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Abstract: In speaker recognition tasks, one of the reasons for reduced accuracy is due to closely resembling
speakers in the acoustic space. In conventional GMM-based modeling technique, since the model parameters of a
class are estimated without considering other classes in the system, features that are common across various classes
may also be captured, along with unique features. If the system is designed to use only the unique features of a
given speaker with respect to his/her acoustically resembling speaker, then the system is expected to perform better.
In this proposed work, the effect of a subset of phonemes, reasonably distinct (unique) to a speaker, in the acoustic
sense, on a speaker verification task is investigated. This paper proposes a technique to reduce the confusion
errors, by finding speaker-specific phonemes and formulate a text using the subset of phonemes that are unique,
for speaker verification task using GMM-based approach and i-vector based approach. We have experimented with
three techniques namely, product of likelihood-Gaussians-based distance, Bhattacharyya distance and average log-
likelihood-based distance to find out acoustically unique phonemes. Experiments have been conducted on speaker
verification task using speech data of 50 speakers collected in a laboratory environment. The experiments show
that the Equal Error Rate (EER) has been decreased by 4% and 4.5% using speaker-specific-text when compared
to that of GMM and i-vector technique with random-text respectively.
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1 Introduction

Gaussian Mixture Modeling (GMM) and Hidden
Markov Modeling (HMM) techniques have been suc-
cessfully used in many classification tasks. Maximum
Likelihood Estimation (MLE) and Expectation Maxi-
mization (EM) algorithms can be used to estimate the
model parameters efficiently. However, a major draw-
back in this type of modeling techniques is that the
modeling is carried out in isolation, i.e., the modeling
technique, when modeling a class, does not consider
the information from other classes. In other words,
out-of-class data is not used to optimize the classifier
performance. This may lead to poor models with pa-
rameters that are common to other classes, in addition
to the unique parameters of a class. This may, in turn,
increase the classification ( or confusion) error. Better
classification accuracy can be achieved if the training
technique is able to capture the unique features of a
class, i.e., the features that discriminate a class from
other classes, efficiently.

Many research works have been reported in the
literature to increase the classification accuracy of a
classifier by increasing the discriminative power of the
classifier. Such techniques can be grouped into mainly

two classes as follows:

1. Discriminating the classes in the feature level it-
self by identifying and removing the common
features between two classes under considera-
tion.

2. Adjusting the model parameters themselves such
that two classes, in the feature space itself, are
well separated.

In [20], the use of GMM for speaker identification was
shown to provide good performance with several ex-
isting techniques. However, this criterion only utilizes
the labeled utterances for each speaker model and very
likely leads to a local optimization solution.

To improve the discriminative qualities of Gaus-
sian mixture models, several approaches have been
proposed. Universal Background Model-Gaussian
Mixture Model (UBM-GMM) is a popular one among
them. UBM is a base model from which all speaker
models are adapted by a form of Bayesian adaptation
[21]. A UBM is built from a large data set contain-
ing all probable speakers. During training, speaker
specific model is adapted from this UBM by perform-
ing Maximum A Posteriori (MAP) adaptation. In [9],
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segmental Generalized Probabilistic Descent (GPD)
algorithm has been used to estimate model parame-
ters of a class considering the competing speakers.
Maximum Mutual Information Estimation (MMIE)-
based methods have been used to model a class con-
sidering the rest of the models [3] or a subset of re-
maining models [17, 6]. In [12], Maximum model
distance algorithm for GMM is described. This ap-
proach [6] tries to maximize the distance between
each model and a set of competitive speakers mod-
els. In [22], GMMs have been built for each speaker
discriminatively based on the available positive and
negative examples for each speaker. In this approach
[22], speaker models are trained by moving the mean
values of the mixture components in such a way as
to maximize the likelihood of speaker data while also
minimizing the likelihood of negative examples for
the speaker.

Minimum Classification Error (MCE) approach
for speaker verification is proposed in [16]. In this
approach [16], all the competing speakers are used to
evaluate the score of the anti speaker which is found
to be effective. However, it is not practical for ver-
ification test over a large population. An interesting
method has been proposed in [1] where the outliers
are de-emphasized. Product of likelihood Gaussians
(POG) has been used to estimate the bias of a model in
[19]. Product of likelihood Gaussians has been used
to identify the most probable confusing features be-
tween two classes in [2]. Then the common features
are removed from the training data. By eliminating
the confusing features, during testing, evidence is de-
rived only from the features that are unique to a class.

To avoid playback of recorded voice of the gen-
uine speaker, a text prompted speaker verification
task using HMM and Multilayer Perceptron (MLP)
is described in [10]. The set of context-independent
phoneme HMMs is used to provide a segmentation
of the speech signal into phonemes with a simple
Viterbi forced alignment. The feature vectors, la-
beled with the corresponding phonemes, are then used
to train MLPs, one per phoneme and per speaker.
The discriminative power of the most frequently ap-
pearing phonemes was investigated. However, those
phonemes are not unique to the particular speaker.

The i-vector systems have become the state-
of-the-art technique in the speaker verification field
[7]. They provide an elegant way of reducing large-
dimensional input data to a small-dimensional feature
vector while retaining most of the relevant informa-
tion. The technique was originally inspired by Joint
Factor Analysis framework introduced in [14]. JFA
[14] is based on the decomposition of a speaker de-
pendent GMM super vector into separate speaker-and
channel-dependent part. This separation allows for

learning the channel characteristics in the form of sep-
arate model, hence producing pure channel indepen-
dent speaker models. This proves to be an efficient
technique for handling channel and session variabil-
ity.

In our proposed work, the classes are discrimi-
nated at the phoneme level, i.e., acoustically unique
phonemes of a speaker when compared to his/her
closely resembling speakers were derived. In this
paper, test utterances are formulated using speaker-
specific-text and random text. The speaker-specific-
text is formulated using the acoustically unique
phonemes. The random-text is formulated without
considering the acoustically unique phonemes. The
major focus of this paper is to show that the speaker
verification task using speaker-specific-text greatly re-
duces the confusion errors when compared to speaker
verification task using random-text.

In this paper, we investigated the usefulness of
speaker-specific-text on speaker verification task us-
ing two approaches namely GMM and i-vector. The
major advantage of i-vector approach in the speaker
verification task is its additional ability to handle
channel and session variabilities. However, our pro-
posed work uses same channel for all the speakers
during training as well as testing and the session vari-
ability is also not considered. In this work, i-vector
approach is used, to check the effect of acoustically
unique phonemes in a classification task.

The organization of this paper is given below.
The next section describes the importance of speaker-
specific-text and the techniques used to derive acous-
tically unique phonemes in our proposed system. Our
proposed system using GMM-based approach are de-
scribed in Section 3. The introduction about i-vector
approach is presented in Section 4. Section 5 de-
scribes the details of our speech corpus, and experi-
mental setup of the proposed system. Section 6 deals
with the performance analysis of the proposed tech-
nique on speaker verification task. Finally, section 7
concludes the paper.

2 Relevance of speaker-specific-text

In [2], a GMM-based technique was proposed to equip
a classifier to capture the unique features of a class
and to make decisions based on the unique features
alone. During testing, feature vectors that are unique
to a class have been derived and used, thereby the
classification accuracy is increased. One of the draw-
backs is that, if the test utterance does not contain
reasonable number of unique features, then the dis-
crimination power cannot be ensured. Another draw-
back is that the unique features have to be identified
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from the test utterances during testing thus increases
the computation time. If the speaker is able to utter
the word which contains only the unique features then
the computation time will be reduced. Even though
the unique feature vectors are known, one cannot ex-
pect a speaker to utter speech segments, that contain
these features alone. On the other hand, if we know
unique phoneme list apriori, one can formulate a text
to be uttered using such phonemes alone.

In this proposed work we investigate the effect of
a subset of phonemes, that are unique to a speaker in
the acoustic sense on a speaker verification task. The
proposed technique involves three main steps:

1. To find out confusing speakers for each speaker

2. To derive acoustically unique phoneme set for
each speaker when compared to his/her confus-
ing speakers

3. To perform testing using speaker-specific-text

The proposed technique was experimented in [4]
on speaker identification task using TIMIT speech
corpus. The authors of [4] have demonstrated the im-
provement in classification accuracy, by considering
only one confusing speaker for each of the speakers,
during training as well as testing phases. In [4], one
of the reasons identified for misclassification is that
the acoustically unique phonemes set is derived us-
ing average of log-likelihood values. If some of the
phonemes have less number of examples, then consid-
ering the statistical parameter like the mean of like-
lihoods, is not appropriate. In [4], since the TIMIT
speech corpus is used, many phonemes have very less
number of examples (even just two) it is not appro-
priate to use the mean value and this might have led
to false set of phonemes as unique. This error can
be avoided by creating our own phonetically balanced
speech corpus1. Hence, in this proposed work, we
have created our own speech corpus in which we have
ensured that all the phonemes have reasonable number
of (minimum 30) examples.

In [4], only one confusing speaker is considered
for each of the speakers. During testing, if the confus-
ing speaker is not present in the first position, we will
not have the chance to improve the performance. On
the other hand, if we consider more than one confus-
ing speaker for each of the speakers, then common
set of unique phonemes can be derived from all of
the confusing speakers. One may assume that these
phoneme set is, to certain extent, unique to the other
speakers too. Let us consider a closed-set speaker

1NIST SRE corpora cannot be used for the proposed approach
due to the reason that our approach requires speech data to be
collected for speaker-specific-text and used during testing

recognition task, withN speakers. For any speaker,
in a given set ofN speakers, unique phonemes can be
derived in the following two ways:

1. Considering the rest of theN − 1 speakers as
competing speakers.

2. Considering a smaller set of speakers (saym
speakers, wherem ≪ N ) as competing speak-
ers.

In case(1), whenN is very large, deriving unique
phonemes is computationally expensive. It is reason-
able to assume that most of the speakers in the total set
N will not be acoustically closer to the test speaker.
One more reason is that, when the number of con-
fusing speakers is increased, the number of common
unique phonemes is decreased, hence it may not be
possible to formulate the speaker-specific-text. Con-
sidering these reasons, in our work, only a subset of
speakers is considered. For this purpose, any mini-
mum distance classifier or maximum likelihood clas-
sifier can be used. For the current study, conventional
GMM testing is used to derive this subset by consid-
eringm-best results of GMM technique.

For each pair of speakers, where the pair con-
sists of the intended speaker and one of the compet-
ing speakers, the unique phonemes can be derived as
follows: Given the speech segments for each of the
phonemes and the model (GMM) for the speakers in
the pair, the unique phonemes (or acoustically unique
phonemes) can be derived. In our proposed work,
m(for this work, m=3) competing speakers are con-
sidered. Therefore, a common set of unique phoneme
is derived from all of the competing speakers.

In this paper, speaker verification task using
speaker-specific-text is implemented using GMM and
i-vector approach. For both GMM and i-vector ap-
proach, the method to find out confusing speakers for
each speaker and the method to derive acoustically
unique phoneme for each speaker when compared to
his/her confusing speaker are same which is explained
in Section 2.1 and 2.2 respectively.

2.1 Identifying confusing speakers

Given the training utterances and GMM of each
speaker, the confusing speaker list for each
speaker(Si) is derived using the algorithm de-
scribed below:
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Input: Let us consider the training utterances of
speakerSi andλ1,λ2, ... λn be the GMMs of the speak-
ersS1,S2, ... Sn.
Output: Confusing speaker list of speakerSi.

1. The training utterances of speakerSi are tested
against the modelλj, wherej = 1, 2, ..n & j 6= i.

2. Estimate the likelihoods of the training utterances
of speakerSi being produced byjth speaker
model λj, j = 1, 2, ..n & j 6= i and compute
the average likelihood value.

3. Sort the average likelihood values of speakerSi in
descending order.

4. The speaker’s correspond to firstm(for this work,
m = 3) are considered as confusing speakers for
the speakerSi.

The above algorithm is used to derive confusing
speaker list for all the speakers.

2.2 Creation of acoustically unique phoneme
set

The following three distance metrics have been exper-
imented to derive acoustically unique phoneme set for
each speaker when compared to his / her confusing
speakers. The methods are:

1. Product of likelihood-Gaussians-based distance

2. Bhattacharyya-based distance

3. Average Log-likelihood

2.2.1 Product of likelihood-Gaussians

The product of likelihood-Gaussians technique pre-
sented in [2] tries to identify the most probable com-
mon features in likelihood space. In our proposed
work, acoustically unique phonemes are derived by
using product of likelihood-Gaussians. The proce-
dure to estimate product of likelihood-Gaussians is
explained as follows:

Let us consider the feature vectors of two differ-
ent classes (Ci andCj) asxi

k andx
j
k. Let λi andλj

be the models of the classes,Ci andCj, respectively.
Let the likelihoods of the feature vectors of the class
Ci for the given modelsλi and λj be p(xi

k|λi) and
p(xi

k|λj) respectively. We can assume that these like-
lihoods are distributed normally in likelihood space
with suitable parameters. Let these two Gaussians be

Nii(µii, σ
2
ii) andNji(µji, σ

2
ji). Similarly, for the fea-

ture vectors of the classCj , the likelihood-Gaussians
are Njj(µjj, σ

2
jj) and Nij(µij, σ

2
ij). The overlap in

the feature space is reflected in the likelihood space.
The overlapped region betweenNji andNii indicate
that a subset ofxi

k gives likelihood in the same range
for the modelsλi andλj . As the overlap increases,
the number of feature vectors ofxi

k that give likeli-
hood in the same range for both the models increases.
This increases the probability of an unseen common
feature vector, belonging to classCi, giving a better
likelihood for the modelλj. Therefore, the overlap
can be used as a measure of the number of features
that classCi shares with classCj .

A method to quantify the amount of overlap be-
tween two Gaussians was proposed in [18] and was
used in [19] to calculate the amount of bias. The same
method is used here to calculate the commonality be-
tween two classes and theµk(PoG mean) to identify
the most probable confusing features. The details of
the method presented in [18] is given below for clarity
purposes and it is used to identify the common feature
vectors.

Let Nii(µii, σ
2
ii) and Nji(µji, σ

2
ji) be the Gaus-

sian distribution of the utterances of the classCi for
the given modelsλi andλj

Let Nk(µk, σ
2
k) be

Nk(µk, σ
2
k) = Nii(µii, σ

2
ii) . Nji(µji, σ

2
ji). (1)

For the product of the Gaussians, the mean (µk) and
its variance (σ2

k) can be given as

µk =
σ2

jiµii + σ2
iiµji

σ2
ii + σ2

ji

, (2)

σ2
k =

σ2
iiσ

2
ji

σ2
ii + σ2

ji

. (3)

In order to quantify the amount of overlap between
two different Gaussians, the following ratio (Oij ) is
defined:

Oij =
max[Nii(µii, σ

2
ii) . Nji(µji, σ

2
ji)]

max[Nii(µii, σ
2
ii) . Nii(µii, σ

2
ii)]

(4)

Oij =
σii

σji

e

−

[

(µk − µii)
2

2σ2
ii

+
(µk − µji)

2

2σ2
ji

]

. (5)

If µii = µji, then Equation (4) reduces to

Oij =
σii

σji

. (6)
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However, for this case we expect the overlapOij to
be equal to 1. To achieve this, Equation (4) is further
normalized as given below:

ON
ij = Oij

σji

σii

= e

−

[

(µk − µii)
2

2σ2
ii

+
(µk − µji)

2

2σ2
ji

]

. (7)

The resultantON
ij is used as a measure to estimate the

amount of overlap between two gaussians (For further
details, [2] can be referred).

To derive speaker-specific-text of a speaker, the
common phonemes (i.e., the corresponding speech
segments) of the speaker and his/her confusing
speaker, available in the training utterances, are tested
with his/her model and his/her confusing speaker’s
model. Log-likelihood of each phoneme is computed
for the intended speaker and the confusing speaker.
Using the Equation (7), the amount of overlap be-
tween the two Gaussians for each phoneme is esti-
mated. Based on the sorted values ofON

ij , the first
30 phonemes are considered as acoustically unique
phonemes (Thirty phonemes are chosen so that rea-
sonable number of acoustically unique phonemes can
be made available while deriving common acous-
tically unique phonemes across multiple confusing
speakers). For each speaker with respect to his/her
confusing speakers, different subset of acoustically
unique phonemes are derived.

2.2.2 Bhattacharyya-based distance

The Bhattacharyya-based distance [23] to measure
the distance between two GMM distribution is used
to find out the acoustically unique phonemes. Let
Nii(µii, σ

2
ii) andNji(µji, σ

2
ji) be the Gaussian distri-

bution of the utterances of the classCi for the given
modelsλi andλj. The Bhattacharyya-based GMM-
distance measure between the two Gaussian distribu-
tions as shown in Equation (8).

k =
1

8
(µji − µii)

t

[

σ2
ii + σ2

ji

2

]−1

(µji − µii)
1

2

+









ln

∣

∣

∣

∣

σ2

ii+σ2

ji

2

∣

∣

∣

∣

√

∣

∣σ2
ii

∣

∣

∣

∣

∣
σ2

ji

∣

∣

∣









(8)

To derive speaker-specific-text of a speaker, the
common phonemes (i.e., corresponding speech seg-
ments) of the speaker and his/her confusing speaker,
available in the training utterances, are tested with

his/her model and his/her confusing speaker’s model.
Log-likelihood of each phoneme is computed for the
intended speaker and the confusing speaker. Here also
the likelihood values are assumed to posses normal
distribution. Using the Equation (8), the bhattacharya
distance between the two Gaussians for each phoneme
is estimated. The estimated distance values are sorted
in descending order. If the bhattacharya distance value
is high then the corresponding phoneme is considered
to be unique. Therefore, the first thirty phonemes
are considered as acoustically unique phonemes. For
each speaker with respect to his/her closely resem-
bling speakers different subset of acoustically unique
phonemes are derived.

2.2.3 Average log-likelihood

Given the training utterances of the speakerSi,
GMMs of the speaker(Si) and his/her confusing
speakers, the acoustically unique phonemes are
derived using the algorithm described below:

Input:Let us consider the training utterances of
speakerSi. Let us denote GMM of speakerSi as
λSi

and its confusing speakersCj
Si

asλ
C

j
Si

(where,

j = 1, 2, ..m) andU be the phoneme set.
Output:Acoustically unique phonemes of speaker
Si.

1. For each phoneme in the setU , the cor-
responding speech segments of speakerSi,
available in the training utterances are tested
against the speaker modelλSi

and his / her
confusing speaker modelλ

C
j
Si

.

2. Estimate the average likelihood of the
phoneme of speakerSi being produced by the
speaker modelλSi

asλ
avg
Si

.

3. Estimate the average likelihood of the
phoneme of speakerSi being produced by the
confusing speaker modelλ

C
j
Si

asλ
avg

C
j
Si

.

4. Calculate the difference in average likelihood
dj= λ

avg
Si

− λ
avg

C
j
Si

.

5. Repeat the steps (1) to (4) for all the phonemes
in the setU .

6. Based on the sorted values ofdj, the first
30 phonemes are considered as acoustically
unique phonemes.
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The above algorithm is used to derive acoustically
unique phonemes for all the speakers.

We used consistency as the metric to find out the
best method among the methods listed above, to de-
rive acoustically unique phoneme set for each speaker.
In our proposed work, our speech corpus consists of
130 training utterances and 12 test utterances. The
number of speakers taken for this experiment is 10.
In order to find out the consistency, the training utter-
ances have been divided into two sets. Each set con-
sists of 65 training utterances. Using the above three
methods, acoustically unique phoneme set for each
speaker is derived with the two sets of training utter-
ances separately. If the acoustically unique phoneme
set derived using the two sets of training utterances
are almost same, then the above algorithm is said to
have the consistency. In order to find out the consis-
tency, number of acoustically unique phonemes that
are common between the two sets of training utter-
ances are computed for 10 speakers. Using the num-
ber of common and acoustically unique phonemes be-
tween the two sets of training utterances, the mean
value and standard deviation are estimated and tabu-
lated in table 1

Table 1: Mean and standard deviation of the num-
ber of common and acoustically unique phonemes be-
tween the two sets of training utterances using the 3
methods

Method mean (µ)
Standard

deviation(σ)

Average log-likelihood 16.2 4.13

Product of likelihood-
Gaussians

19.6 2.75

Bhattacharyya-based
distance

11.4 7.8

For better consistency, the mean value should be
high and standard deviation should be low. It im-
plies that the number of acoustically unique phonemes
that are common between the two sets of training ut-
terances are more. From table 1, it can be noted
that, product of likelihood-Gaussians-based distance
method, gives higher mean value and lower standard

deviation value. From this result, It has been decided
to use product of likelihood-Gaussians-based distance
method for deriving acoustically unique phonemes for
the given speaker. The speaker-specific-text is for-
mulated using this acoustically unique phonemes and,
performance of the proposed work is tabulated in Sec-
tion 6.

The reason for choosing the number of confusing
speaker as 3, is explained as given below Fig.(1)

AC3

AC1

AC2A

A ∩ AC1

A
∩

A
C

3

A
∩

A
C

2

Figure 1: Representation of unique phoneme space
and common phoneme space of a speakerA by con-
sidering more than one confusing speakers (AC1 ,
AC2 , AC3)

In Fig.1, let the phoneme space of speakerA
is represented by a circleA (middle circle). The
phoneme space of the confusing speakers of speaker
A are represented byAC1 , AC2 andAC3 . The com-
mon unique phoneme space of speakerA (Up) by
considering their confusing speakers is represented
by,

Up = A −

m
∑

i=1

A ∩ ACi (9)

where,
m - number of confusing speakers
A ∩ ACi - common phonemes between the speakerA
and his / her confusing speakerACi , i = 1,2,. . . ,m.

From Equation (9) it can be noted that when the
second term of RHS increases, the value ofUP de-
creases. From fig. 1, we can conclude that when the
number of confusing speakers is increased, the num-
ber of common unique phonemes is decreased, hence
it may not be possible to formulate the required num-
ber of speaker-specific-text for some speakers. Be-
cause of this reason the number of confusing speaker
for each speaker is fixed to 3 in this proposed work.
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3 GMM-based approach using
speaker-specific-text

Gaussian Mixture Models (GMM) [20] are popular
statistical models due to their ability to form good ap-
proximations of data and the ease in computation. It
is a linear combination of multiple Gaussian distribu-
tions.

A Gaussian mixture density is a weighted sum of
M component densities given by the equation

p(~x | λ) =

M
∑

i=1

pibi(~x), (10)

where
~x - is aD-dimensional feature vector
bi(~x) - i th mixture component density, i=1,2,..,M
pi - i th mixture weight, i=1,2,..,M

Each component density is aD-variate Gaussian
function of the form

bi(~x) =
1

(2π)
D
2 |Σi|

1

2

exp{−
1

2
(~x− ~µi)

tΣ−1

i (~x− ~µi)}

(11)

with mean vector~µi and covariance matrixΣi .
The mixture weight must satisfy the constraint that

M
∑

i=1

pi = 1 (12)

The complete Gaussian mixture density is
parametrized by the mean vectors, covariance matrix,
and mixture weights of all the component densities.
These parameters are collectively represented by

λ = [pi, ~µi, ~Σi], i = 1, ..,M

Given a collection of training vectors, maximum
likelihood is estimated by using the iterative EM algo-
rithm. The EM algorithm iteratively refines the GMM
parameters to monotonically increase the likelihood
of the estimated model for the observed feature vec-
tors. Generally, five to ten iterations are sufficient for
parameter convergence. The advantage of using the
GMM as the likelihood function is that, it is computa-
tionally inexpensive and is based on a well-understood
statistical model. For text-independent tasks, it is in-
sensitive to the temporal aspects of the speech and

only the underlying distribution of acoustic observa-
tions from a speaker has been modeled. The latter
is also a disadvantage, because higher-levels of infor-
mation about the speaker, conveyed in the temporal
speech signal have not used by this approach. In this
proposed work GMM has been used for speaker veri-
fication task.

Given the test utterance, GMMs of claimed
speaker and impostor, testing using speaker-specific-
text is carried out using the algorithm described
below:

Input:Let us consider the test utterance of claimed
speakerSi. Let GMM of speakerSi as λSi

and
GMM of its impostor asλimpostSi

.
Output:Accept or reject the speakerSi.

1. For speakerSi, his/herm confusing speakers
are considered as impostors.

2. Using the training utterances of confusing
speakersCj

Si
(where,j = 1, 2, ..m), impostor

model is created for speakerSi.

3. The test utterance (which is created us-
ing speaker-specific-text using Product of
likelihood-Gaussians-based distance as ex-
plained in Section 2.2.1)of the claimed speaker
Si is tested against the claimed speaker
model(λSi

) and their corresponding impostor
model(λimpostSi

).

4. Calculate the score(S), by finding out the
difference between the likelihood value of
claimed speaker model(λSi

) and their impos-
tor model(λimpostSi

).

5. If score(S) ≥ empirically fixed threshold(θ)
then accept the speakerSi otherwise reject the
speakerSi.

The above algorithm is used to perform test-
ing with GMM using speaker-specific-text for all the
speakers.

4 i-vector approach

In i-vector based system, a variable length speech pat-
tern is projected onto a low-dimensional linear sub-
space. The basis vectors of this subspace are esti-
mated from the EM algorithm. This low dimensional
representation of a speech utterance is termed as the
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i-vector (identity vector). The main idea in traditional
JFA, is to find two subspaces which represent the
speaker and channel-variabilities, respectively. The
experiments in [8] show that JFA is partially suc-
cessful in separating speaker and channel variabilities.
The authors of [8] found that the channel space con-
tains some information that can be used to distinguish
between speakers. For this reason, the authors of [8]
propose a single space that models the two variabil-
ities and named it as the total variability space. The
basic assumption is that, a given speaker- and channel-
dependent GMM super vector M can modeled as fol-
lows:

M = m + Tw (13)

where
m - is a Universal Background Model(UBM) super
vector
T - is a low rank matrix, which represents a basis of
the reduced total variability space
w - is the i-vector

T is named the total variability matrix. The com-
ponents ofw are the total factors and they represent
the coordinates of the speaker in the reduced total vari-
ability space. These feature vectors are referred to as
identity vectors or i-vectors. The feature vector as-
sociated with a given recording is the Maximum-a-
Posteriori(MAP) estimate ofw, whose calculation is
explained in [11]. The matrixT is estimated using
the EM algorithm described in [11]. However, our
proposed work uses same channel for all the speakers
during training as well as testing and the session vari-
ability is also not considered. In this work, i-vector
and GMM approach is used, to check the effect of
acoustically unique phonemes in a classification task.

The steps involved in testing with i-vector using
speaker-specific-text as follows:

1. Gender-independent UBM is built using the
training feature vectors of all the speakers.

2. For each speaker, the training utterances are
concatenated and the total variability matrix is
estimated.

3. The dimension of i-vectors is 400 (determined
empirically).

4. i-vectors are extracted from the training utter-
ances.

5. Similarly, i-vectors are extracted from the
test utterances(which is created using speaker-
specific-text using Product of likelihood-
Gaussians-based distance as explained in Sec-
tion 2.2.1)

6. The score is computed using Cosine Similar-
ity Score(CSS). The CSS is computed by com-
paring the cosine angle between a test i-vector
wtest and a target i-vectorwtarget:

score(wtarget, wtest) =
〈wtarget, wtest〉

‖wtarget‖ ‖wtest‖
(14)

5 Experimental setup

In our proposed work, due to the requirement that all
the phonemes should have enough examples, we have
created our own speech corpus. We have collected
142 English sentences (from TIMIT corpus), that have
enough number (minimum 30) of examples for all the
45 phonemes. The number of phonemes taken for this
work is 45. The speech data is recorded using 16kHz
sampling rate. Speech utterances are collected from
50 speakers which includes 43 female speakers and
7 male speakers. All the speakers uttered the same
142 sentences. The speakers age group is between 20
and 35. Each utterance is approximately of 3 second
duration. The entire speech data is automatically seg-
mented at phoneme-level using Forced Viterbi align-
ment algorithm[5] .

For each speaker, among 142 sentences, 130 are
used for training and 12 are used for testing. For
each speaker, a GMM with 128 mixture components
has been trained, considering Mel-frequency cepstral
coefficients (13 static + 13 dynamic + 13 accelera-
tion) as the features. For each speaker, the confus-
ing speaker list is derived by using the method de-
scribed in Section 2.1. The methods to derive acous-
tically unique phonemes for each speaker is as ex-
plained in Section 2.2. In our proposed work, we
have used product of likelihood-Gaussians-based dis-
tance method to derive acoustically unique phonemes.
For each speaker, common and acoustically unique
phonemes have been derived by considering 3 con-
fusing speakers. To derive speaker characteristics,
the constraint that is set in our work is that the test
utterances should have at least six phonemes. For
each speaker, the speaker-specific-text is formulated
by combining sequence of consonant phoneme fol-
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lowed by vowel phoneme(CV words) using 6 com-
mon acoustically unique phonemes. The formulated
speaker-specific-text need not be a meaningful word
however it will be a readable text.

The method to find out confusing speakers
for each speaker and deriving acoustically unique
phoneme for each speaker when compared to his/her
confusing speaker is common for both GMM-based
approach and i-vector approach. In GMM-based ap-
proach, For each speaker, a GMM with 128 mix-
ture components is trained for claimed speaker model.
Similarly, using the training utterances of confusing
speakers, impostor model is created for each speaker.
For i-vector approach, gender-independent 128 mix-
ture component UBM is built using the training ut-
terances of all the 50 speakers. For each speaker,
130 training utterances are concatenated and the total
variability matrix is estimated using the concatenated
training utterances. When the system is tested using
speech utterances that correspond to speaker-specific-
text, the confusion error is found to be reduced con-
siderably than that of the GMM and i-vector approach
with random-text, as discussed below:

6 Performance Analysis

Speaker verification performance is compared be-
tween the utterances using speaker-specific-text (the
utterances with acoustically unique phonemes) and
the utterances using random-text (the utterances with-
out considering the acoustically unique phonemes).
The random-text is formulated by dividing the
test utterance into words that contain 6 continu-
ous phonemes. The words(random-text) are formed
in such a way that, it should not contain more
than two acoustically unique phonemes of the cor-
responding claimed speaker. The number of speak-
ers taken for this experiment is 50. The perfor-
mance of speaker verification task with random-text
and speaker-specific-text using GMM and i-vector ap-
proach are tabulated in table 2.

Table 2: Speaker verification performance with
Random-text and speaker-specific-text using GMM
and i-vector approach

Approach EER in %
Random-

text(Conventional
method)

Speaker-specific-
text

GMM 7 3
i-vector 37 32.5

From Table 2, it can be noted that there is a 4% re-
duction in Equal Error Rate using GMM with speaker-
specific-text when compared to GMM with random-
text. Similarly, there is a 4.5% reduction in Equal
Error Rate using i-vector with speaker-specific-text
when compared to i-vector with random-text. From
Table 2, we can notice that the EER is considerably
higher in the case of i-vector approach. The proposed
approach using GMM with random-text, the EER is
only 7% as specified in row 1 of Table 2. This shows
that i-vector approach may not be ideal when the dura-
tion of the test utterance is short [13, 15]. In any sense,
in both GMM-based or i-vector based technique, if the
test utterance is from speaker-specific-text, the perfor-
mance is found to be better.

The speaker verification performance is com-
pared between GMM with random-text and GMM
with speaker-specific-text for test utterances with dif-
ferent duration. The number of speakers taken for this
experiment is 50. For each speaker, the number of
test utterances is 12. For GMM with random-text, the
test utterances are formulated using 6, 12 and 18 ran-
domly chosen phonemes respectively. For GMM with
speaker-specific-text, the test utterances are formu-
lated using 6, 12 and 18 acoustically unique phonemes
respectively.
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Figure 2: The speaker verification performance
is compared between GMM with random-text and
GMM with speaker-specific-text for test utterances
with different duration

From Fig. 2 it can be noted that Equal Error Rate
using GMM with speaker-specific-text is lower than
that of GMM with random-text approach for differ-
ent speech utterance duration also. We can also notice
that, when the duration increases, performance differ-
ence between random-text and speaker-specific-text is
decreasing. This is due to the fact that, longer duration
test utterances using random-text may contain more
number of acoustically unique phonemes.

The speaker verification performance is com-
pared between i-vector with random-text and i-vector
with speaker-specific-text for test utterances with dif-
ferent duration. The number of speakers taken for
this experiment is 50. For each speaker, the number
of test utterances is 12. For i-vector with random-
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text, the test utterances are formulated using 6, 12
and 18 randomly chosen phonemes respectively. For
i-vector with speaker-specific-text, the test utterances
are formulated using 6, 12 and 18 acoustically unique
phonemes respectively.
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Figure 3: The speaker verification performance is
compared between i-vector with random-text and i-
vector with speaker-specific-text for test utterances
with different duration

From Fig. 3 it can be noted that Equal Error Rate
using i-vector with speaker-specific-text is lower than
that of i-vector with random-text approach for differ-
ent speech utterance duration also.

Speaker verification performance of the system is
analysed using i-vector with random-text approach for
test utterances with different duration have been tabu-
lated in Table 3.

Table 3: Speaker verification performance using i-
vector with random-text approach for test utterances
with different duration

S.No
Speech utterance duration

(in seconds)
EER
in %

1 0.5 37

2 3 11

3 36 6

From Table 3, it can be noted that, if the ut-
terance length decreases, speaker verification perfor-
mance degrades at an increasing rate using i-vector
based approach as described in [13, 15].

The limitation of our proposed system is that,
every time a new speaker is introduced, confusing
speakers list has to be generated. Then acoustically
unique phoneme set may be changed for few speak-

ers (only the speaker, who have the newly introduced
speaker as confusing speaker in the confusing speaker
list).

7 Conclusions

In this paper, we have proposed to use unique
phonemes of a speaker, in other words, a set of
phonemes that are acoustically unique when com-
pared with that of a competing (acoustically closely
resembling) speakers to reduce the confusion error on
speaker verification task. A novel method has been
explored to derive speaker-specific-text using Prod-
uct of likelihood-Gaussians. The experiments show
that the Equal Error Rate has been decreased by 4%
and 4.5% using speaker-specific-text when compared
to that of GMM and i-vector approach with random-
text respectively. The experimental results show that
the i-vector approach may not be ideal when the dura-
tion of the test utterance is short. In any sense, in both
GMM-based or i-vector based technique, if the test ut-
terance is from speaker-specific-text, the performance
is found to be better.
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