
Parametric Rao Test for Multichannel Adaptive Generalized Detector 
 

VYACHESLAV TUZLUKOV 
School of Electronics Engineering, College of IT Engineering 

Kyungpook National University 
1370 Sankyuk-dong Buk-gu Daegu 702-701 

SOUTH KOREA 
tuzlukov@ee.knu.ac.kr    http://spl.knu.ac.kr 

 
 
Abstract: - The parametric Rao test for multichannel signal detection by the adaptive generalized detector (GD) 
constructed based on the generalized approach to signal processing in noise is derived by modeling the disturb-
ance signal as a multichannel autoregressive process. The parametric Rao test takes a form identical to that of 
parametric GD for space-time adaptive processing in airborne surveillance radar systems and other similar app-
lications. The equivalence offers new in-sights into the performance and implementation of the GD. Specifical-
ly, the Rao/GD is an asymptotically (in the case of large samples) parametric generalized likelihood ratio test 
generalized detector (GLRT GD) due to an asymptotic equivalence between the Rao test and the GLRT/ GD. 
The asymptotic distribution of the Rao/GD test statistic is obtained in the closed form, which follows an expo-
nential distribution under the null hypothesis (the target return signal is absent) and, respectively, a non-central 
Chi-squared distribution with two degrees of freedom under the alternative hypothesis (the target return signal 
is present). The noncentrality parameter of noncentral Chi-squared distribution is determined by the output sig-
nal-to-interference-plus-noise ratio of a temporal whitening filter. Since the asymptotic distribution at the null 
hypothesis is independent of the unknown parameters, the Rao/GD asymptotically achieves constant false al-
arm rate (CFAR) GD. Numerical results show that these results are superior in predicting the performance of 
the parametric adaptive matched filter even with moderate data support. 

Key-Words: - Generalized detector, space-time adaptive processing, multichannel generalized detector, adapti-
ve matched filter, adaptive coherence estimator detector, clutter, jamming. 
 
1 Introduction 
Multichannel signal detection is encountered in a 
wide variety of applications. In radar systems, the 
sensor arrays are often used to facilitate the so-call-
ed space-time adaptive processing, which offers en-
hanced target discrimination capability compared 
with space- or time-only processing [1], [2]. In re-
mote sensing systems, the multispectral and hyper-
spectral sensors are used to collect a spectral infor-
mation across multiple spectral bands, which can be 
exploited for classification of different materials or 
detection of man-made objects on the ground [3], 
[4]. Other examples of applications include wireless 
communications, relocation, sonars, audio and spe-
ech processing, and seismology [5]–[7]. 
     The multichannel signal detection based on space 
-time adaptive processing has been successfully us-
ed to mitigate the effects of clutter and/or interferen-
ce in radar, remote sensing, and communication sys-
tems [1]–[5]. Traditional detectors based on space-
time adaptive processing, including the well-known 
RMB (Reed, Mallett, and Brennan) detectors [8], 
Kelly’s generalized likelihood ratio test (GLRT) de-
tector [9], the adaptive matched filter (AMF) [10]–

[12], the adaptive coherence estimation (ACE) dete-
ctor [13], [14], and the adaptive generalized detector 
(AGD) [15]–[17] usually involve estimating and in-
verting a large-size space-time covariance matrix of 
the disturbance signal (clutter, jamming, and noise) 
for each test cell using the target-free training data. 
This entails high complexity and large training requ-
irement. While the first difficulty may create real-ti-
me implementation burdens, the second implies that 
such covariance matrix based techniques may not be 
used in heterogeneous (due to varying terrain, high 
platform altitude, Bistatic geometry, conformal ar-
ray, among others) or dense-target environment, 
which offers limited training data. 
     In the present paper, we modify the adaptive ge-
neralized detector (GD) constructed based on the 
generalized approach to signal processing (GASP) 
in noise [18]–[23] and apply the parametric Rao test 
for multichannel signal detection. The idea to empl-
oy the generalized detector (GD) for the multichan-
nel radar sensor array has been triggered by the pur-
pose to improve the detection performance of radar 
sensor systems at the low SNR. 
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     The GD can be considered as a combination of 
the optimal detector in the Neyman-Pearson (NP) 
criterion sense and energy detector (ED) [18]–[20]. 
The main function of GD ED is to detect a signal 
and the main function of the GD NP is to confirm a 
detection of the searched signal and to define the de-
tected signal parameters as discussed in detail in 
[20, Chapter 7, pp. 685–692]. 
     A great difference between the GD ED and con-
ventional ED is a presence of additional linear syst-
em, for example, the bandpass filter, at the GD inp-
ut. This bandpass filter can be considered as the sou-
rce of additional (reference) noise which does not 
contain the target return signal from spatially distri-
buted signal source. The GD allows us to formulate 
a decision statistics about the target return signal 
presence or absence based on definition of the joint-
ly sufficient statistics of the mean and variance of 
the likelihood function [20, Chapter 3] while the op-
timal detectors of classical and modern detection 
theories make a decision about the target return sig-
nal presence or absence based on definition of the 
mean of the likelihood function, only, and the con-
ventional ED employed by radar sensor array sys-
tem defines a decision statistics with respect to the 
target return signal presence or absence based on de-
termination of the variance of the likelihood functi-
on only. Thus, an implementation of GD in radar se-
nsor array systems allows us to extract more inform-
ation from the likelihood function and make a more 
accurate decision about the target return signal pre-
sence or absence in comparison, for example, with 
the matched filter (MF) or ED.    
     Theoretically, the GD can be applied to detect 
any target return signal, i.e. the signal with known 
or unknown, deterministic or random parameters. 
The GD implementation in radar and wireless com-
munication is discussed in [23] and [24]–[29], res-
pectively. The signal detection performance impro-
vement using GD in radar sensor system is investi-
gated in [30]–[35]. The first attempt to investigate 
the GD employment in cognitive radio systems has 
been discussed in [36]. 
     Addressing the above issues has become an imp-
ortant topic in recent multichannel signal detection 
research. One effective way to reduce the computa-
tional and training requirement is to utilize a suitab-
le parametric model for the disturbance signal and 
exploit the model of signal detection. For example, 
the multichannel autoregressive (AR) models have 
been found to be very effective in representing the 
spatial and temporal correlation of the disturbance 
[37]–[40]. 
     Parametric GD (PGD) based on a multichannel 
AR model is developed here. The PGD has been 

shown to significantly outperform the aforemention-
ed covariance matrix based detectors for small train-
ing size at reduced complexity.Specifically the PGD 
detector models a disturbance as a multichannel AR 
process driven by a temporally white but spatially 
coloured multichannel noise. While traditional space 
-time adaptive processing detectors perform joint 
space-time whitening using an estimate of the space 
-time covariance matrix, the PGD detector adopts a 
two-step approach that involves temporal whitening 
via an inverse moving-average (MA) filter followed 
by spatial whitening. 
     The parameters that need to be estimated are the 
AR coefficient matrices and the spatial covariance 
matrix of the driving multichannel noise, which are 
significantly fewer than what are involved in estim-
ating the space-time covariance matrix. This is the 
essence behind the training and computational effi-
ciency of the PGD detector. 
     The PGD detector was obtained in a heuristic ap-
proach by modifying the AGD test statistic. Specifi-
cally, it replaces the joint space-time whitening inc-
urred by the AGD detector with two separate white-
ning procedures in time and space. The test thresh-
old and the false alarm and detection probabilities 
were determined primarily by computer simulation, 
due to limited analysis available for the PGD detec-
tor. 
     In the present paper, we apply the parametric 
Rao test for multichannel signal detection based on 
the GASP [18]–[23], or in another words, the PGD. 
The generic Rao test is known to offer a standard 
solution to a class of parametric testing problems. It 
is easier to derive and implement than the GLRT 
GD, and is also asymptotically, large-sample in the 
number of temporal observations and/or training si-
gnals, equivalent to the latter. 
     The Rao test was used to develop detectors for 
several other problems [41], [42]. Our parametric 
Rao/GD differs from the generic one for multichan-
nel signal detection in that we make explicit use of a 
multichannel AR model for the disturbance signal. 
We show that the parametric Rao/GD takes a form 
identical to that of the PGD detector. The only dif-
ferrence is that we use a maximum likelihood (ML) 
based estimator that involves using both the test and 
training signals for parameter estimation, whereas 
the estimators in [38] use only the training signals 
for parameter estimation. If the ML estimator is uti-
lized, the parametric Rao/GD is asymptotically a pa-
rametric GLRT GD. 
     Under the conditions stated in Section 2, the asy-
mptotic distribution of the test statistic under both 
hypotheses is obtained in the closed form, which 
can be used to set the test threshold and compute the 
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corresponding detection and false alarm probabiliti-
es. Since the asymptotic distribution under the hypo-
thesis 0H is independent of the unknown parameters, 
the parametric Rao/GD outperforms asymptotically 
the matched filter (MF). The presented numerical 
results demonstrate that our asymptotic observations 
are accurate in predicting the performance of the 
Rao/GD even when the data size is modest. 
     The reminder of this paper is organized as follo-
wing. Section II presents a brief description of the 
general GD flowchart and the main functioning pri-
nciples and decision statistics obtained at the GD 
output. The data model is delivered in Section III. 
Several types of a priori solutions in the form of the 
MF, AMF, GLRT, Kelly CFAR detectors are discu-
ssed in Section IV. Parametric Rao/GD test with the 
test statistics and asymptotic analysis are presented 
in Section V. Detection performance of the MF and 
AMF are discussed in Section VI for comparative 
analysis with the detection performance of the PGD. 
Numerical results obtained under simulation are pre-
sented and discussed in Section VII. Finally, the co-
nclusion remarks are made in Section VIII.  

2 Conventional GD 
As we mentioned before, the GD is constructed in 
accordance with GASP in noise [18]–[20].GASP in-  

troduces an additional noise source that does not ca-
rry any information about the incoming target return 
signal with the purpose to improve the signal proce-
ssing system performance. This additional noise can 
be considered as the reference noise without any in-
formation about the signal to be detected. The joint-
ly sufficient statistics of the mean and variance of 
the likelihood function is obtained under GASP em-
ployment, while the classical and modern signal 
processing theories can deliver only a sufficient sta-
tistics of the mean or variance of the likelihood fun-
ction. Thus, GASP implementation allows us to ob-
tain more information about the target return signal 
incoming at the GD input. Owing to this fact, the 
detectors constructed on the GASP technology are 
able to improve the signal detection performance in 
comparison with other conventional detectors. 
     The GD consists of three channels (see Fig. 1): 
the GD correlation detector channel (GD CD) – the 
preliminary filter (PF), the multipliers 1 and 2, the 
model signal generator (MSG); the GD autocorrela-
tion channel (GD ED) – the PF, the additional filter 
(AF), the multipliers 3 and 4, the summator 1; and 
the GD compensation channel (GD CC) – the sum-
mators 2 and 3, the accumulator 1. The threshold 
apparatus (THRA) device defines the GR threshold. 

 

 
Figure 1.  GD structure. 

     As we can see from Fig. 1, there are two band-
pass filters, i.e. the linear systems, at the GR input, 
namely, the PF and AF. We assume for simplicity 
that these two filters or linear systems have the same 
amplitude-frequency characteristics or impulse res-
ponses. The AF central frequency is detuned relative 
to the PF central frequency. There is a need to note 
the PF bandwidth is matched with the bandwidth of  

the radio channel or target return signal bandwidth. 
     If the detuning value between the PF and AF ce-
ntral frequencies is more than 4 or 5 times the target 
return signal bandwidth to be detected, i.e. 4 ~ 5 sf , 
where sf is the target return signal bandwidth, we 
can believe that the processes at the PF and AF out-
puts are uncorrelated because the coefficient of cor-
relation between them is negligible (not more than 
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0.05). This fact was confirmed experimentally in 
[43] and [44]. Thus, the target return signal plus noi-
se can be appeared at the GR PF output and the noi-
se only is appeared at the GR AF output. 
    The stochastic processes at the AF and PF outputs 
present the input stochastic samples from two indep-
endent frequency-time regions. If the discrete-time 
noise ][kwi at the PF and AF inputs is Gaussian, the 
discrete-time noise ][ki at the PF output is Gaussi-
an and the reference discrete-time noise ][ki at the 
AF output is Gaussian, too, owing to the fact that 
the PF and AF are the linear systems and we believe 
that these linear systems do not change the statistical 
parameters of the input process. Thus, the AF can be 
considered as a generator of the reference noise with 
a priori information a “no” target return signal (the 
reference noise sample) [21, Chapter 5].  The noise 
at the PF and AF outputs can be presented in the fol-
lowing form: 
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where ][mgPF and ][mgAF are the impulse responses 
of the PF and AF, respectively.  
     In a general, under practical implementation of 
any detector in radar system with sensor array, the 
bandwidth of the spectrum to be sensed is defined. 
Thus, the AF bandwidth and central frequency can 
be assigned, too (the AF bandwidth can not be used 
by the target return signal because it is out of its 
spectrum). The case when there are interfering sig-
nals within the AF bandwidth, the action of this in-
terference on the GR detection performance, and the 
case of non-ideal condition when the noise at the PF 
and AF outputs is not the same by statistical param-
eters are discussed in [32]. 
     Under the hypothesis 1H (“a yes” target return sig-
nal), the GR CD generates the signal component 

][][ ksks i
ms
i caused by interaction between the model 

signal ][ksms
i ,the MSG output, and the incoming tar-

get return signal ][ksi , and the noise component 

][][ kks i
ms
i  caused by interaction between the model 

signal ][ksms
i and the noise ][ki at the PF output. GR 

ED generates the signal energy ][2 ksi and the random 
component ][][ kks ii  caused by interaction between 
the target return signal ][ksi and the noise ][ki at the 
PF output. The main purpose of the GR CC is to ca-
ncel completely in the statistical sense the GR CD 

noise component ][][ kks i
ms
i  and the GR ED random 

component ][][ kks ii  based on the same nature of the 
noise ][ki .The relation between the target return si-

gnal to be detected ][ksi  and the model signal ][ksms
i  

is defined as: 

                                ,   ][ ][ ksks i
ms
i                          (2) 

where is the coefficient of proportionality. 
     The main functioning condition under the GR 
employment in any signal processing system includ-
ing the radar sensor one is the equality between par-
ameters of the model signal ][ksms

i and the incoming 
target return signal ][ksi , for example, by amplitude. 
Under this condition it is possible to cancel comple-
tely in the statistical sense the noise component 

][][ kks i
ms
i  of the GR CD and the random compon-

ent ][][ kks ii  of the GR ED. Satisfying the GR main 

functioning condition given by (2), ][][ ksks i
ms
i  , 

1 ,we are able to detect the target return signal 
with the high probability of detection at the low 
SNR and define the target return signal parameters 
with high accuracy. Practical realization of this con-
dition requires increasing in the complexity of GR 
structure and, consequently, leads us to increasing in 
computation cost. For example, there is a need to 
employ the amplitude tracking system or to use the 
off-line data samples processing. Under the hypoth-
esis 0H (“a no” target return signal), satisfying the 
main GR functioning condition ][][ ksks i

ms
i  we ob-

tain only the background noise ][][ 22 kk ii   at the 
GR output. 
     Under practical implementation, the real structu-
re of GR depends on specificity of signal processing 
systems and their applications, for example, the ra-
dar sensors systems, adaptive communications syst-
ems, cognitive radio systems, satellite communicati-
on systems, mobile communication systems and so 
on. In the present paper, the GR circuitry (Fig. 1) is 
demonstrated with the purpose to explain the main 
operational principles. Because of this, the GR flow-
chart presented in the paper should be considered 
under this viewpoint. Satisfying the GR main functi-
oning condition ][][ ksks i

m
i  , the ideal case, for ra-

dar sensor applications we are able to detect the tar-
get return signal with high probability of detection 
and define accurately its parameters. 
     In the present paper, we discuss the GR implem-
entation in radar sensor array systems. Since the 
presented GR test statistics is defined by the signal 
energy and noise power, see Eq.(3), the equality bet-
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ween the model signal ][ks m
i and the target return si-

gnal to be detected ][ksi , in particular by amplitude, 
is required that leads us to high circuitry complexity 
in practice. For example, there is a need to employ 
the amplitude tracking system or off-line data samp-
le processing. Detailed discussion about the main 
GR functioning principles if there is no a priori info-
rmation about the target return signal and there is 
uncertainty with respect to the target return signal 
parameters, i.e., the target return signal parameters 
are random, can be found in [18] and [20, Chapter 6, 
pp.611–621 and Chapter 7, pp. 631–695]. 
     The complete matching between the model sig-
nal ][ks ms

i and the incoming target return signal ][ksi  
for example, by amplitude is a very hard problem in 
practice because the incoming target return signal 

][ksi depends on both the fading and the transmitted 
signal and it is impractical to estimate the fading ga-
in at the low SNR. This matching is possible in the 
ideal case only. The GD detection performance will 
be deteriorated under mismatching in parameters be-
tween the model signal ][ks ms

i and the incoming tar-
get return signal ][ksi and the impact of this problem 
is discussed in [45], where a complete analysis abo-
ut the violation of the main GR functioning require-
ments is presented. The GR decision statistics requ-
ires an estimation of the noise variance 2

 using the 
reference noise ][ki at the AF output. 

Under the hypothesis 1H ,the signal at the PF out-
put, see Fig. 1, can be defined as 

                         ][][][ kkskx iii   ,                     (3) 

where ][ki is the noise at the PF output and 

                          ][][][ kskhks ii  ,                         (4) 

where ][khi are the channel coefficients. Under the 
hypothesis 0H and for all i and k, the process ][kxi       

][ki at the PF output is subjected to the complex 
Gaussian distribution and can be considered as the 
independent and identically distributed (i.i.d.) pro-
cess. 
     In ideal case, we can think that the signal at the 
AF output is the reference noise ][ki with the same 
statistical parameters as the noise ][ki . In practice, 
there is a difference between the statistical parame-
ters of the noise ][ki and ][ki . How this difference 
impacts on the GR detection performance is discus-
sed in detail in [20, Chapter 7, pp. 631-695]. 

The decision statistics at the GR output present-
ed in [18] and [20, Chapter 3] is extended for the ca-

se of antenna array when an adoption of multiple 
antennas and antenna arrays is effective to mitigate 
the negative attenuation and fading effects. The GR 
decision statistics can be presented in the following 
form: 
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where 
                          )1(),...,0(  NxxX                     (6) 

is the vector of the random process at the PF output 
and GRTHR is the GR detection threshold. 
     Under the hypotheses 1H and 0H and when the am-
plitude of the incoming target return signal is equal 
to the amplitude of the model signal, ][][ ksks i

ms
i   

the GR decision statistics )(XGDT takes the following 
form, respectively: 
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     In (7) the term s
N
k

M
i i Eks   

1
0 1

2 ][ corresponds 
to the average target return signal energy, and the 
term    

 



 
 1

0 1
21

0 1
2 ][][ N

k
M
i i

N
k

M
i i kk  is the backgr-

ound noise at the GR output. The GR output backgr-
ound noise is a difference between the noise power 
at the PF and AF outputs. Practical implementation 
of the GR decision statistics requires an estimation 
of the noise variance 2

 using the reference noise 
][ki at the AF output. 

3 Data Model 
The problem under consideration involves detecting 
a known multichannel signal with unknown ampli-
tude in the presence of spatially and temporally cor-
related disturbance 
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where all vectors are 1J vectors, J denotes the nu- 
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mber of spatial channels, and N is the number of te-
mporal observations. Henceforth, )(0 nX is called 
the test signal, )(nS is the signal to be detected with 
amplitude , and )(nD is the disturbance signal that 
may be correlated in space and time. In addition to 
the test signal, it is assumed that a set of target-free 
training or secondary data vectors ,2,1 ),( knkX   

K, and 1,,1,0  Nn  , are available to assist 
the signal detection. 
     Define the following 1JN space-time vectors: 
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where T)( means a transpose. Equation (8) can be 
more compactly written as 

                         







.      : 
,      : 

01

00

DSX
DX
H

H
                (10) 

     The composite hypothesis testing problem (8) or 
(10) is also a two-sided parameter testing problem 
that tests 0 against 0 . The general assumpti-
ons are the following: 

1. The signal vector S is deterministic and known 
to the detector. 

2. The signal amplitude is complex valued, dete-
rministic, and unknown. 

3. The secondary data K
kk 1}{ X and the disturbance 

signal D, equivalently 0X under the hypothesis 

0H are i.i.d. with distribution ),( R0CN , where 
R is the unknown space-time covariance matrix. 

     In particular, the above signal detection problem 
occurs in airborne space-time adaptive processing 
radar system with J array channels and coherent 
processing interval (CPI) of N pulse repetition inter-
vals (PRIs). The disturbance )(nD consists of ground 
clutter, jamming, and thermal noise, while )(nS is 
the target space-time steering vector. 
     For a uniform equispaced linear array, the steer-
ing vector is [38]  

                )()(),( SSDtDS  SSS   ,         (11) 

where )( SS S denotes the 1J spatial steering vect-
or: 

 T
SSSS Jjj

J
 }1(exp{,},exp{,11)(   S  

(12) 

and )( Dt S denotes the 1N temporal steering vect- 
or: 

 T
DDDt Njj

N
 }1(exp{,},exp{,11)(   S ,                     

(13) 

where S and D denote the normalized target spatial 
and Doppler frequencies, respectively. 
     While the previous assumptions 1) – 3) are stan-
dard, we further assume that 

4. The disturbance signal )(nD can be modelled as 
a multichannel AR(P) process with known mod-
el order P but unknown AR coefficient matrices 
and spatial covariance. 

     Additional comments on this assumption are the 
following. We clarify that our goal here is not to ju-
stify whether AR models are appropriate or not for 
the space-time adaptive processing applications. 
     As was shown in [38], the low-order multichann-
el AR models are very powerful and efficient in ca-
pturing the temporal and spatial correlation of the 
disturbance and, hence, can greatly help signal dete-
ction in airborne space-time adaptive processing sy-
stems. Our problem is how to exploit such a param-
etric model for the GD to solve the composite test-
ing problem. The assumption that the model order P 
is known only used to simplify our presentation. 
     In practice, the model order selection techniques, 
such as the Akaike information criterion (AIC) and 
the minimum description length (MDL) based tech-
niques [46] are available for this task. Since such te-
chniques may overestimate or underestimate the true 
model order, a relevant problem is how the propos-
ed detector performs when overestimation or under-
estimation occurs [47]. 
     Finally, it is also possible to formulate the prob-
lem to include P as another parameter to be estimat-
ed. We do not follow such an approach in order to 
focus on the relations between the parametric Rao/ 
GD test and the PAMF detector, which also assumes 
that a priori estimate of P is available. Based on this 
assumption, the secondary data K

kk 1}{ X are represen-
ted as 

      
,  ,,2,1                    

 ,  )()()()(
1

Kk

npnpn k

P

p
k

H
k



 


XAX
     (14) 

where P
p

H p 1}{ )( A denote the JJ  coefficient matri-

ces, H)( denotes complex conjugate transpose, and 
)(nk denote the driving multichannel spatial noise 

vectors that are temporally white but spatially colo-
ured Gaussian noise 
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                          ),()( Q0CNnk  ,                    (15) 

whereQ denotes the JJ  signal covariance matrix.    
     Meanwhile, the test signal 0X is given by 

)()(0 nn SX   

,  )()()()( 0
1

0 }{ npnpnp
P

p

H   


SXA   

(16) 

where 0 under the hypothesis 0H ; 0 under the 
hypothesis 1H , and 

                           ),()(0 Q0CNn  .                   (17) 

     Let )(~ nS is a regression on )(nS and )(~
0 nX is a re-

gression on )(0 nX under the hypothesis 1H : 

             



P

p

H pnpnn
1

)()()()(~ SASS  ;         (18) 

         



P

p

H pnpnn
1

000 )()()()(~ XAXX  .     (19) 

     Then, the driving noise in (16) can be alternative-
ly expressed as 

                      )(~)(~)( 00 nnn SX    .                (20) 

     The problem of interest is to develop a decision 
rule for the above composite hypothesis testing pro-
blem using the test and training signals, as well as 
exploiting the multichannel parametric AR model. 

4 A Priori Solutions 
The number of solutions to the above problem has 
been developed. If the space-time covariance matrix 
R is known exactly, the MF statistic takes the follo-
wing form [12]: 

              MFH

H

KMF  
0

1

 
1

2
0

1
out ||

H
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
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


SRS

XRS  ,           (21) 

where MFK denotes the MF threshold. The MF dete-
ctor is obtained by a GLRT approach [7], by which 
the ML estimate of the unknown amplitude is first 
estimated and then substituted back into the likeli-
hood ratio to form a test statistic. It should be that 
the MF cannot be implemented in real applications 
since R is unknown. However, it provides a baseline 
for performance comparison when considering any 
realizable detection scheme. 
     In practice, the unknown R can be replaced by 
some estimate, such as the sample covariance matrix  

obtained from the secondary data: 

                          



K

k

H
kkK 1

1ˆ XXR .                      (22) 

     Using R̂ in (21) leads us to the so-called AMF 
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where AMFK is the AMF threshold [10]–[12]. Alter-
natively, one can treat both and R as unknown and 
estimate them successively by ML. 
     Such a GLRT approach was pursued by Kelly 
[9], which gives the following Kelly test: 

KELLYHH
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XRXSRS
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(24)   

where KELLYK is the corresponding threshold. The 
AMF and KELLY tests are both CFAR detectors, 
what is desirable property in radar systems. Howev-
er, they also entail a large training requirement. In 
particular, the sample covariance matrix R̂ has to be 
inverted, which imposes a constraint on the training 
size 
                                    JNK                              (25) 

to ensure a full-rank R̂ . The Reed-Brennan rule [8] 
suggests that at least )32(  JNK target-free seco-
ndary data vectors are needed to obtain the expected 
performance within 3 dB from the optimum MF. 
Such a training requirement may be difficult to 
meet, especially in nonhomogeneous or dense-target 
environments. 
     Besides excessive training, the computational co-
mplexity of these detectors is also high, since R̂ has 
to be computed and inverted for each CPI. While the 
AMF and KELLY tests may be called covariance 
matrix based techniques as they both involve comp-
uting and inverting R̂ , the PAMF detector [38] utili-
ze a multichannel AR(P) model that allows spatial/ 
temporal whitening to be implemented in a multi-
channel time-series fashion 
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(26) 
where PQ̂ denotes an estimate of the spatial covaria- 

nce matrix Q , )(~̂
,0 nPX and )(~̂ nPS are the temporally 
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whitened test signal and steering vector, respective-
ly; these are whitened using an inverse AR(P) filter, 
i.e. multichannel MA filter whose parameters along 
with PQ̂ are estimated from the secondary data. In 
contrast to simultaneous spatio-temporal whitening 
used in the AMF and KELLY tests, the PAMF dete-
ctor performs whitening in two distinct steps: temp-
oral whitening followed by spatial whitening.    
     The parametric approach offers savings in both 
training and computation, since the parameters to be 
estimated are significantly fewer, compared with co-
variance matrix based approaches. Applying the ab-
ove principles to the case of parametric GD [23], 
[24] according to the generalized approach to signal 
processing in noise [18], [20], we have 

outGD  
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5 Parametric Rao/GD Test 

5.1 Test statistics 
Parametric Rao/GD test with based on ML estimates 
of the nuisance parameters, i.e. parameters associa-
ted with the disturbance signal based on discussion 
in [2] is given by 
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where GDRaoK / is the test threshold that can be set by 

using the results in Subsection 5.2, )(~̂ nS and )(~̂
0 nX  

denote, respectively the steering vector and test sig-
nal that have been whitened temporally, and additio-
nal spatial whitening is provided by 1ˆ Q that is the 
inverse of the ML estimate of the spatial covariance 
matrix to be specified next. 
     Specifically, the temporally whitened steering 
vector and test signal in (28) are obtained as follows 

              



P

p

H pnpnn
1

)()(ˆ)()(~̂ SASS  ;        (29) 
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where )(ˆ pHA is the ML estimate of the AR coeffici-
ent matrix )( pHA . 
     To present the ML estimates more compactly, let 

       JPJHHHH P  C][ )(,),2(),1( AAAA      (31) 

which contains all the coefficient matrices involved 
in the P-th order AR model, and 

 , )](,),2(),1([)( TT
k

T
k

T
kk Pnnnn  XXXY   

                                Kk ,,1,0  ,                       (32) 

which contains the regression subvectors formed 
from the test signal 0X or the k-th training signal kX .    
     We first compute the following correlation matri-
ces: 
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Then, the ML estimates of the AR coefficients HA  
and the spatial covariance matrix Q are given by 

                         1ˆˆˆ  YY
H
YX

H RRA  ;                        (36) 

       YXYY
H
YXXXPNK

RRRRQ ˆˆˆˆ[
))(1(

1ˆ 1


 .     (37) 

     The PGD also involves estimating the AR coeffi-
cients HA and the spatial covariance matrix Q. Seve-
ral estimators were suggested including the Strand-
Nuttall algorithm and the least-squares (LS) estima-
tors. The LS estimator was observed to yield the be-
tter performance. Our ML estimator is similar to the 
LS estimator except that we use both the test and 
training signals to obtain the parameter estimates, 
whereas the latter utilizes only the training signals 
for parameter estimation. The subscript “P” is there-
fore used for the parameter estimates in (28) to indi-
cate the difference. 
     Note that with the ML estimator, it is possible to 
derive the parameter estimates exclusively from the 
test signal, thus obviating the need for training. This 
could be advantageous where it is difficult to obtain 
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training signals that are i.i.d. with respect to the dist-
urbance in the test signal. 
     The detection performance of the parametric Rao 
/GD in the absence of training signals will be explo-
red elsewhere. We would like to point out that this 
approach is similar to Kelly’s GLRT [9] which also 
employs both the test and the training signals for the 
parameter estimation. However, we stress that Kel-
ly’s GLRT does not exploit the multichannel para-
metric model as shown in (14) and (16). By compar-
ing the parametric Rao/GD (28) and PGD test statis-
tic (26), we can quickly see that if both detectors use 
the ML estimator for parameter estimation, they are 
identical except for a scaling factor of 2. 
     Hence, under the conditions stated in Section 3, 
the PGD is a parametric Rao/GD. It should be noted 
that similar to other space-time adaptive processing 
detectors, the parametric Rao/GD test is adaptive in 
that the detector is the data dependent detector, for 
example, the correlator. This shall not be confused 
with recursive adaptive implementation. Although a 
recursive adaptive implementation of the parametric 
Rao/GD test would be of interest in a real-time syst-
em, it is beyond the scope of the current paper. 

5.2 Asymptotic analysis 
The asymptotic distribution of the Rao/GD test stati-
stic can be presented in the following form [20]  
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where 2
2 is the central Chi-squared distribution with 

2 degrees of freedom and )(2
2   is the noncentral 

Chi-squared distribution with 2 degrees of freedom 
and noncentrality parameter  : 

                 





1

12 )(~)(~||2
N

Pn

H nn SQS  ,            (39) 

where )(~ nS is the temporally whitened steering vect-
or given by (18). 
     Note that the value of  is related to the SINR at 
the output of the temporal whitening filter. Recall 
that 2

2 random variable with probability density fu-
nction (pdf) is given by 
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     The pdf of )(2
2   is given by [7]  
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where )(0 uI is the modified Bessel function of the 
first kind and zero order defined by 
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     The above distributions can be employed to set 
the Rao/GD test threshold for the given probability 
of false alarm FAP , as well as to compute the proba-
bility of detection DP . For a given threshold, the 
probability of false alarm FAP is given by 

       }{ /5.0exp)(
/

2
2

GDRao
K
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That can easily be inverted to find the test threshold 
GDRaoK / for the given probability of false alarm FAP .    

     In addition, the probability of detection DP is giv-
en by 







GDRaoK
D dxxfP

/

)(2
2

 

         



GDRaoK

dxxIx
/

)(0)}(5.0exp{
2
1      (44) 

for the given test threshold GDRaoK / . 
     The asymptotic distribution under the hypothesis 

0H is independent of the unknown parameters. The 
probability of false alarm FAP in (43) depends only 
on the test threshold, which is a design parameter. It 
is evident that the Rao/GD test asymptotically achi-
eves GD. 
     The above analysis holds under assumptions 1)– 
4) of Section 3 with one exception. In particular, si-
nce the ML parameter estimates are asymptotically 
Gaussian irrespective of the distribution of the obse-
rved data, the above analysis still holds if the Gauss-
ian assumption in 3) is dropped. This statement also 
explains why it has been observed in several studies 
that the PGD obtains a good performance even und-
er the non-Gaussian observations. 

6 Performance of MF and AMF  
    Detectors 
Consider the MF detector (21) first. Let 5.0R be the 
square root of the space-time covariance matrix R. 
Define SRS 5.0~  and 0

5.0
0

~ XRX  that are the spa-
tially and temporally whitened steering vector and 
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the test signal, respectively. Since the rank of HSS~~ is 
one, we have the following Eigen decomposition: 

                               HH UBUSS 
~~ ,                     (45) 

where 
           }0,,0,~~{ SSB Hdiag  and IUU H .     (46) 
     Let 
                  00

~XUX H  and SUS ~H  ,             (47) 

which are rotated versions of 0
~X and S~ , respectively.    

     The test statistic can be defined as 
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                      2
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where 1,0X and 1S are the first element of 0X and S , 

respectively, and )( means the complex conjugate. 
     It is clear from assumptions 1–3 presented in Se-
ction 3 that 1,0X is a complex Gaussian variable: 

                         )1,(~ 11,0 SX CN                        (49) 

with 0 under the hypothesis 0H and 0 under 
the hypothesis 1H . Hence, (48) is subjected to the 
central Chi-squared distribution with 2 degrees of 
freedom under the hypothesis 0H and, respectively, 
the noncentral Chi-squared distribution with 2 deg-
rees of freedom and the noncentrality parameter 

                              2
1 ||2 SMF                          (50) 

under the hypothesis 1H . 
     It is noted that the distribution of the PAMF test 
statistic is similar to that of the parametric Rao/GD 
test statistic with the only difference of the noncent-
rality parameter under the hypothesis 1H . Hence, the 
probability of false alarm FAP and the probability of 
detection DP can be similarly computed as in (43) 
and (44). 
     The performance of the AMF detector (23) was 
analyzed in [12] that is summarized below. The den-
sity of a loss factor  defined in [12] is given by 

                   )1,1;()(  JNLff    ,            (51) 

where 1 JNKL and the central Beta density 
function is 
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     The probability of false alarm FAP is given by 
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is the test threshold of Kelly’s GLRT (24). Mean-
while, the probability of detection DP is given by 

1AMF
DP  

 






















1

0 1
 )(

1
)(

)1(
1 





dfG

m
LL

m
m

m
L , 

(55) 
where 
                               SRS 1 H                           (56) 

and )(mG is the incomplete Gamma function given 
by 
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The integrals can be computed by numerical integ-
ration. 

7  Simulation Results 
In the following, we present our numerical results of 
the parametric Rao/GD obtained by computer simu-
lation and by the above asymptotic analysis. In addi-
tion, the performance of the PAMF (24) and AMF 
(21) detectors that can be computed analytically, is 
included for comparison. 
     The disturbance signal is generated as a multich-
annel AR(2) process with randomly generated AR 
coefficients A and a spatial covariance matrix Q. In 
particular, A and Q are selected to ensure that Q is a 
valid covariance matrix and A is chosen to ensure 
that the resulting AR process is stable. Once A and 
Q are selected, they are fixed in all trials. The signal 
vector S is generated as in (9) with randomly chosen 
normalized spatial and Doppler frequencies. 
     The SINR is defined in the following form 

                       SRS 12||  HSINR  ,                   (51) 

where R is the JNJN  joint space-time covariance 
matrix of the disturbance D, which can be determi-
nied once A and Q are selected. 
     To numerically set the threshold for the paramet-
ric Rao/GD, a total of 4105 trials has been run. Me-
anwhile, to determine the probability of detection 

DP for a given threshold a total of 410 trials has been 
run for each SINR. We examine the receiver opera-
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ting characteristic (ROC) of the parametric Rao/GD. 
The parameters used in the simulation are NJ ,4  

32 and 256K . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. ROC curves. 

     Figure 2 depicts the ROC curves for the paramet-
ric Rao/GD obtained by simulation and asymptotic 
analysis for SINR values of 0, 2, and 5 dB. It is seen 
that the simulation results match those obtained by 
asymptotic analysis. The PAMF ROC is also prese-
nted for comparison. The superiority of the paramet-
ric Rao/GD over the PAMF is evident. 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Probability of detection versus input SINR 

,4J ,32N 256K . 

      Figures 3–6 depict the probability of detection 
DP versus SINR for the PAMF, AMF, and the para-

metric Rao/GD under various conditions. In particu-
lar, Figs. 3 and 5 correspond to the case with adequ-
ate training, for which the Reed-Brennan rule is sati-
sfied, whereas Figs. 4 and 6 correspond to the case 
with limited training, for which the AMF detector 
does not even exist, since the training size 8K is 
too small to meet the minimum training condition 
(23). 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Probability of detection versus input SINR 
,4J ,32N 8K . 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Probability of detection versus input SINR 
,4J ,16N 128K . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Probability of detection versus input SINR 

,4J ,16N 8K . 

     An examination of these figures reveals the follo-
wing: 

 When the assumptions of Section 3 are met, the 
asymptotic analysis provides a quite accurate 
prediction of the performance of the parametric 
Rao/GD. The gap between the asymptotic and 
simulated results is seen to widen as K and/or N 
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decreases. But even for the most challenging ca-
se with 8K and 16N , the gap is about 0.5 
dB, Fig.6; 

 The parametric Rao/GD is very close to the the-
oretical GD. The gap between two detectors clo-
ses with increasing K and/or N;  

 The parametric Rao/GD outperforms the PAMF 
and AMF detectors. So far we have assumed 
that the model order P of the multichannel AR 
process is known. 

     As mentioned, the various model selection tech-
niques can be used to estimate P, and it is not unu-
sual for these techniques to underestimate or overes-
timate the model order by a small number relative to 
the true model order P [46], [47]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Probability of detection versus input SINR 
of parametric Rao/GD when model order of multi-
channel AR process used for computing test statistic 
is true ),2( P underestimated (assuming 1P ), and 
overestimated (assuming ,3P ) along with ,4J  

,32N 256K . 

     It would be of interest to find out how the param-
etric Rao/GD performs when an inaccurate model 
order estimate is used. This is shown in Fig.7, where 
the performance of the Rao/GD using the true, an 
underestimated, and an overestimated model order 
is depicted. As we can see, using an inaccurate mo-
del order estimate degrades the detection performan-
ce, but the degradation is not significant, especially 
in the case of model order overestimation. Overesti-
mation is a more robust error since the high-order 
coefficients can be estimated close to zero providing 
that the size of the signals that can be used for esti-
mation is large enough. 
     The above behaviour of the parametric Rao/GD 
is typical and has been consistently observed in oth-
er experiments with a similar setup. Here, we only 
considered the case where the model order is inacc-
urately estimated by one unit. A larger performance 

variation is expected if there is a larger estimation 
error for P. Finally, Fig. 8 depicts the probability of 
detection DP versus SINR for the parametric Rao/GD 
if 01.0,4  FAPJ and N varies from 4N to N     
128 . It is seen that the detection performance incre-
ases with N. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Impact of pulse number N on parametric 
Rao/GD. 

8 Conclusions 
We have developed a parametric Rao/GD test for 
the multichannel adaptive signal detection problem 
by exploiting a multichannel AR model. We have 
derived the ML estimates of the parameters involv-
ed in the test. The parametric Rao/GD test is asymp-
totic PGD, and the asymptotic distributions of its 
test statistic under both hypotheses have been obtai-
ned in the closed form. Computer simulations show 
that: 

 Our asymptotic analysis provides fairly accurate 
prediction of the parametric Rao/GD test perfor-
mance; 

 Even with relatively limited training, the param-
etric Rao/GD is quite close to the ideal GD; 

 The parametric Rao/GD outperforms the AMF 
detector, which does not exploit a parametric 
model; 

 The performance of the parametric Rao/GD is 
affected by inaccurate model order estimation, 
but the resulting performance degradation is to-
lerable when the model order estimation error is 
small. 

     Our asymptotic analysis of the parametric Rao/ 
GD is based on several assumptions in Section 3, in-
cluding that the disturbance can be modeled as an 
AR(P) process with known model order P, and that 
the training signals are i.i.d. When these assumpti-
ons are violated, we expect that the analysis will be 
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less accurate, but may still be informative if the ass-
umptions are not significantly violated. For examp-
le, we have noticed in simulation that when the dis-
turbance is an MA process, the test threshold obtain-
ned by analysis assuming an AR model is still quite 
accurate. 
     One possible reason is that AR models are fairly 
general parametric models, and under mild conditi-
ons, can be used to model or approximate a large 
class of stationary random processes, for example, 
an MA process can be approximated as an AR pro-
cess with a high enough model order [48]. Never-
theless, there is a need to find out how accurate our 
analysis is in real systems with real data, when as-
sumptions of Section 3 may not all be met. This will 
be an interesting future effort. 
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