
Power-Efficient Linear Phase FIR Notch Filter Design Using the
LARS Scheme

WEI XU
Tianjin Polytechnic University

Institute of Electronics and
Information Engineering

West Binshui Road, 399, Tianjin
China

JIAXIANG ZHAO, HONGJIE WANG, CHAO GU
Nankai University

Institute of Information Technical Science
Wei Jin Road, 94, Tianjin

China
zhaojx@nankai.edu.cn

Abstract: In this paper, an effective paradigm based on the Least Angle Regression (LARS) scheme is developed to
iteratively compute the power-efficient linear phase FIR notch filters. At each iteration, we compute the equiangular
vector and the step size to be taken which are then used to modify our previous prediction of the filter coefficients
along the computed equiangular direction. The iteration of the LARS scheme stops when the error defined as
the L2-norm of the difference between the computed prediction of the notch filter and the desired notch filter is
less than the pre-chosen design error ϵ . The simulation results demonstrate that the proposed LARS scheme is an
effective paradigm to compute power-efficient linear phase notch FIR filters.
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1 Introduction
The power-efficient design of the digital FIR filters is
always of interest due to its benefits not only in terms
of computation but also other cost measurements such
as hardware and energy consumption. The power-
efficiency determined by the arithmetic operations of
the digital filters can be increased by designing filters
with fewer non-zero coefficients. Therefore, it is es-
sential to study the power-efficient design of the linear
phase FIR notch filters which have widespread appli-
cations in communication systems, radar systems and
biomedical signal processing [1, 2].

In the past few decades, many different method-
s of designing linear phase FIR notch filters such as
the maximally flat method, semi-analytic method, and
multiple exchange algorithm have been reported [3]–
[10]. Of these approaches, the precise equiripple (PE)
[6] and equiripple method (ER) [8] based on the ex-
pansion of the generating polynomials into the Cheby-
shev polynomials to compute the impulse responses
offer us the efficient implementation of linear phase
notch filters. More recently, a novel paradigm [10] u-
tilizes the orthogonal matching pursuit (OMP) scheme
to iteratively compute the power-efficient approxima-
tion of the frequency response of a desired notch filter.

The Least Angle Regression (LARS) scheme [11]
is a method which stems from statistics, and has been
shown to be successful in solving variable selection
problems. In this brief, an effective paradigm based
on the LARS scheme is developed to iteratively com-

pute the power-efficient linear phase FIR notch filters.
At each iteration, we compute the equiangular vec-
tor and the step size to be taken which are then used
to modify our previous prediction of the filter coeffi-
cients along the computed equiangular direction. By
moving along the equiangular direction, the correla-
tion between each correlated covariate (a vector com-
prised of complex exponentials) and the residual vec-
tor of the desired notch filter and computed fitted fil-
ter decreases at an equal speed. The iteration stop-
s when the error defined as the L2-norm of the dif-
ference between the desired notch filter and the com-
puted approximation of it is less than the pre-chosen
ϵ > 0 . The simulation results demonstrate that under
the similar performance, the linear phase notch FIR
filters yielded from the scheme based LARS algorith-
m are more power-efficient than those generated from
the competing methods.

The rest of this paper is organized as follows: The
FIR notch filter design problem is formulated in Sec-
tion 2 . In Section 3 , the procedure of computing the
FIR notch filter based on the LARS scheme is illus-
trated. The simulation results are presented in Sec-
tion 4 .

2 The Problem
From [8], the typical specifications associated with the
notch filters include the notch frequency ωs , rejection
bandwidth BW and pass band ripple δ , as shown in
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Fig. 1.

Figure 1: The specification of a digital notch filter

We assume that an N -th order linear phase FIR
notch filter H(ejω) is represented as

H(ejω) =
N∑

n=0

hne−jωn (1)

where hn (0 ≤ n ≤ N ) is the impulse response of
H(ejω) . To simplify the derivation, we assume that
the filter (1) is Type I FIR filter, i.e., the order N of
(1) is even and its tap weighs satisfy hn = hN−n for
all 0 ≤ n ≤ N throughout the rest of this paper.

Utilizing Type I (linear phase) assumption, the fil-
ter (1) can be represented as

H(ejω) = e−jMωHzero(ejω) (2)

where Hzero(ejω), the zero-phase of (1), is defined as

Hzero(ejω) = hM + 2
M∑

m=1

hM−m cos(mω)

=(1,cos(ω),· · ·,cos(Mω))(hM,2hM−1,· · ·,2h0)T (3)

with M = N/2 .
Given ε > 0 , our goal is to develop a procedure

of computing power-efficient linear phase FIR notch
filters (2) whose zero-phase Hzero(ejω) satisfies

∥Hzero(ejω)−Hd(ejω)∥2 < ε , ∀ω ∈ [0, π] (4)

where Hd(ejω) is the desired filter frequency re-
sponse. To compute a solution of problem (4) , we
follow the standard discretization procedure as pre-
sented in [12] and replace the continuous parameter
ω by L + 1 samples (where L ≫ 1 is a large posi-
tive integer) uniformly distributed in the frequency set

[0, π] . Thus, the discretization and normalized formu-
lation of problem (4) is expressed as

∥Ax− f∥2 < ε , (5)

where we have

A = (a0,a1, . . . ,am, . . . ,aM ) (6)

am =(1, cos(mω0), cos(2mω0), . . . ,cos(Lmω0))
T(7)

x = (hM , 2hM−1 , · · · , 2h0 )T (8)

f = (Hd(ej0),Hd(ejω0), · · · ,Hd(ejLω0) )T (9)

with ω0 = π/L , 0 ≤ l ≤ L and 0 ≤ m ≤ M (M =
N/2) . The symbol ∥•∥2 represents the L2-norm of
the vector.

3 Linear Phase Notch Filters
In this section, we utilize the LARS scheme to develop
a procedure of computing the solution of problem (5) .
Given the design specifications, i.e., δ (passband rip-
ple) , BW (rejection bandwidth) and ωs (notch fre-
quency), the frequency response of the desired notch
filter Hd(e

jω) is

Hd(ejω)=
{
0; if ωs−∆F ≤ω≤ωs+∆F
1; otherwise

(10)

with ∆F < BW/2 .
To begin with, let us first estimate the order N of

the initial filter (3) through

N=max{N̂4(ωp1 ,∆F, δ, δs),N̂4(ωp2 ,∆F , δ, δs)} (11)

where N̂4(·) is determined by equation [13, eq.(20)].
The arguments of N̂4(·) in (11) are equal to

ωp1 = ωs −∆F (12)
ωp2 = 1− ωs +∆F (13)

δs = 10
Anotch

20 , (14)

where the negative number Anotch expressed in deci-
bels represents the attenuation at the notch frequency.

The procedure of computing the linear phase
notch filters proceeds through the following steps:
Step 1: Choose the initial active set I0 = ϕ , the initial
prediction vector f̂0 = 0 and the initial (M + 1) × 1
vector

x̂(0) = (x̂
(0)
0 , x̂

(0)
1 , . . . , x̂

(0)
M )T = (0 , . . . , 0)T (15)

Step 2: Compute the vector of the correlations be-
tween the columns of A defined in (6) and the initial
residual vector r0 = f − f̂0 as

Ĉ(0) = AT(f − f̂0) = (ĉ
(0)
0 , ĉ

(0)
1 , · · · , ĉ(0)M )T (16)

WSEAS TRANSACTIONS on SIGNAL PROCESSING Wei Xu, Jiaxiang Zhao, Hongjie Wang, Chao Gu

E-ISSN: 2224-3488 332 Volume 10, 2014



with f being given in (9) . Find the index j1 ∈
{0, 1, · · · ,M} satisfying

j1 = argmax
j∈Ic

0

{|ĉ(0)j |} (17)

where we have Ic
0 = {0, 1 , . . . ,M} − I0 , and the

new active set is updated as I1 = I0
∪
{j1} = {j1} .

Step 3: Using (6), (16) and (17), compute

γ̂1 = min
j∈Ic

1

+{
ĉ
(0)
j1

− ĉ
(0)
j

1− aTj aj1
,
ĉ
(0)
j1

+ ĉ
(0)
j

1 + aTj aj1
} (18)

j2 = argmin
j∈Ic

1

+{
ĉ
(0)
j1

− ĉ
(0)
j

1− aTj aj1
,
ĉ
(0)
j1

+ ĉ
(0)
j

1 + aTj aj1
} .(19)

with Ic
1 = {0, 1 , . . . ,M} − I1 . In (18) and (19), the

symbol min+ denotes that the minimum is taken over
only positive components with each choice of j ∈ Ic

1 .
From the LARS scheme [11], the prediction vector f̂1
at the first iteration is therefore equal to

f̂1 = f̂0 + γ̂1aj1 . (20)

Update the new active set as I2 = I1
∪
{j2} =

{j1 , j2} . From [11], it follows |aTj1r1| = |aTj2r1|
where the residual vector r1 = f − f̂1 .

Using (15) and (20), we can compute the new vec-
tor x̂(1) = (x̂

(1)
0 , x̂

(1)
1 , . . . , x̂

(1)
M )T whose entries are

equal to

x̂
(1)
j =

{
x̂
(0)
j + γ̂1; if j = j1

x̂
(0)
j ; otherwise

. (21)

From (8), the tap weights of the notch filter {hm}Mm=0

can be computed from the vector x̂(1) .
Step 4: For 2 ≤ k ≤ M + 1 , our design procedure
proceeds as follows:

1. Compute the vector of the correlation between
the columns of A and rk−1 = f − f̂k−1 as

Ĉ(k−1)=ATrk−1=(ĉ
(k−1)
0 , ĉ

(k−1)
1 ,· · ·, ĉ(k−1)M )T (22)

2. To employ the LARS scheme [11] for solving
(5), we introduce the equiangular vector uk de-
fined as

uk = Akwk (23)

where we have

wk =(w1 , w2,. . ., wk)
T=αk(AT

kAk)
−1
1k (24)

αk = (1TkAT
kAk1k)

− 1
2 . (25)

1k = (1 , . . . , 1)T is a k × 1 vector. The ma-
trix Ak is comprised of all the column vectors aj
from A defined in (6) with j ∈ Ik , i.e.,

Ak = (sj1aj1 , . . . , sjkajk) (26)

where from (22) sj is defined as

sj=sign{ĉ(k−1)
j }=

{
1; if ĉ

(k−1)
j ≥ 0

−1; if ĉ
(k−1)
j < 0

(27)

3. Using (22), compute

ĉ = max
0≤j≤M

{|ĉ(k−1)
j |} . (28)

Along the equiangular vector uk defined in (23),
the LARS scheme [11] computes f̂k , γ̂k and jk+1

through

f̂k = f̂k−1 + γ̂kuk (29)

γ̂k = min
j∈Ic

k

+{
ĉ− ĉ

(k−1)
j

αk − bj
,
ĉ+ ĉ

(k−1)
j

αk + bj
} (30)

jk+1=arg min
j∈Ic

k

+{
ĉ− ĉ

(k−1)
j

αk − bj
,
ĉ+ ĉ

(k−1)
j

αk + bj
}(31)

with bj = aTj uk and αk defined in (25).

4. Update the new active set as Ik+1 =
Ik
∪
{jk+1} .

5. From (29), the vector x̂(k) = (x̂
(k)
0 , . . . , x̂

(k)
M )T

can be computed as follows:

• For j ∈ Ik = {j1, j2, · · · , jn, · · · , jk} , we
have

x̂
(k)
jn

= x̂
(k−1)
jn

+ γ̂k ∗ sjn ∗ wn (32)

where wn is the n-th entry in the vector wk de-
fined in (24) for 1 ≤ n ≤ k .

• For j /∈ Ik , we have

x̂
(k)
j = x̂

(k−1)
j . (33)

From (8), the tap weights of the notch filter
{hm}Mm=0 can be computed from the vector x̂(k) .

Step 5: Using (9) and (29), compute the error εk at
the k-th iteration as

εk = ∥f̂k − f∥2 . (34)

If εk is less than the pre-given design error ε , then
the vector x̂(k) yields the tap weights of the power-
efficient linear phase notch filter that meets our design
objective of (4) . Otherwise, the same procedure as
described in Step 4 is repeated.
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Table 1: Performance of the LARS Scheme Compared to the OMP and ER Schemes in Example 1
Design Filter Number of Rejection Passband Attenuation at
method order nonzero taps bandwidth ripple notch frequency
LARS 76 63 0.0610π −0.9322dB −305.2dB
OMP 86 65 0.0610π −0.9394dB −312.1dB
ER 76 77 0.0607π −0.9109dB −308.9dB

Table 2: Impulse Response of the Notch Filters
Example 1 Example 2

n hn n hn
0 76 −0.0204001 0 72 0.0139436

1 75 0.0174606 1 71 0.0064912

2 74 −0.0102290 2 70 −0.0044051

3 73 0 3 69 −0.0110903

4 72 0 4 68 −0.0106608

5 71 −0.0114275 5 67 0

6 70 0.0132315 6 66 0.0097042

7 69 −0.0179306 7 65 0.0150598

8 68 0.0122499 8 64 0

9 67 −0.0079699 9 63 −0.0105411

10 66 0 10 62 −0.0193027

11 65 0.0085097 11 61 −0.0117056

12 64 −0.0188880 12 60 0.0102747

13 63 0.0208866 13 59 0.0218423

14 62 −0.0211890 14 58 0.0158759

15 61 0.0117662 15 57 −0.0049704

16 60 0 16 56 −0.0248972

17 59 −0.0082352 17 55 −0.0232417

18 58 0.0234272 18 54 0

19 57 −0.0230846 19 53 0.0241777

20 56 0.0283422 20 52 0.0319756

21 55 −0.0224942 21 51 0.0098404

22 54 0 22 50 −0.0220426

23 53 0.0074522 23 49 −0.0338544

24 52 −0.0241713 24 48 −0.0195978

25 51 0.0295327 25 47 0.0155936

26 50 −0.0326831 26 46 0.0384234

27 49 0.0248730 27 45 0.0297088

28 48 −0.0091551 28 44 −0.0053761

29 47 0 29 43 −0.0355259

30 46 0.0265334 30 42 −0.0361281

31 45 −0.0314075 31 41 0

32 44 0.0346608 32 40 0.0303661

33 43 −0.0292619 33 39 0.0437485

34 42 0.0118822 34 38 0.0154423

35 41 0 35 37 −0.0231322

36 40 −0.0209545 36 0.9933402

37 39 0.0313320

38 0.9935895

4 Numerical Examples
In this section, we employ the LARS scheme de-
veloped in the previous section to design the power-
efficient linear phase FIR notch filters. As a com-
parison, under the same design specifications, we
also compute the notch filters through the OMP
method [10], the optimal equiripple method (ER) [8]
and the precise equiripple method (PE) [6] . The sim-
ulation results demonstrate that the proposed LARS
scheme is an effective paradigm to compute power-
efficient linear phase notch FIR filters.

Figure 2: Magnitude frequency responses of the notch
filters derived from the LARS scheme(solid line) and
ER method(dashed line).

Example 1: Consider the following linear phase notch
filter design problem: Compute the notch filter subject
to 0.061π (the rejection bandwidth) for −0.95dB (the
passband ripple) and 0.84π (the notch frequency),
which is identical to the specifications of [8].

Choose the attenuation at the notch frequency
Anotch = −120dB. Substituting this choice and the
design specifications into (11), we obtain N = 92
(the order of the initial filter). Select ε = 0.04 defined
in (4).

In TABLE 1 , the filter orders, the numbers of the
nonzero tap weights, rejection bandwidths, passband
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Table 3: Performance of the LARS Scheme Compared to the OMP and PE Schemes in Example 2
Design Filter Number of Rejection Passband Attenuation at
method order nonzero taps bandwidth ripple notch frequency
LARS 72 65 0.0759π −0.4976dB −316.0dB
OMP 80 65 0.0736π −0.4665dB −309.5dB
PE 72 73 0.0780π −0.4613dB −310.0dB

Figure 3: Magnitude frequency responses of the notch
filters derived from the LARS scheme(solid line) and
OMP method(dashed line).

Figure 4: Magnitude frequency responses of the notch
filters derived from the LARS scheme(solid line) and
PE method(dashed line).

Figure 5: Magnitude frequency responses of the notch
filters derived from the LARS scheme(solid line) and
OMP method(dashed line).

ripples and attenuations at the notch frequency corre-
sponding to the LARS, OMP [10] and ER schemes
[8] are presented. The tap weights of the linear phase
FIR notch filter derived from the LARS scheme are
listed on the left part of TABLE 2. The magnitudes of
frequency responses of the LARS scheme compared
to the OMP and ER schemes are shown in Fig. 2 and
Fig. 3 respectively.

Example 2: Consider the design specifications giv-
en in [6], i.e., 0.075π (the rejection bandwidth) for
−0.5dB (the passband ripple) , 0.3π (the notch fre-
quency).

Choose the attenuation at the notch frequency
Anotch = −120dB. Substituting this choice and the
design specifications into (11), we obtain N = 86 (the
order of the initial filter). Set the design error ε = 0.02
of (4).

The tap weights of the notch filter computed
through the LARS scheme are listed in the right part
of TABLE 2. In TABLE 3 , the filter orders, num-
bers of the nonzero tap weights, rejection bandwidths
(for δ = −0.5dB), passband ripples and attenuation-
s at the notch frequency corresponding to the LARS,
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OMP and PE [6] schemes are presented respectively.
The magnitudes of frequency responses of the LARS
scheme compared to the OMP and ER schemes are
shown in Fig. 4 and Fig. 5 respectively.

5 Conclusion
In this paper, an effective paradigm based on the Least
Angle Regression (LARS) scheme is developed to it-
eratively compute the power-efficient linear phase FIR
notch filters. At each iteration, we compute the e-
quiangular vector and the step size to be taken which
are then used to modify our previous prediction of the
filter coefficients along the computed equiangular di-
rection. The iteration of the LARS scheme stops when
the refined filter meets the predevised design specifi-
cations. The simulation results demonstrate that the
proposed LARS scheme is an effective paradigm to
compute power-efficient linear phase notch FIR filter-
s.
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