the signal are aready known is very important in aFourier serles(trlgonometrl_c pplynomlals_) [3-6] .
many areas [1-2]. These include the dual-tone In this paper, the application of differential
multiple frequencies (DTMF) signa detection in processing (sampling) methods for periodic signal
digital communications, ECG  sinusoidal reconstruction is anallyzed, as opposed to the me_thod
interference cancellation, recovery of biomedical based on thelnt_egratlon of the input analogue signal
signals, and pitch detection in automated [7], aong with the problem of subsequent
transcription. In power systems, estimation of the reconstruction of the processed sngnaJs: This kind of
harmonic components is necessary to ensure the approach (integration) to the processing was also
quality of power supply. considered in [8], where the standard matrix
In signal processing, reconstruction usualy means inversion is used as the method for reconstruction,
determination of an origina continuous signal from which requires very intensive numerical calculation.
a sequence of equally spaced samples. It is a well- In [7] it was noticed that the ac s!gnal integration
known fact that any real signal which is transmitted method produces a regular matrix form in the
dong a channd-like form will have a finite ~ derived system of equations, provided an adequate
bandwidth. As the result, the received signa's choice is made regarding the time parameters within
spectrum cannot contain any frequencies above a which the integration is done; this makes it possible
maximum value, fu=Mf (f is the fundamental to have a much more efficient reconstruction
frequency). Conseguently, M frequencies provide a procedure subsequently.
specification of everything we know about the If the differential value (samples) were assumed to
signal spectrum in terms of a d.c. level plus the be measured without errors, the presented algorithm
amplitudes and phases of just— i.e al the V\_/lthout any furthe_r modlflcatlo_ns can be us_ed_for
information we have about the spectrum can be signal reconstruction of periodic band-limited
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simulation. In a real environment and when the
measuring is performed in practice, the samples are
measured with error. The sampled values that are
obtained in practice may not be the exact values of
the signal at sampling points, but only averages of
the signal near these points [6]. In this case, the
suggested agorithm must be modified, in order to
be able to determine the best signa estimate,
according to the criterion assumed, just like in [6],
[8] or [9-12].

The approach in this paper is based on the use of
the values that were obtained as result of the
differential processing of the continua input signal,
in precisely defined time periods. This kind of
processing was done, as many times as was needed
to enable the reconstruction of the multi-harmonic
signal that is the subject of the processing operation.
In thisway, it is possible to obtain a specific form of
the linear equations system. This system can be
simply solved by using the derived analytical and
summarized expressions. For estimation of
amplitude and phase of complex ac signal algorithm
requires O((2M)>?) flops, while the straightforward
solution of the obtained equations takes O((2M)?)
flops. For this reason, the proposed method offers a
significant improvement in computational efficiency
over the standard reconstruction agorithms, at a
lower numerical error.

Table 1: The nomenclature used in the following

parts of the paper
Symbol Meaning
fundamental frequency of processing
f signd
) band limited input analogue signal
the number of signa spectrum ac
M (harmonic) components
ADC analogue to digital converter
a the amplitude of the kth harmonic
K the number of the harmonic
the phase angle of the kth harmonic
Wk

Unlike the IEEE standard that was analysed in
[13], the algorithm proposed in this paper is
significantly more stable and free of the propagation
error. Namely, when using the procedure prescribed
by the standard, the amplitude errors of the
fundamental will propagate through the method
since the amplitudes are used to reconstruct the
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detected sine wave and obtain the results before they
are used to determine the next harmonic parameters.
Overadl, the frequency and amplitude errors from
the first calculation are propagated to the higher
harmonics and the calculation of the ™ harmonic
will invariably be contaminated by the errors of the
phases and amplitudes from previous steps.

2 Proposed Method for Processing
Let us assume that the input signal of the
fundamental frequency f is band limited to the first
M harmonic components. This form of continuous
signal with a complex harmonic content can be
represented as a sum of the Fourier components as
follows:
M
slt) = > a sin(k2aft + ) (1)
k=1
By differentiating the signal (1) and by forming a
system of equations of the same form, in order to
determine the 2M unknowns (amplitudes and phases
of the M harmonic), we get:

df > a, sin(kadft +y, )
0'(350)= ( )| —x(t )=
x(t, )= iakKZﬂf costk2ft, +, )

dt
)

-3 a, ket [oos{iertt, )oosly, ) - sin(kczat, Jsinly, )]

where | = 1, 2,..., 2M. The t; is time moment in
which the differentiation of the input anaogue
signal is done, and depends on the speed of the
block with which conversion will be done from the
output of the circuit for differentiation. This moment
must be shifted with every subsequent
differentiation of the input signal. The x(t) value
represents the value of the differentiate of the
processed signal. The obtained relation can be
represented in the short form as:

M
> Ay (COSakJ cosyy —sinay Sinyy )=x(t,) ©)
k=1

where:
k2af = A;2kAft, = a,,;(k=12,...,M)
(1=12...2m) (4

A and o are the variables which are the result of
the differentiation of the signal in the rea device as
defined with equation (1), determined by the
moment at which the sampling is done, as well as by
the frequency of the corresponding harmonic of the
input periodic signal. The system determinant for
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the system of 2M (unknown
represented as:

parameters) can be

Acosa,, Acosa, .. A,cose,, -Asng, -Asng, .. -ASng,, (5)
X - Acosa,,  Acosa,, .. Acosw,, -Asna, -Asng, .. -Asng,,|_
sgen -
ACOSE,,,  ACOSTy, o ACOSE 5 —ASNGL, —ASNG,, . - A SN,
= A A ALCATX,
where:
cosa,,  Cosa,, cosa,, Snha,, Sna, .. Sna,,
cosq,, COsa,, .. COSa,, Sna, Sng,, sna,,
XzM = = (6)
Cosal,zM COSHZ‘ZM . COS(ZM 2M S.nal‘ZM—l S-naZ‘ZM . Sn(ZM 2M
C0Sp,  C0S2¢p, cosMg, sing, sin2p, sinMe,
cosp, C0S2p, .. CosMg, sing, sSin2p, .. sinMp,
c0sp,, C0S2p,, .. C0SMg,, sng,, sin2p, .. sinMg,,
Here:
(24
k|
» = T =2r ft| (7)

The similar form of the obtained determinant (6)
was the object of study in [8], but this was only the
first step for egtimation of Fourier coefficients,
which are estimated, from integrative samples and
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subsequently, in the second step, the estimators
were corrected using the method of least squares
and precision measurement of rectified-signal
average. In its form, determinant (6) resembles the
well-known Van der Monde determinant [7]. In this
paper, we derived anaytica and summarized
expressions for solving system equations (3),
exactly by using this determinant as the starting
point of the analysis. Owing to relations derived in
this way, it is not necessary to use the standard
procedure for solving the system of equations.

2.1 Derivation of the new relationsfor

solving the observed system of equations

In the case of the system of equations obtained from
the suggested concept of processing of the input
signals (equation (3)), instead of the x variables in
the expressions derived in [7], it is necessary to take
in the trigonometric values for ¢, ¢,,¢s3,....00m , 8S
defined in (7). The given determinant (egquation (6))
can be transformed as it follows (by using Euler’s
formulas):

Xom =|cosp; cos2p .. cosMg; sing, sin2p .. sinMg|=
—M%i
_& P Lol Q200 L g7200 Mol Mo ol ol @20 _ 200 (Meii o Maii|
-mZi
_€ v efﬂli ez‘/ﬁi . eM‘Pﬂ e‘/’ﬂ _e*‘/’ﬂ ez‘/’ﬂ _e*2</’1i . eM</71i _e*M‘ﬂﬂ —
2
Mm% . . : ) .
:(_l& e 2|gf g2 Med g o200 oMani|
2
M(M -1
(-1 (2 ! M0 M i i Moy
- e 2 ‘e, o gl gl Ma|
oM
MM 1
:(_l) 2 e 2 e*M(‘ﬂlﬂ/’z*---“ﬂzm )il e‘Pﬂ e(M ~Upii e(M +pii 92M¢1i —
o .
(,l) 2 -M=i 7M( "
_ 2 P1+Pp et oy )
—w ¢ °°® AV IYRERYRE] xj =€
_ (v _eoiY__ Aoma 1
Aamamal, _goit =A2m +1,M+1(Xj = J, i (aXa--Xom )Y Caraom Jor |1 ="

H(sz +1*Xk)

k=1
2M+12M

?ji M (2M +1) MEMATE oo ) . 9ok
A2M+1(Xj —efi ):2 e 2 Mi@1 @2+t pom H HsmT

j=k+1k=1

(8)

—(¢1+€02+---+¢2M )M}

2 M 52M M i Zortoptton N2 Pom +1~ Pk
H(X2M+1_Xk# o = (1) 22V eMPamale2 [[sn=2t— =
k=1 Xi=e k=1 2
2M +12M o
1—[ Hsin(/’] Pk
MM-Y) ovvog) jskitk=l 2 Pt P2+t P
Xom=(-1 2 2 - > co 5
Hsinwm*l Pk
k=1 2
M(M-1) L) M ML g gy F Pyt
Xom :(71) > 22M(M 1) 1—[ H sin 12 Zcos{(pl P2 5 Pam

j=k+1 k=1
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The co-determinants required for reaching the
solution of the given system of equations (5) are:

xt,) cos2p, .. cosMg, sng, sn2p, .. snMg,
« - xt,) cos2p, .. cosMg, sing, sn2p, .. snMg,|(9)
M1
A, ) cos2p,, .. cosMg,, Sng, Sn2p, .. sSnMg,,
cosp, Xt) .. cosMp, sng sn2p, .. snMg,
Ny cosp, xt,) .. cosMg, sng, sn2p, .. snMp,|(10)
M2 =
COS(pQM X(tZM ) o COSMwQM sAr|¢2M Srl2¢ZM b Sn M¢ZM

and so on. The co-determinants given above based
on the following devel opment can be written as:

XZM 1 = X(tl)xi + X(tZ)X]é Tt X(t2M )X;M (11)

X1 X5 X5 ae  the  co-determinants,
obtained from co-determinant Xy, after the
corresponding row as well as the first column have
been eliminated. The second co-determinant (or co-
factor) is derived from the expansion of Xy along
such a column. For this purpose, we must determine
X1 as co-factors of Xay. Therefore:

( )M(M+1) x
~1) > -MZi
q_
Fp = o e Z2e
for 1< p<2M Al<q<M
M (M +1)

Fq _ (_ 1) 2 e*(M —l)%i e—M ((pl+...+q)p_1+q)p+1+...+(p2M )i (A(p'M +q)
p

2M

for 1<p<2M;M+1<qg<2M, and

1<g<M.

F, for

Based on (analytical) relation derived in this way
the unknown parameters of the signal (amplitude,
phase), can be determined through a simple division
of the expression that represents a solution of the
adeguate co-determinants with the expression that
represents an analytical solution to the system
determinant:

VK :arctgm
‘ (18)
ay =L XE + XRsk
AX
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= (-1 F¢ (12)

where F; is obtained from X,y overturning p row
and q column. We know that:

2M +1
AoM+,M 41 = A(2|v| :1,)|v| +1 (13)
M (M -1)
X (_ 1) 2 eiMEIe*M((ﬂl*---*t/’ZM i
2M = 2M 2M +1,M +1 (14)
(x =e)

Hence, it follows that X; is co-factor of matrix,
whose determinant is Aowv+1m+1-

iM[ Zﬁj(xj — X )](XIXZ"XZM )Zm (15)

Aomiim+1= [

j=k+1 k=1

After the intensive mathematical calculation
(Appendix) we obtain:

AlpM=q+1)

2M+LM+1 ~ 2 2M+1L,M +1)Xj Pl

(16)

(p.M-g+1) .
Ay +1LM +1)xj it (A7)

2M+LM+1

The analyzed determinants and co-determinants of
the system (3) were used only as the starting
function (of the polynomial form), to the purpose of
obtaining explicit and summarized analytical
expressions which can be used further on to perform
the calculation of the unknown signal parameters. It
is a fact that the obtained system of equations (3)
can be described, after the processing, by a specia
form of the determinant (which is summarized as
the Van der Monde's determinant). This fact enables
factoring and application of transformations that can
be applied only on determinants. Any other
procedure would lead to a much more complex
calculation and to relations that are mathematically
much more demanding. Owing to this, any
subsequent calculation conduct towards
reconstructing a periodic signal will not be related
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either to determinants themselves or to the
procedures that are typically used in their solving.
The obtained result clearly suggests that it is not
necessary to use the standard procedure for solving
the system of equations, as suggested in [8].

Due to the presence of the error in determining the
differential samples x(t), and variables A and ¢
which is caused by their dependence on the carrier
frequency f of the processed signal (Figures 1-2), in
the practical applications of the proposed algorithm
we need to have the best estimate of the given
values, according to the criterion assumed. This can
be done by the means of recalculation of the values
X)), Ax and ¢, through N passages, (N is arbitrary).
In this process we form series x(t),, Aw and ¢y
(n=1,...,N), as it given in the proposed agorithm.
The random errors A, of measurements are
unbiased, E(A,))=0 have the same variance
var(A,)=c?, and are not mutually correlated. Under
these assumptions, the least squares (LS) estimator
minimizes the residual sum of squares[14]:

S )= 2 i) s rislA -2 A AT

S((/‘}I )=

where p, =k/c?,k>~0 (k is abitrary). By
minimizing the function S we obtain the LS
estimators X(t;),A..¢ Of the values x(t), A and ¢
all=1,2,.,2Mand k=1, 2,..., M as:

P, (¢| ~—Pu )2

2 M=

E
IS

N N N
Z an(t| )n A Z PnAnk Z Pn®ni
%)==y A =g =2 ——(20)
> Pn 2. Pn 2. Pn
n=1 n=1 n=1

The value of N will depend on the required speed
of processing — the higher the N, the more precise
the estimation of the value is. In particular, the LS
method has been applied to a variety of problemsin
the real engineering field due to its low
computational complexity. In the concrete case, the
estimation procedure does not require the matrix
inversion and is considerably less demanding from
the processor aspect, than the methods described in
[15]. In addition to this, when the proposed
algorithm is used in simulations, the estimation of
the given variables (20) will not be necessary, which
will significantly reduce the processing time needed
for its realization. The proposed solution can be
modified, in order to reduce the error in determining
the differential of the input signal. In [16] it was
shown that implementation of sampling and
reconstruction with internal antialiasing filtering
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radically improves performances of digital
receivers, enabling reconstruction with a much
lower error.

It is necessary to note that the frequencies of the
proposed signal may show some differences in
relation to the given ones —that isto say that alarge
or a small frequency mismatch (FM) may exist in
rea applications. In [17, 18], a new LMS-based
Fourier analyser is proposed. This analyser works
simultaneousy — on one side, it estimates the
discrete Fourier coefficients (DFCs) and on the
other side, it accommodates the FM. This analyzer
can very well compensate for the performance
degeneration due to the FM. However, in the LS
procedure proposed here, the estimation of the
samples and variables is done by minimising the S
function (equations (19)—20)). Furthermore, when
this is done, the derived analytical expressions are
used to determine the unknown Fourier coefficients.
In addition to this, with every passage of the
described agorithm, the moment of sampling is
referred to the detected zero-crossing of the
processed signal, and its basic frequency is aso
calculated at the same time. In this way, the
determination of the unknown parameters of the
processed periodic signal is less dependent on the
possible FM, when compared to the algorithm
analyzed in [17, 18] (the parameters analyzed in this
paper are less inter-dependent). However, if the
signal-to-noise ratio were to be very low and
accompanied by a marked FM, it would still be
possble to modify the described estimation
procedure in a way presented in [17, 18], without
adding any requirements to the redlization.

If the input signal that is being processed contains
a dc component, than this component can be smply
separated (determined) by using a low frequency
filter, after which it is measured, before the signa
itself is subjected to differentiation. In this way, the
reconstruction system suggested in this paper gives
possibility to process the most genera form of a
periodic input signal.

The results obtained for solving of observed
determinants were compared with solution obtained
from GEPP agorithm (Gaussian eimination with
partia pivoting), offered in the Matlab program
package itself (al of the calculations are done in
|EEE standard double floating point arithmetic with
unit round off ux1.1x10"). This represents a
practical verification of the proposed algorithm for a
case of ideal sampling (without an error in taking
the value of the sample and determining the
frequency of the processed signal). The differencein
the obtained values and results obtained with GEPP
algorithm was equal to1x10™, taking that M=7,
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f=50 Hz, t,=0.001 s. The derived relations produce
solutions that are practicaly identica to the
procedure that is most commonly used in solving
systems of linear equations.

3 Proposed Reconstruction Algorithm

and Error Analysis

For the proposed agorithm, on the beginning, the
order of the highest M harmonic component in the
processed signal spectrum must be known in
advance or adopted in advance, accepting that an M
determined in this way is bigger than the expected
(real) value. One of the well-known methods can be
used to estimate the frequency spectrum. In [19] two
accurate frequency estimation algorithms for
multiple real sinusoids in white noise based on the
linear prediction approach have been developed.
The first algorithm minimizes the weighted least
squares (WLS) cost function, subject to a
generaized unit-norm constraint. At the same time,
the second method is a WL S estimator with a monic
constraint. Both agorithms give very close
frequency estimates whose accuracies attain
Cramé&—Rao lower bound for white Gaussian noise.
A modified parameter estimator based on a
magnitude phase-locked loop principle was
proposed in [20]. It showed that the modified
algorithm provided tracking improvements for
situations in which the fundamental component of
the signal actually became small, or disappeared for
certain periods of time.

In order to recalculate unknown parameters
(amplitude and phase) of the processed periodic
signals, it is necessary to have the results of the
differentiation of the input analogue signals x(t)),
(equation (3)) [21]. The differential samples of the
input signal are obtained by means of differentiation
in a precisely defined time moments of the signal
that is the object of the reconstruction, which are
referred in relation to the detected moment of zero
crossing. The values of the derived relations depend
on the measured frequency f, because the values of
the determinant elements are calculated based on
coefficient ¢ according to equation (4). For this
reason, it is necessary that the frequency of the
carrier signal be recalculated after the value of each
new sample is determined, in a way that takes into
consideration a possible change, introducing it in the
process of recalculating the new variables Ak, and
¢. In this way, we will reduce the possibility of
error in the reconstruction process that appeared
because of the variation in the frequency of the
processed signal.
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Unlike the procedure described in [8], the
algorithm proposed here is much less sensitive to
the variation in the frequency of the carrier signal.
The parameters of the derived system of equations
will not be dependent on the starting moment of
integration (sampling) of the input signal, as was the
case in [8]. The moments t, in which the
differentiation of the input signal is done are
completely random (asynchronous) and independent
of the frequency of the processed signal. These are
actually dependent primarily on the speed of the
circuit for differentiation, S/H (sample and hold)
circuit and the AD conversion circuit, with which a
numeric equivalent to the differential of the input
signal isformed.

Fig. 1 shows the influence of the error in
determining the frequency of the carrier signal on
the relative error in determining the value of system
determinant, for various harmonic contents of the
input periodic signal. The vaues of the A
coefficients show much less dependency on the
fundamental signal frequencies, Fig. 2. The
immunity of algorithm could be improved by
applying a more complex algorithm for the
detection of signa zero crossing moments [22].
Special attention is given to uncertainty analysis for
the calibration of high-speed calibration systems in
[23]. The effect of the uncertainty created by the
time base generator (jitter) can be modeled as non-
stationary additive noise. The paper [23] dso
devel ops a method to cal culate an uncertainty bound
around the reconstructed waveform, based on the
required confidence level. The error that appears as
a result of the supposed non-idealities that exist in
the suggested reconstruction model is within the
boundaries specified by the [23] and [24]. A
sengitivity function is commonly formulated
assuming noise-free data. This function provides
point-wise information about the reliability of the
reconstructed signal before the actual samples of the
signal are taken. In [24], the minimum error bound
of signal reconstruction is derived assuming noise
data.
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Fig. 1. Relative error in calculation of the system
determinant as function of error in synchronization
with frequency of fundamental harmonic of the
input signa
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Fig. 2. Relative error in determination of variables
A asfunction of error in synchronization with
frequency of fundamental harmonic of the input
signal

3.1. Numerical complexity of proposed

algorithm
The derived relations require a tota of
(2M am 2+ 2m +1) multiplications and

(ZM{ZZM —%(Zm additions, to be redlized.

However, due to the method used to determine the
unknown parameters of the processed signals
(equation (18)); the necessary number of numeric
operations is significantly reduced. When the form
of the derived relations (Appendix) is observed, it
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can be noticed that they contain products that are
amost completely identical. In other words, only
the products in the denominators of the derived
relations have a dlightly different form. After the
calculation defined in (18), the common factors in
the formed products are abbreviated during the
division operations. For this reason, the total
number of operations is reduced t018M * +12M + 2,
meaning that the proposed agorithm required
%(ZM )? flops.

This number of operations (operation counts) was
obtained for the case involving N=1 (without an
estimation procedure), which requires the additional
(2N +2)2M )multiplications and 4N(2M ) additions

to be redized. If, in addition to this, the described
estimation procedure is performed, then the
proposed algorithm takes only O(N(ZM)+(2M)2)
flops, which is an approximate equivalent to the
number of the operations (operation counts) which
isrequired by the discrete Fourier transform, DFT.

The derived analytica expressions are correct, while
the error that occurs in their implementation appears
because of the numeric procedure used in their
calculation (in reaizing adding and multiplication).
The values of the possible error are defined and
analyzed in [25], while it was also proved that the
algorithms that solve the Vandermond-like systems
(equation (3)) are much more accurate (but no more
backward sable) than GEPP (which requires

%(ZM )*flops) or agorithm with QR factorization

(which requires %(ZM )? flops).

It iswell known that the computational load of the
iterative step involving FFTs does not change with
the number of sampling values for some of the non-
matrix implementations, but the speed of
convergence is improved if more points are
available [26]. A larger number of sampling points
will result in the appearance of large matrices; the
same will happen in the case of an input signal with
large spectrum. Therefore the computational oad
for standard matrix methods (either iterative or
those using pseudo-inverse matrices) increases
quickly. Thus, they may be extremely efficient for
the situation with a few sampling points, but fairly
dow if there are many sampling points. Quite the
contrary happens for the methods proposed here. In
the suggested algorithm, there is no need to
determine the inversion matrix — a fact that makes it
much faster and have a much better convergence
than other matrix-based methods. Inverting the Van
der Monde matrix requires calculating very high
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powers of the coefficients, which is adways a
problem with single precison or even double
precision calculations. The suggested algorithm is
non-iterative and therefore much faster. Only the
number of the unknowns defines the number of
integrative samples required by the proposed
algorithm in order to perform the reconstruction in
the observed system (3) (2M  unknown’'s
parameters)- as opposed to the FFT, where the
precision increases with the increased number of
samples. This is the main reason why we think that
our derived anadytica solution is more
computationally attractive for moderately sized
problems [25]. Moreover, this feature makes it
feasible for large reconstruction problems. In
addition, the method is free from the effects of
spectral leakage, which a common problem in
reconstruction algorithm based on the use of FFT
[26].

3.2 Computing time

The suggested agorithm can be applied in operation
with sigma-delta ADC, thus enabling high
resolution and speed in processing of input signals.
This is an important difference to be taken into
consideration when comparing its implementation in
this approach (to processing), to the results
presented in [8]. The time needed to perform the
necessary number of the differentiations of the input
signal that is the abject of reconstruction is defined
as 2Mtgme » Which represents the value approximate

to the time needed for reconstruction (in
simulation). In practical applications of the
proposed algorithm, the determined time for the
reconstruction of the processing signal ought to be
increased by the time necessary to estimate the
variables x(t), A and « (this time is directly
dependent on the value N), and the time interval At
which is necessary to perform all the other re-
calculations according to the proposed algorithm.
Dueto all that has been said, the reconstruction time

can be defined as N-2M -t +AtzN%+At,

sample

because of the necessary synchronization with the
zero crossing of the input signal. The speed of the
proposed algorithm makes it as fast as the
algorithms analyzed in [27, 28].

In order to demonstrate the efficiency of the new
procedure there is a comparison of the computing
time of the proposed agorithm to GEPP algorithm
in solving the system of equations (3), Table 2
(using Matlab program package, version R2010b).
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The circumstance of  verifying red-time
characteristic is in computer with Intel Pentium
2.0G Dua CPU, 2Gb RAM, and Windows XP 2002
operation system. The results given in Table 2
practically present the estimate value of the time
interval At. The proposed procedure shortens the
time needed for calculation by 2 to 3 times,
depending on the number of the harmonic
components of the processed signal. With a more
powerful hardware platform and a different program
environment, the time for the realization of the
proposed agorithm will be many times shorter.

Table 2. Comparison of the computing time

Number of Proposed GEPP agorithm
harmonic algorithm
components, M

5 0.00087 s 0.00171s
7 0.00094 s 0.00215 s
8 0.00098 s 0.00251 s
9 0.00106 s 0.00297 s
11 0.00121 s 0.00399 s
15 0.00188 s 0.00564 s

The paper [29] gives a measurement of the
required processor time, in the realization of the
matrix method in the reconstruction of signals, in
the form in which it is implemented in many
program packages. The method suggested by this
paper does not require any special memorization of
the transformation matrix, nor does it require
recalculation of the inversion matrix. In this way, it
is much more efficient in implementation and it is
not limited only to sparse matrices. In addition to
this, the proposed solution becomes easier for
hardware readlization, while the proposed algorithm
can be practically implemented on any platform.
This procedure can be used for the spectral analysis
as well, where it is possible to find out the
amplitude and the phase values of the signa
harmonic, based on the set (predicted) system of
equations. By taking a step-by-step approach in
conducting the described procedure, it is possible to
establish the exact spectral content and, after this
has been done, to perform the optimization of the
proposed agorithm. With this, the algorithm will be
adapted to the real form of the signal. The accuracy
of signal reconstruction can be guaranteed in
practical applications in noisy environments with
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the use of a powerful processor with adequate
filtering.

4 Simulation Results

The algorithm proposed in this paper is tested by
means of the input data obtained through computer
simulation. In order to investigate the statistica
properties of the proposed estimator, noisy samples
generated by computer simulation are used. Noisy
samples are obtained by adding white noise samples
to the samples of processing signal. For the
estimation of deterministic parameters, a commonly
used lower bound for the mean squared error (M SE)
is the Cramer-Rao lower bound (CRLB), given by
inverse of the Fisher information [30-32]. Fig. 3 and
4 respectively depict the MSE of the amplitudes and
frequency after 10° simulations. Results clearly

show that the proposed estimation scheme
asymptoticaly reach the CRLB asin [32, 33].

1w’ 5
G

1g~18

0 10 20 30 40 50 80 70 80
SNR (dB)

Fig. 3. MSE of the frequency as a function of SNR.

N
o]

— CRLB
© 1% harmonic amplitude
23" harmonic amplitude
* 5" harmonic amplitude

0 10 20 30 40 50 60 70 80
SNR (dB)

Fig. 4. MSE of the three harmonic amplitudes as a
function of SNR.

Additional testing of the proposed agorithm was
carried out by simulation in the program package
Matlab and SIMULINK. Standard sigma-delta ADC
with the effective resolution of 24 bit, and sampling
rate f<=1 kHz was used as the ADC. During the
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simulation, the parameters of the input signa
correspond to the values given in Table 3. The
execution time of the proposed agorithm on
hardware platform described earlier was 0.0167s. In
the course of the simulation conducted in this way,
the output PSD (Power Spectral Density) of the
ideal, thermal noise affected and clock jitter affected
was in the range of -100 to -170 dB for the signal-
to-noise distortion ratio (SNDR) ranged between 55
dB and 76 dB.

Table 3. Comparison of simulation results by the
proposed reconstruction algorithm, FFT and
continuous wavel et transformation (CWT) [37]

Proposed reconstruction
algorithm
Harmonic Amplitude Phase
number [VPP] [rad]
Amp.error | Phaseerror
(%] (%]

1 1 n 0.0018 0.0019

2 0.81 /3 0.0024 0.0022

3 0.62 0 0.0022 0.0021

4 0.58 /6 0.0015 0.0016

5 0.41 /4 0.0015 0.0021

6 0.33 /12 0.0021 0.0019

7 0.16 0 0.0020 0.0022

FFT (sampling rate = 25 CWT
kHz;data length =
Harmonic |25000; time period =1 s)
number

Amp.error Phase Amp.error Phase
[%] error [%)] [%] error [%]

1 0.296 0.322 0.023 0.034

2 0.035 0.038 0.032 0.028

3 0.875 0.843 0.049 0.026

4 0 0 0.144 0.012

5 0 0 0.013 0.154

6 0 0 0.012 0.017

7 0 0 0.223 0.186

A signal containing the first 7 harmonics was
used, with the fundamental frequency f = 50 Hz.
The superposed noise and jitter will, in smulation
performed in this way, cause a relative error in
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detection on fundamental frequency of 0.001 %. It
can be seen that the accuracy of the proposed
agorithm is within the limits that are attained in
processing a signal of thisform, in [28, 32, 34-36],
and better then the one presented in [37]. In the time
domain, the relative error between the signal and its
reconstruction was 0.0025 %. The errors in the
amplitude and phase detection are mainly due to the
error in measuring of the input signal samples and
the error in determining the value of the derived
eguations.

4 Conclusion

The agorithm proposed in this paper is a new
complexity-reduced algorithm for estimation of the
Fourier  coefficient. The derived analytica
expression opens a possbility to perform fast
calculations of the basic parameters of signals (the
phase and the amplitude), with alow numeric error.
All the necessary hardware resources can be
satisfied by a DSP of standard features and rea
sigma-delta ADC. The suggested concept can be
used as a separate algorithm as well, for the spectral
analysis of the processed signals. Based on the
identified parameters of the ac signals, we can
establish &l the relevant values in the electric
utilities (energy, power, RMS vaues). The
measurement uncertainty is afunction of the error in
synchronization with fundamental frequency of
processing signal (because of the no stationary
nature of the jitter-related noise and white Gauss
noise), and the error that occurs in determining the
values of the differentia samples of the processed
signal. The simulation results show that the
proposed agorithm can offer satisfactory precision
in reconstruction of periodic signals in a rea
environment.
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Appendix

For 1< p<2M Al<q<M :
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B oM e e 2M4LM+L S oMeLM Al xj =ei! (21)
It follows that:
M (M +1)
d —(_1) ’ MG g Mlerop1opiatioam b (A(pm o) (P.M-q+1) <p< <g<
Fp = 2M e e A2M+1,M+l _A2M+1,M+l Xj:ewji fOf 1_ p > 2M /\1_ q > M (22)

where A(;hj)ﬂ,vlﬂ is the determinant obtained from A,y .,y after the r row and s column have been
eliminated.

Y a1l M+ ¥2M
AoM 41, M 41 = |- . e |2
1 Xom - XMT XMt LoxeM (23)
2M 2M- 1
Aomiama=| |1 H%Xj _Xk) (X Xg... Xom )z(—
j=k+1 k=1 X Xg.-Xom )y

When we determinate A(£§)+lM .1» we must eliminate r row and s column from A,y g v.1, @d if Agy iy 0S
developed by r row, what we obtain is that D, o= (-1 "l , ., is the coefficient in x**1<s<Mm), i.e. the

coefficient beside x° if M +1<s<2Mm .

1
AoM LM 41 = (—1)r (Xr - Xl)"-(xr - Xr—l)(xr — X +1)"-(Xr —Xom H H(Xj - Xk) (X1X2---X2M )Z(— (24)
1< j<2M 1<k<2M X1X2-+-XoM )M
k,J#r k<j
Hereis:
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It follows that:
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