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Abstract: In this paper, an effective paradigm based on the Least Angle Regression (LARS) scheme is developed to
iteratively compute the power-efficient linear phase FIR notch filters. At each iteration, we compute the equiangular
vector and the step size to be taken which are then used to modify our previous prediction of the filter coefficients
along the computed equiangular direction. The iteration of the LARS scheme stops when the error defined as
the Lo-norm of the difference between the computed prediction of the notch filter and the desired notch filter is
less than the pre-chosen design error €. The simulation results demonstrate that the proposed LARS scheme is an
effective paradigm to compute power-efficient linear phase notch FIR filters.
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1 Introduction

The power-efficient design of the digital FIR filters is
always of interest due to its benefits not only in terms
of computation but also other cost measurements such
as hardware and energy consumption. The power-
efficiency determined by the arithmetic operations of
the digital filters can be increased by designing filters
with fewer non-zero coefficients. Therefore, it is es-
sential to study the power-efficient design of the linear
phase FIR notch filters which have widespread appli-
cations in communication systems, radar systems and
biomedical signal processing [1, 2].

In the past few decades, many different method-
s of designing linear phase FIR notch filters such as
the maximally flat method, semi-analytic method, and
multiple exchange algorithm have been reported [3]-
[10]. Of these approaches, the precise equiripple (PE)
[6] and equiripple method (ER) [8] based on the ex-
pansion of the generating polynomials into the Cheby-
shev polynomials to compute the impulse responses
offer us the efficient implementation of linear phase
notch filters. More recently, a novel paradigm [10] u-
tilizes the orthogonal matching pursuit (OMP) scheme
to iteratively compute the power-efficient approxima-
tion of the frequency response of a desired notch filter.

The Least Angle Regression (LARS) scheme [11]
is a method which stems from statistics, and has been
shown to be successful in solving variable selection
problems. In this brief, an effective paradigm based
on the LARS scheme is developed to iteratively com-
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pute the power-efficient linear phase FIR notch filters.
At each iteration, we compute the equiangular vec-
tor and the step size to be taken which are then used
to modify our previous prediction of the filter coeffi-
cients along the computed equiangular direction. By
moving along the equiangular direction, the correla-
tion between each correlated covariate (a vector com-
prised of complex exponentials) and the residual vec-
tor of the desired notch filter and computed fitted fil-
ter decreases at an equal speed. The iteration stop-
s when the error defined as the Ly-norm of the dif-
ference between the desired notch filter and the com-
puted approximation of it is less than the pre-chosen
€ > 0. The simulation results demonstrate that under
the similar performance, the linear phase notch FIR
filters yielded from the scheme based LARS algorith-
m are more power-efficient than those generated from
the competing methods.

The rest of this paper is organized as follows: The
FIR notch filter design problem is formulated in Sec-
tion 2. In Section 3, the procedure of computing the
FIR notch filter based on the LARS scheme is illus-
trated. The simulation results are presented in Sec-
tion 4.

2 The Problem

From [8], the typical specifications associated with the
notch filters include the notch frequency w; , rejection
bandwidth BW and pass band ripple ¢, as shown in
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Figure 1: The specification of a digital notch filter

We assume that an N-th order linear phase FIR
notch filter H (e’%) is represented as

where h, (0 < n < N) is the impulse response of
H(e%). To simplify the derivation, we assume that
the filter (1) is Type I FIR filter, i.e., the order N of
(1) is even and its tap weighs satisfy h, = hy_, for
all 0 < n < N throughout the rest of this paper.

Utilizing Type I (linear phase) assumption, the fil-
ter (1) can be represented as

ey

H(%) = e MYH, (/) )

where H,e;0(e7“), the zero-phase of (1), is defined as

M
Hzero(ejw) =hy +2 Z hyi—m COS(mw)
m=1
=( cos(w),-~~,cos(Mw))(hM,2hM_1,~--,2ho)T 3)
with M = N/2.

Given € > 0, our goal is to develop a procedure
of computing power-efficient linear phase FIR notch
filters (2) whose zero-phase He,(e’) satisfies

| H gero (€7 ) Hd(ej Mz <e, Ywel0,7] 4)
where Hg(e“) is the desired filter frequency re-
sponse. To compute a solution of problem (4), we
follow the standard discretization procedure as pre-
sented in [12] and replace the continuous parameter
w by L + 1 samples (where L > 1 is a large posi-
tive integer) uniformly distributed in the frequency set
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[0, 7] . Thus, the discretization and normalized formu-
lation of problem (4) is expressed as

[Ax —fll2 <&, )

where we have
A =(ap,a1,...,am,...,ay) (6)
a, = (1, cos(muwy), cos@muwy), . . . ,cos(Lmwp) A7)
x = (hary 2haga s 2ho I (8)
f = (Ha(e?), Ha(e?), -+, Ha(e?0) )T (9)

withwg =7/L,0<[I<Land0<m < M (M =
N/2). The symbol || e||2 represents the Lo-norm of
the vector.

3 Linear Phase Notch Filters

In this section, we utilize the LARS scheme to develop
a procedure of computing the solution of problem (5) .
Given the design specifications, i.e., § (passband rip-
ple), BW (rejection bandwidth) and ws (notch fre-

quency), the frequency response of the desired notch
filter Hq(e?*) is

0; if wg—AF<w<wg+AF

Jwy_—
Hale )_{1; otherwise (10)

with AF < BW /2.
To begin with, let us first estimate the order N of
the initial filter (3) through

N=max{Ny(wp,, AF, 8, 35),Ny(wp,, AF, 5,85)} (11)

where ]\74(‘) is determined by equation [13, eq.(20)].
The arguments of Ny(-) in (11) are equal to

wp, = ws—AF (12)

wpy = 1—ws+AF (13)
Anotch

5y = 105%™ (14)

where the negative number Aty expressed in deci-
bels represents the attenuation at the notch frequency.

The procedure of computing the linear phase
notch filters proceeds through the following steps:
Step 1: Choose the initial active set Zy = ¢, the initial
prediction vector fo = 0 and the initial (M + 1) x 1
vector

5{(0) — (jéo) , ‘/i:(LO)? o j“S\g))T = (0, .. ,O)T (15)

Step 2: Compute the vector of the correlations be-
tween the columns of A defined in (6) and the initial
residual vector ro = f — fj as

0 — (& ~(0)

= AT(f—f) = . éNT (16
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with f being given in (9).
{0,1,---, M} satisfying

Find the index j; €

| = ) 17
1 argg,ré%zg{lcj I} (17)

where we have Z§ = {0,1,... ,M} — 7, and the
new active set is updated as Z; = Zo J{j1} = {51} -

Step 3: Using (6), (16) and (17), compute

&) 0)  400) + &0
4 = min*t{2 i n
JjeTy 1 — aTaj1 14 aTajl

~(0) A(O) ~(0)

c:.' — ¢ & + ¢;

jo = argmin T{-2 J }(19)
jerg 1 — a aj 1 + j aj,

with Z¢ = {0,1,... ,M} — Z; . In (18) and (19), the
symbol min * denotes that the minimum is taken over
only positive components with each choice of j € Z7 .

From the LARS scheme [11], the prediction vector f'l
at the first iteration is therefore equal to

f, = fo + A1ay, - (20)

Update the new active set as Zo = Z; | J{ j2} =
{j1,j2}. From [11], it follows |ajT1r1] |a r|

where the residual vectorr; = f —f; .
Using (15) and (20), we can compute the new vec-

tor x(1) = (i“(()l) , igl) e i’g\l})T whose entries are
equal to
RO e
L) ) E A it j=n
W = .@D
J { §:§0); otherwise

From (8), the tap weights of the notch filter {A,, }M_,
can be computed from the vector x(1) .

Step 4: For 2 < k < M + 1, our design procedure
proceeds as follows:

1. Compute the vector of the correlation between
the columns of A andry_; =f — f;,_q as

C(kil):Arrkflz (é[()k_l)v égk_l)f " ég\’j[_l)>T 22)

2. To employ the LARS scheme [11] for solving
(5), we introduce the equiangular vector uy de-
fined as

u, = Apwy (23)
where we have
—1
wif'=a AL AL 1 (24)
_1
ap = (1FAT A1) 2. (25)

Wi :(w1 , W2y v vy
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1, = (1,..., DT isak x 1 vector. The ma-
trix A, is comprised of all the column vectors a;
from A defined in (6) with j € Z;. , i.e.,

s Sjkjy) (26)

where from (22) s; is defined as

Ak = (sjlajl g e

v, J 1 if ey
s=sign{¢; }:{ _’1; y ég.k_l) - @27
3. Using (22), compute
¢ = max {\c (k= 1)|}. (28)

0<j<M

Along the equiangular vector uy, defined in (23),
the LARS scheme [11] computes £y, , 4% and jx41
through

fr = 1 + pup (29)
L A(k=1) A, A(k—1)
c—C; C+cC;

2 — min T J J 30

(ot A
e— el gy ey

I, 131D

Jr+r1=arg m1n+{ an+ b,

S . — bj
with b; = a} uy, and ay, defined in (25).

4. Update the new active set as Zpi1 =
T U{dk+1} -

5. From (29), the vector x(¥) = (i[()k), e ,ﬁ:g\?)T
can be computed as follows:

e For j € T, = {j1,J2, - sJn,- -
have

7]k} » We

(k) _ 40e-D)

i‘]n I Ak * 8, * Wy 32)

where w,, is the n-th entry in the vector wy, de-
finedin 24) for 1 <n < k.
e For j ¢ 7, we have

@yﬂ _ @g’“*” . (33)

From (8) the tap weights of the notch filter
{hm}M_ can be computed from the vector x(*) .

Step 5: Using (9) and (29), compute the error ¢, at
the k-th iteration as

e = |f—f|2. (34)

If £, is less than the pre-given design error €, then
the vector x(¥) yields the tap weights of the power-
efficient linear phase notch filter that meets our design
objective of (4). Otherwise, the same procedure as
described in Step 4 is repeated.

Volume 10, 2014



WSEAS TRANSACTIONS on SIGNAL PROCESSING

Wei Xu, Jiaxiang Zhao, Hongjie Wang, Chao Gu

Table 1: Performance of the LARS Scheme Compared to the OMP and ER Schemes in Example 1

Design | Filter | Number of | Rejection Passband Attenuation at
method | order | nonzero taps | bandwidth ripple notch frequency
LARS 76 63 0.0610m | —0.9322dB —305.2dB
OMP 86 65 0.0610r | —0.9394dB —312.1dB
ER 76 7 0.06077 | —0.9109dB —308.9dB
Table 2: Impulse Response of the Notch Filters
Example 1 Example 2 4 Numerical Examples
0 ! =6 1 —0. 0];8 1001 7 0 o o) 0'01};75 136 In this s.ection, we employ_ the LARS scheme de-
veloped in the previous section to design the power-
1 | 75| 0.0174606 1 | 71| 0.0064912 efficient linear phase FIR notch filters. As a com-
2 | 74| -0.0102290 | 2 | 70 | —0.0044051 parison, under the same design specifications, we
3 |73 0 3 |69 | —0.0110903 also compute the notch filters through the OMP
4 | 72 0 4 | 68 | —0.0106608 method [10], the optimal equiripple method (ER) [8]
5 |71 | —0.0114275 | 5 | 67 0 and the precise equiripple method (PE) [6]. The sim-
6 | 70 | 0.0132315 6 | 66 | 0.0097042 ulation results demonstrate that the proposed LARS
7169 | —0.0179306 | 7 1651 0.0150598 scheme is an effective paradigm to compute power-
efficient linear phase notch FIR filters.
8 | 68 | 0.0122499 8 | 64 0
9 | 67 | —0.0079699 | 9 | 63 | —0.0105411 ] . , .
10 | 66 0 10 | 62 | —0.0193027 :
11| 65 | 0.0085097 | 11 | 61 | —0.0117056 sol-
12 | 64 | —0.0188880 || 12 | 60 | 0.0102747
13| 63 | 0.0208866 | 13 | 59 | 0.0218423 100}
14 | 62 | —0.0211890 | 14 | 58 | 0.0158759 g ' i i
15 | 61 | 0.0117662 | 15 | 57 | —0.0049704 £ asof
16 | 60 0 16 | 56 | —0.0248972 E i iR -
17 | 59 | —0.0082352 || 17 | 55 | —0.0232417 = 00| - ; ; Sal
18 | B8 | 0.0234272 | 18 | 54 0 0 5”'2 ”"‘E 06 : 08 1
19 | 57 | —0.0230846 || 19 | 53 | 0.0241777 L R """""""" ]
20 | 56 | 0.0283422 | 20 | 52 | 0.0319756 | [ ER method
21 | 55 | —0.0224942 || 21 | 51 | 0.0098404 300 " LARS method |-+~ ]
22 | 54 0 22 | 50 | —0.0220426 ’ " NomalidFrequeney '
23 | 53 | 0.0074522 | 23 | 49 | —0.0338544
24 1 52 | —0.0241713 || 24 | 48 | —0.0195978 Figure 2: Magnitude frequency responses of the notch
25| 51 | 0.0295327 | 25 | 47 | 0.0155936 filters derived from the LARS scheme(solid line) and
26 | 50 | —0.0326831 || 26 | 46 | 0.0384234 ER method(dashed line).
27 | 49 | 0.0248730 | 27 | 45| 0.0297088
28 | 48 | —0.0091551 || 28 | 44 | —0.0053761 ) o
0T 0 o | Eeels otk o et
30 | 46 | 0.0265334 | 30 | 42 | —0.0361281 to 0.0617 (the rejection bandwidth) for —0.95dB (the
31 | 45 | —0.0314075 || 31 | 41 0 passband ripple) and 0.847 (the notch frequency),
32 | 44 | 0.0346608 | 32 | 40 | 0.0303661 which is identical to the specifications of [8].
33 | 43 | —0.0292619 || 33 | 39 | 0.0437485 Choose the attenuation at the notch frequency
34 | 42 | 0.0118822 34 | 38 | 0.0154423 Apoteh = —120dB. Substituting this choice and the
35 | 41 0 35 |1 37 1 —0.0231322 design specifications into (11), we obtain N = 92
36 | 40 | —0.0209545 || 36 0.9933402 (the order of the initial filter). Select € = 0.04 defined
in (4).
g; 39 gggégzgg In TABLE 1 , the ﬁlFer Qrders, the _numbers of the
nonzero tap weights, rejection bandwidths, passband
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Table 3: Performance of the LARS Scheme Compared to the OMP and PE Schemes in Example 2

Design | Filter | Number of | Rejection Passband Attenuation at
method | order | nonzero taps | bandwidth ripple notch frequency
LARS 72 65 0.07597 | —0.4976dB —316.0dB
OMP 80 65 0.0736m | —0.4665dB —309.5dB
PE 72 73 0.07807 | —0.4613dB —310.0dB
0 7 f '
50 _ _____ \(U _________________ b b _
: -0.1 fy-pHH
100 - eene e
g o) : 02 1?
% g -150 — ———————— 0.3 ':I
= = 200 * """" 0.5 =
250 . U.iﬁ IJ.ES 1
_____ :me o H ———— 63@ method
2001 T ARS methe e — o 1 300 | | "] ——LARS method ]
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
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Figure 3: Magnitude frequency responses of the notch
filters derived from the LARS scheme(solid line) and
OMP method(dashed line).
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Figure 4: Magnitude frequency responses of the notch

filters derived from the LARS scheme(solid line) and
PE method(dashed line).
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Figure 5: Magnitude frequency responses of the notch
filters derived from the LARS scheme(solid line) and
OMP method(dashed line).

ripples and attenuations at the notch frequency corre-
sponding to the LARS, OMP [10] and ER schemes
[8] are presented. The tap weights of the linear phase
FIR notch filter derived from the LARS scheme are
listed on the left part of TABLE 2. The magnitudes of
frequency responses of the LARS scheme compared
to the OMP and ER schemes are shown in Fig. 2 and
Fig. 3 respectively.

Example 2: Consider the design specifications giv-
en in [6], i.e., 0.0757 (the rejection bandwidth) for
—0.5dB (the passband ripple), 0.37 (the notch fre-
quency).

Choose the attenuation at the notch frequency
Apoten = —120dB. Substituting this choice and the
design specifications into (11), we obtain N = 86 (the
order of the initial filter). Set the design error € = 0.02
of (4).

The tap weights of the notch filter computed
through the LARS scheme are listed in the right part
of TABLE 2. In TABLE 3, the filter orders, num-
bers of the nonzero tap weights, rejection bandwidths
(for 0 = —0.5dB), passband ripples and attenuation-
s at the notch frequency corresponding to the LARS,
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OMP and PE [6] schemes are presented respectively.
The magnitudes of frequency responses of the LARS
scheme compared to the OMP and ER schemes are
shown in Fig. 4 and Fig. 5 respectively.

5 Conclusion

In this paper, an effective paradigm based on the Least
Angle Regression (LARS) scheme is developed to it-
eratively compute the power-efficient linear phase FIR
notch filters. At each iteration, we compute the e-
quiangular vector and the step size to be taken which
are then used to modify our previous prediction of the
filter coefficients along the computed equiangular di-
rection. The iteration of the LARS scheme stops when
the refined filter meets the predevised design specifi-
cations. The simulation results demonstrate that the
proposed LARS scheme is an effective paradigm to
compute power-efficient linear phase notch FIR filter-
S.
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