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Abstract: - Inversion of convolution transforms is considered by FIR filters for aperiodic band- and time-unlimited 
signals from the perspective attaining maximum accurate inverted waveforms with controllable noise 
amplification of the filter. The difficulties hampering to gain this goal, such as a lack of knowledge how the 
digital filter shall deviate from ideal one to produce waveforms as accurately as possible, complexity to choose 
optimal sampling rate, necessity to sacrifice the accuracy for suppressing noise, etc. are analysed. Based on 
learning in the input-output signal domain and controlling noise amplification by varying sampling rate, an 
approach is developed for designing maximum accurate filters, which are specified only by two user’s relevant 
parameters: (i) the desired noise gain and (ii) the continuous time support. Implementation of the approach is 
ill ustrated by designing a digital differentiator for the logarithmic derivative and a digital estimator of the 
distribution of relaxation times. Simulation results are presented demonstrating that the approach allows 
constructing more accurate FIR filters with predefined noise amplification and support sizes compared with 
those designed by other commonly used techniques.  
 
 
Key-Words: - Convolution Transform, Inversion, Deconvolution, FIR Filter, Accuracy, Noise Amplification, 
Design by Learning 
 

1 Introduction 
An important class of theoretical and practical tasks 
occurring in many branches of science and engineering 
is related to solving a problem mathematically leading 
to finding a function, which is interrelated to some 
other function by a convolution transform 
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where symbol * denotes the convolution, x(t) is some 
given or recorded function, y(t) is some unknown 
function that we wish to recover, and k(t) is kernel.  

The mentioned above task is inversion of 
convolution transform [1], which is known also as 
continuous-time deconvolution problem. The 
significance of the task is obvious from the fact that 
convolution transforms are used to solve numerous 
problems of mathematical physics, and many of 
classical integral transforms, such as Laplace, Fourier-
sine, Fourier-cosine, Hankel, Meier, etc. are either in 
the form (1) or can be put into it by change of variable.  

In this study, we consider inversion of (1) for 
aperiodic band- and time-unlimited functions. Such 

functions are of typical use in physics [2], mechanics 
[3], material science [4], etc. 

In the frequency domain, Eq. (1) takes the form 

)()()( ωωω jKjYjX = ,  (2) 

where capital letters are used for the Fourier 
transforms. Equation (2) allows obtaining function 
y(t) by the inverse Fourier transform of 

).(/)()( ωωω jKjXjY =   (3) 

The time-domain counterpart of Eq. (3) is the 
following convolution transform 
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where h(t) is the inverse kernel, which is not always 
be known. Contrary, the frequency spectrum of the 
inverse kernel can usually be determined as the 
reciprocal of the Fourier transform of the direct 
kernel 

)(/1)( ωω jKjH = .  (5) 
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In the case of absolute integrable direct kernel 
k(t), it follows from the Riemann-Lebesgue lemma 
[5] that )( ωjK  is a decreasing function 
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Hence, inverse kernel h(t) cannot be an integrable 
function, and often exists in the class of the 
generalized functions.  

According to Eq. (4), inversion of transform (1) can 
be regarded as a filtering problem with an ideal 
deconvolution filter having impulse response h(t) and 
frequency response )(ωjH  producing output signal 
y(t) in response to input signal x(t). The ideal 
deconvolution filter has infinite support, and its key 
feature is infinitely increasing magnitude response (6), 
which is responsible for ill-posed nature of 
deconvolution. 

The above filtering model establishes a theoretical 
basis for solving the continuous-time deconvolution 
problem by finite impulse response (FIR) 
deconvolution filters, which may be presented in the 
following non-causal form: 
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where T is sampling period, and h(nT) is impulse 
response containing N non-zero coefficients. 

However, implementing inversion of (1) by FIR 
filters for real – noisy, finite length (truncated), 
discretely sampled datasets often gives disappointing 
results manifesting as inaccurate and bursty inverted 
(deconvolved) waveforms, whose application for 
physically relevant and sensible solutions may be 
quite ambiguous. 

The presented paper is devoted to improving the 
performance of FIR deconvolution filters for inversion 
of convolution transforms in order to attain 
deconvolved waveforms as accurate as possible with 
controllable noise amplification of the filter for a 
user’s available input data.  

To achieve this objective, first, the digital filter 
will be adapted to available input data. Because 
design of a filter producing deconvolved waveforms 
as accurate as possible is data dependent problem, 
adaption of the filter to the available input data 
promises some potentialities for the performance 

improvement. Second, noise amplification of the 
filter will be controlled in a manner minimally 
disturbing the frequency response by implementing 
natural regularization based on choosing optimal 
sampling rate. 

The rest of the work is organized in five sections. 
Section 2 establishes the performance measures for 
FIR deconvolution filters relating to accuracy of 
deconvolved waveforms and noise amplification. 
The factors affecting the performance, such as 
support size, sampling rate, design methods and 
specifications, regularization measures, etc. are 
reviewed in Section 3. In Section 4, the proposed 
approach is described for designing FIR 
deconvolution filters with the desired noise gains 
producing maximum accurate waveforms for the 
predefined filter supports. Two illustrative examples 
of designing a digital differentiator for the 
logarithmic derivative [6] and a digital estimator of 
the distributions of relaxation times [7,8] are 
presented in Section 5. Here, the performance of the 
designed systems is compared with that of FIR filters 
constructed by some other commonly used 
techniques. Section 6 contains conclusions. 

Part of the results presented herein was originally 
reported in the conference [9]. 
 
 

2. Performance of Deconvolution 
Filters 

Traditionally, the performance of frequency-selective 
FIR filters, such as lowpass, bandpass, highpass filters, 
etc. [10], intended for removing some unwanted 
frequency parts or extracting some useful parts of a 
signal, is defined in terms of the deviation (i.e. the 
error) between some desired frequency response and 
that achieved by the designed filter. This performance 
measure is unrelated to data to be processed and 
depends mainly on the filter length (i.e. the number of 
filter coefficients N). In general, the longer length is, 
the higher is the performance.  

Due to the unlike objective posed here – to produce 
deconvolved waveforms as accurate as possible with 
controllable noise amplification, the deviation between 
the desired frequency response and that of the digital 
filter is insufficient and two performance aspects – 
deconvolution accuracy and noise amplification shall 
be controlled. 

 
 

2.1 Deconvolution accuracy 
We propose to define deconvolution accuracy through 
the accuracy of the deconvolved waveforms likewise 
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to the measurement and test accuracy in the 
metrological documents [11-13] as: “closeness of 
agreement between a sequence of deconvolved 
waveform and the sequence of true waveform”. The 
theoretical waveform y(t) established by Eq. (1) or 
(4) will be used as true one for the definite reference 
signal x(t). A deconvolution is said to be more 
accurate when it offers a smaller deconvolution 
error, which will be expressed as mean squared error 
between filter output )(ˆ mTy  and true output y(mT) for 
definite noiseless reference signal  

[ ] 2
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K

m

−∑
=

, (8) 

where K is length of a deconvolved waveform. 
  
 
2.2 Influence of Noise 
Noise effect of deconvolution filter can be 
characterized by various imprecision measures of the 
deconvolved waveforms, such as SNR (signal-to-
noise ratio), standard deviation, variance, etc. In this 
study, however, following the suggestion in [14-16], 
noise influence will be quantified in terms of noise 
gains showing how the noise variance 2xσ  of signal to 

be processed is transmitted to the noise variance 2
yσ  of 

deconvolved signal 

22 /
xy

S σσ= . 

The advantage of such choice is a possibility to 
quantify ill-posed nature of both a deconvolution 
problem and a deconvolution filter. Thus, the degree 
of ill-posedness of the deconvolution  problem will be 
calculated by the theoretical noise gain determined 
by the Parseval's relation [5,10] from the ideal 
frequency response 
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whereas the degree of ill-conditioness of 
deconvolution filter will be measured by the 
experimental noise gain calculated through the filter 
coefficients 

∑
n

2 nTh = S )(exp .  (10) 

Noise gains 1>>S  are responsible of the ill-
posedness of a deconvolution problem and the ill-
conditioness of the algorithms designed. Thus, noise 
amplification, as a rule, is not a problem for the 
conventional frequency-selective (lowpass, 

bandpass, highpass, etc.) filters [10], because 
condition 1)( ≤ωjH  is typically fulfilled resulting 

in 1≤S  according to the Parseval's relation. Contrary 
to this, square integration (9) of increasing 
magnitude response (6) over frequency band 

]/,/[ TT ππΩ −=   (11) 

extending when T decreases, results that ∞→theorS  
when 0→T . 

The Parseval's relation shows that noise 
amplification or more generally the degree of ill-
posedness and ill-conditioness depends on the 
sampling rate. Two noise gains Stheor and Sexp give 
simple means to ascertain whether the observed 
noise effect is an essential feature of the theoretical 
structure of a deconvolution process or it comes 
purely from a discrete-time algorithm used. 

Above noise characterization is valid for white 
noise [10]. For coloured noises, the characterization 
should be appropriately modified. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Factors affecting the 
performance of a FIR 
deconvolution filter. 

 
 
3 Factors Affecting the Performance 
There are numerous factors affecting the 
performance of a deconvolution filter in rather 
complex and conflicting manner, between which an 
optimal trade-off has to be attained. In pure filtering 
sense, the performance of a FIR deconvolution filter 
depends on the filter length N and sampling period T 
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(Fig. 1), and is determined by the design 
specification defined, the design method used to find 
the filter coefficients, as well as the regularization 
measures exploited to minimize noise amplification. 
However, to solve a particular deconvolution 
problem, the filter shall be compatible with the 
available input data, which limits free choice of N 
and T. To gain a deeper understanding, the effect of 
some factors on the performance will be analysed 
below. 
 
  
3.1. Support Size 
Continuous support size of a deconvolution filter is 
equal to the length of sliding window 

)1( −=−= −+ NTttd
x

,  (12) 

with which the filter slides over the input data 
sequence. Thus, dx shall be shorter the time interval 
of available input sequence 

)1( −= MTD
x

,  (13) 

where M is number of samples of input sequence.  
Physically, dx limits information accessible for 

computing an output sample, and so determines the 
potential performance of a deconvolution filter. Thus, 
the support size should be long enough that N samples 
within it to contain information needed to calculate an 
output sample with the desired accuracy and noise 
amplification. Replacement of the infinite support size 
of (4) by finite one (12) is one of main reasons why the 
perfect deconvolution cannot be achieved by FIR 
filters. 

In the filtering context, support size (12) affects 
the performance through the filter length N and 
sampling period T. For fixed dx, it defines possible 
combinations of N and T. The larger support size 
promises potentially the higher accuracy of the 
deconvolved waveforms and the smaller noise gains, 
on the other hand, the larger support size, the shorter 
is usable output sequence [16] due to transient 
responses when the first (input-on transient) and last 
(input-off transient) output samples are computed 
from incomplete information containing zeros. After 
discarding these first and last output samples, a 
usable steady-state output sequence is obtained, 
which is by 1−N  samples shorter than the input 
sequence. In the limit case, when the support size is 
equal to the input data interval, i.e. xx Dd =  or 

MN = , only one usable output sample can be 
obtained. 

 

Fig. 2. Portions of infinitely increasing ideal 
magnitude response corresponding to two sampling 
periods 21 TT <  (a) and their normalized versions (b). 
 
 
3.2 Sampling Rate 
Despite that a general recommendation [10] suggests 
to choose sampling rate according to the sampling 
(Shannon) theorem, the answer to the question how to 
choose the correct sampling rate for a deconvolution 
filter is not as obvious as it seems at first sight because 
sampling affects on the performance through: (i) the 
signal to be processed as well as (ii) the filter to be 
designed. 

Sampling converts continuous signal x(t) into its 
discrete-time version and loss of information between 
input samples is another reason, why digital filters 
cannot carry out the perfect deconvolution. Thus, for 
band-unlimited signals considered here, some 
violation of the sampling theorem is unavoidable in 
any case. If even the correct sampling rate according 
to the sampling theorem can be defined for x(t), this 
means only that x(t) can be perfectly reconstructed 
from the discrete samples. However, the correct 
sampling rate for x(t) does not guarantee the correct 
sampling rate for deconvolution result [ 17] because 
signal y(t) that we wish to recover as one, from 
which the effect of primary convolution (1) is 
removed, by definition, has the broader spectrum 
than that of x(t). 

For the digital filter, sampling limits (cuts) a 
portion of the infinitely increasing ideal magnitude 
response to be approximated within frequency band 
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(11) (Fig. 2). This band according to the Parseval's 
relation (9) establishes the inherent degree of ill-
posedness, which, of course, will be transformed into 
the actual noise amplification due to the deviations 
caused by non-ideal fitting. 

 
 
3.3 Design Specifications and Methods 
Design techniques influence the performance through: 
(i) design specification and criteria defined, and (ii) 
methods used to calculate filter coefficients [10], such 
as window method, frequency sampling method, 
weighted least squares design, minimax design, etc. 

Since a filter must be adapted to the intended 
application, the design specification of a 
deconvolution filter should be defined in the way to 
produce deconvolved waveforms as accurately as 
possible. Unfortunately, such specification cannot be 
formulated because it is not known, how the 
frequency response of a digital filter to be designed 
shall deviate from infinitely increasing ideal one to 
produce accurate waveforms, and this specification 
depends on the data to be processed. Commonly 
used practice to consider a deconvolution filter as 
highpass one and detailing its magnitude responses 
into pass-, stop- and transition bands [10] can be 
rather subjective and can limit the potential 
deconvolution accuracy already in the filter 
specification stage.  

In general, it is impossible to normalize different 
portions of ideal frequency response to be 
approximated by the digital filter at different 
sampling rates (see Fig. 2) to the response that is 
independent of the sampling rate. For example, the 
normalized portions in Fig. 2(b) differ from each 
other and can be interpreted as ones belonging to 
different filters. As a consequence, a deconvolution 
filter cannot be designed independently of the 
sampling rate and the filter (impulse response) 
obtained at one sampling rate, cannot be applied to 
other sampling rate. An exception is differentiators 
(see Sub-section 5.1), whose linearly increasing 
magnitude responses [10,18] allow normalization to 
the unity response and, so, designing differentiators in 
a sampling-rate invariant manner. 

Due to increasing magnitude responses (6), to 
attain maximum accuracy, it is desirable to design 
linear phase deconvolution filters as type I (odd N) or 
type IV (even N) systems [10], which, contrary to type 
II and III systems, have not a restriction that their 
magnitude responses must be zero at end frequencies 

T/πω ±= . 
 

3.4 Regularization 
Ill-posed nature of the inversion requires that special 
regularization measures [1,19,20] are used to 
minimize noise amplification. Despite relatively 
large variety and complexity of the regularization 
methods, they, in one way or another, decrease the 
areas under increasing magnitude responses, usually 
by suppressing the responses at higher frequencies, 
which according to the Parseval's relation (9) reduces 
the noise gains. For example, such popular 
techniques as Wiener filtering and Tikhonov 
regularization can be interpreted as a cascade of the 
inverse filter with frequency response (5) and some 
lowpass filter. From the viewpoint of the 
performance, such lowpass filtering represents 
actually the forced distortion of the frequency 
responses affecting, without doubt, deconvolution 
accuracy unfavourably. 
 
 

4 Proposed Design Approach 
To summarize factors affecting the performance of 
deconvolution filters, a conclusion can be made that 
the following difficulties hamper to attain 
deconvolved waveforms as accurately as possible:  

(1) designing of accurate deconvolution filters is a 
data-dependent problem,  

(2) it is not known how the magnitude response of 
a digital filter to be designed shall deviate 
from ideal one to produce accurate 
deconvolved waveforms,  

(3) there are not unambiguous criteria for 
choosing the optimal sampling rate because: 
(i) formally, the unknown signal to be found in 
deconvolution process has a broader spectrum 
than that to be processed, (ii) the sampling 
rate, on the one hand, provokes aliasing 
distortions in the signal to be processed, and 
on the other hand, determines the inherent 
degree of ill-posedness of a deconvolution 
problem, (iii) the sampling rate together with 
the filter length determines the continuous 
support size (sliding window), which, on the 
one hand, restricts physically information 
accessible for the computing an output sample 
and, so, the potential performance of a 
deconvolution filter, and on the other hand, 
must be compatible to available input data,  

(4) the accuracy shall be sacrificed for minimizing 
noise amplification due to ill-posed nature of 
deconvolution. 

To overcome the mentioned difficulties, we 
propose a design approach that finds a digital filter 
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producing waveforms as accurate as achievable for the 
predefined desired noise gain Sdesired and support size 
dx. The filter is constructed in the input-output signal 
domain by learning [14-16], and Sdesired and dx are only 
design specifications. Noise amplification is controlled 
by varying sampling period T to alter the filter length 
N for the predefined dx according to )1/( −= NdT

x
. 

 

Fig. 3. Iterative process for searching an optimal 
combination of T and N ensuring the desired noise 
gain Sdesired. 

Impulse response h(nT) is found for a 
combination of filter length N and sampling period T 
allowed by the predefined support size dx, which 
ensures the desired noise gain Sdesired. This 
combination of N and T is searched by the iterative 
procedure [14-16] based on typical monotonic 
increase of the noise gain when sampling period T 
decreases (Fig. 3). Trial filters are designed by 
learning for the combinations of T and N allowed by 
Eq. (12) starting at some explicitly large T1 (e.g. 
corresponding to 43 or=N ) yielding noise gain  

desired
SS <exp   (14) 

by iterative increase of a number of coefficients 
21 +=+ ii NN  and the appropriate decrease of 

sampling period )1/( 11 −= ++ ixi NdT . Once desired 
noise gain is reached, the iterative process is stopped 
and the final values of T and N are specified.  

If the desired performance cannot be ensured, 
design specifications (Sdesired, dx) should be 
reconsidered. For example, if condition (14) cannot be 
achieved at the first iteration, the sampling period T1 
must be increased, which requires extension of support 
size dx. 

The features of the proposed approach are: 
(i) Ease of design specification. Only two 

parameters – the desired noise gain Sdesired and 
the support size (sliding window) dx are 
specified.  

(ii)  Simplicity of regularization. The natural 
regularization is used based on finding 
minimum sampling rate, which ensures the 
desired noise gain. The difference between 
most of traditional regularization techniques 
[1,19,20] and the method proposed here is that 
the first ones minimize noise amplification at 
the expense of decrease of the accuracy due to 
distorting the frequency response at high 
frequencies, while the latter – the expense of 
decrease of the accuracy due to allowing some 
aliasing. 

(iii)  Ease of implementation. The regularized 
algorithm is the original discrete convolution 
algorithm (7) with the specified T and N. 

(iv) Economical solution. The approach finds the 
most economical solution in the sense as one 
with minimum N.  

(v) Optimal magnitude responses. Optimal flat 
(ripple-free) magnitude responses around zero 
frequency are obtained, which produce output 
waveforms as accurate as possible. 

 
 

5 Illustrative Examples 
The developed approach has been approbated to 
design FIR filters for a wide variety of 
interconversions between monotonic material 
functions [16]. Design by learning has been also 
used to construct FIR Kramers-Kronig transformers 
[21] and FIR filters for spectrum analysis and 
synthesis [22]. Here, as illustrative examples, 
designs of a differentiator for the logarithmic 
derivative [6] and an estimator of distribution of 
relaxation times [7,8] will be demonstrated. 
 
 
5.1 Differentiator for Logarithmic Derivative 
Ones of the most important types of digital filters are 
digital differentiators [18], which are widely used to 
calculate the change rate of recorder data. An ideal 
differentiator has pure imaginary frequency response 

ωω jjH =)(  [10] resulting in linearly increasing 
magnitude response, which, in its turn, causes 
inversely proportional dependence of the impulse 
response to sampling period 

TnhnTh /)()( = ,  (15) 

where h(n) is the impulse response normalized to 
unity sampling rate. 

In literature, differentiators usually are not treated 
as deconvolution filters, although differentiation is a 
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typical deconvolution operation averting integration, 
i.e. inverting convolution transform with kernel k(t) in 
form of a step function. An ideal differentiator satisfies 
condition (6) and according to the Parseval's relation 
(9) has theoretical noise gain 

22 3/ TS
theor

π= .  (16) 

FIR digital differentiators have been the subject 
of numerous investigations [18]. A variety of 
methods with different design criteria, such as the 
Remez exchange algorithm [23], the window method 
[10], the weighted least squares method [24,25], 
Taylor series [26], maximal linearity constraints 
[27], hybrid optimization method [28], etc. have 
been developed. This is by no means the exhaustive 
list. Such vast variety of the methods confirms the 
fact that there is no unique solution for a “universal” 
digital differentiator, as well as – for a “universal” 
deconvolution filter in general, and design of 
deconvolution filters is data-dependent problem. 

For dielectrics, the logarithmic derivative of the 
real part of complex dielectric permittivity )(ωε ′  [6] 

ωωεωε ln/)()( ∂′∂=′′
D

  (17) 

is used for estimation of the imaginary part )(ωε ′′ . 

By denoting )()( ωεω Dy ′′=  and )()( ωεω ′=x  and 

introducing substitution ωln=t , Eq. (17) may be 
rewritten as: 

( ) ( ) texey tt ∂∂= / .  (18) 

Suppose that a user wants to construct a 
differentiator with the desired noise gain 

10≈
desired

S   (19) 

producing maximum accurate waveforms for the 
logarithmic derivative (17) to employ, for example, 
support size 1=xd . 

To attain maximum accuracy, the differentiator 
shall be designed as type IV filter [10] with an even 
number of coefficients. So, to choose a minimum 
number of coefficients 4=N , from Eq. (12) it 
follows 

333.0)1/(1 =−= NdT
x

. 

Design of the differentiator by learning, using the 
following training functions:  

)1/(1)( 2ttx += , 22)1/(2)( ttty +−= , 

gave the normalized coefficients listed in Table 1. 
According to Eq. (10), they provide the noise gain 

22.23exp =S  exceeding the desired value (19). In line 

with the proposed procedure (see Section 4), support 
size dx should be extended and increased sampling 
period T1 should be used. 
 
Table 1. Coefficients of the differentiator designed 
by learning 

)2/1()2/1( hh −=−   1.1349626 

)2/3()2/3( hh −=−  -0.045064591 

However, due to normalization (15), 
differentiators may be constructed in the sampling-
rate invariant manner, and desiredT  can be found by an 
expression  

51.010/22.2333.0/exp ===
desireddesired

SSTT  

coming from simple mathematical manipulations of 
Eqs. (10) and (15). Thus, the designed  
4-point differentiator ensures the desired noise gain 
(19) at 51.0=desiredT  and requires support size 

53.1=xd . Due to non-ideal fitting, Tdesired differs 
from the sampling period coming from theoretical 
noise gain (16) 

57.0/3/110 === desiredStheor
ST π . 

The designed differentiator was compared with 
4-point linear phase differentiators designed by the 
Remez exchange algorithm [23] and by using 
maximally linearity constraints [26,27]. The 
coefficients of these filters are given In Table 2, 
while the normalized magnitude responses are shown 
in Fig. 4. 

Table 2. Coefficients of the equiriple minimax and 
maximally linear differentiators 

 Equiriple 
minimax 

Maximally 
linear 

)2/1()2/1( hh −=−   1.3091930  1.1249996 

)2/3()2/3( hh −=−  -0.13106367 -0.041666936 

 
The differentiators have been tested for )(ωε ′  

corresponding to single Debye relaxation [16] 

t

t

e
ex

21

1
)(

+
=   (20) 
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representing the worst case in signal processing 
sense with maximum wide spectrum. Function (20) 
has the derivative:  

22

22

)1(

2
)(

t

t

t

exact e

et
ey

+
= .  (21) 

In Fig. 5, error curves of )()(ˆ tt eyeyy −=∆  are 

shown for the three differentiators operating at 
5.0=T  and 7.0=T , whereas the performance 

parameters are summarized in Table 3. As it is seen, 
the differentiator designed here has the highest 
accuracy, although its performance is very close to 
that of the maximally linear differentiator. So, 
maximally flat differentiators should be used as the 
next more favourable option. Contrary, the equiriple 
minimax differentiator produces noticeably 
inaccurate waveforms and obviously is not suitable 
for the logarithmic derivative. 
 
 
5.2 Estimator of Distribution of Relaxation 

Times 
As it is known [7,8], the distribution of relaxation 
times (DRT) – a quantity coming also from the 
material science [16], is an attribute of the response 
functions of systems (materials), whose time-domain 
behaviour does not comply with the simple 
exponential law. It is generally accepted that the 
impulse responses of such systems result from the 
superposition of exponential processes with certain 
relaxation times forming the appropriate non-
negative DRT functions. DRT recovery is 
categorized as one of all the time the most 
challenging and hard ill-posed inversion problems. 

Here, we consider DRT recovery from the real 
part of complex dielectric permittivity )(ωε ′  – the 
same function has been used for calculating the 
logarithmic derivative in the previous Sub-section, 
which requires inversion of an integral transform 
[7,8] 

∞<<
+

=′ ∫
∞

ω
τ
τ

τω
τ

ωε 0,
1

)(
)(

0
22

dy
, (22) 

where τ is relaxation time, and y(τ) is the function of 
DRT. For )()( ωεω ′=x  and substitutions 

ωln=t  and τln−=u ,   (23) 

Eq. (22) can be converted into the following 
convolution transform 

∫
∞

∞−
−

−

+
= du

e

ey
ex

ut

u
t

)(21

)(
)( .  (24) 

 

Fig. 4. Normalized magnitude responses of 4-point 
digital differentiators: 1 – designed by learning, 2 – 
equiriple minimax, 3 – maximally linear. 

 

 

Fig. 5. Error curves for deconvolved waveform (21) 
produced by 4-point differentiators: 1 – designed by 
learning, 2 – equiriple minimax, 3 – maximally 
linear. 

The inverse kernel for transform (24) exists in the 
class of the generalized functions. To the best of our 
knowledge, its analytic expression is not known at 
present, however, according to (5) one can derive its 
Fourier transform representing the frequency 
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response of ideal DRT estimator [7,8]  

)2/sh()/2()( πωπω jjH = . (25) 

Table 3. Performance parameters 
T 0.5 0.7 

Stheor 13.16 6.71 
Differentiator designed by learning 

E 0.254⋅ 10-4 0.00429 
Sexp 10.32 5.37 

Equiriple minimax differentiator 
E 0.0337 0.0256 

Sexp 13.9 7,29 
Maximally linear differentiator 

E 0.459⋅ 10-4 0.00495 
Sexp 10.14 5.28 

 
The magnitude response for (25) (Fig. 6) is an 

extremely fast growing function (pay attention on 
logarithmic scale of Y axis) pointing on a high 
degree of the ill-posedness of DRT recovery 
problem.  

 

 

Fig. 6. Magnitude response of ideal DRT estimator. 

As an illustrative example, consider design of a 
digital DRT estimator with the desired noise gain (19) 
employing support size 6=xd . Similarly to 
differentiators, DRT estimators shall be designed as 
linear phase systems of type IV [10] to attain 
maximum accuracy. The magnitude responses of 
DRT estimators cannot be normalized to unity 
sampling rate, so, the estimators have to be designed 
at the specified sampling rates. 

According to Eq. (12), minimum filter length 
4=N  with sampling period 21 =T  shall be used in 

the first iteration, while 62 =N  and 83 =N  with 

2.12 =T  and 857.03 =T  respectively must be chosen 
at the second and third iterations. The estimators were 
designed by using the training functions corresponding 

to Cole-Cole relaxation model [29]. In Fig. 7(a), the 
magnitude responses are shown for the filters obtained 
in the first three iterations with the highlighted areas 
under the responses, whereas in Fig. 7(b) variation of 
noise gain expS  and error E is presented as functions of 

the sampling period. 
 

 

Fig. 7. Magnitude responses (a) and variation of the 
noise gain and the error (b) of trial filters in the first 
three iterations. Shaded regions in (a) show the areas 
under the magnitude responses; the solid line in (a) is 
the ideal magnitude response. The solid line in (b) 
shows the theoretical noise gain. 

As it is seen, the magnitude responses are ripple-
free (flat) coinciding very accurately with the ideal one 
in a region of approximately Ω− )6.03.0(  centred at 
zero frequency. The areas under the magnitude 
responses increase significantly with decreasing the 
sampling period causing great augment in the noise 
gain. Due to the non-ideal fitting, the experimental 
noise gain is smaller than the theoretical one. The 
augment in the noise gain, however, is accompanied 
by favourable effect of approximately the same 
decrease in the error. It is interesting to note that the 
error E decreases approximately inversely 
proportionally to the noise gain S in accordance with 
the relationship SE /1.0≈ . 
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The 6-point filter obtained in the second iteration 
has noise gain 35.10exp =S  satisfying condition (19), 

so, it could be taken as the maximum accurate 
estimator for 6=xd . The coefficients of this filter 
are given in Table 4. 
 
Table 4. Coefficients of 6-point DRT estimator 

)2/1()2/1( hh −=−  -2.25364 

)2/3()2/3( hh −=−  0.577504 

)2/5()2/5( hh −=−  -0.0621334 

 
Experiments have been carried out for designing 

DRT estimators also by the frequency sampling 
method [10]. However, they showed that the 
frequency sampling method does not allow obtaining 
really working DRT estimators for the reason that 
the method cannot provide sufficiently good fit of 
the fast growing magnitude responses for the support 
sizes usable in practice. 

Fig. 8 shows the magnitude responses of 8-point 
estimators designed by the frequency sampling 
method and by learning (this is the filter obtained at 
the third iteration above). Contrary to the learning 
method, the frequency sampling method generates a 
filter with large ripples resulting in the deconvolved 
waveforms, which have little in common with the 
true solutions. At the same time, noise gain of the 
filter is approximately 7 greater to compare with the 
estimator designed by learning. 

A conclusion can be made that 8 coefficients are 
insufficient for the frequency sampling method to 
provide sufficiently good fit. Unfortunately, there is 
no way out of the situation for the fixed support size. 
Increase of a number of filter coefficients N 
decreases sampling period T, which according to 
(11) expands band Ω and so the portion of the fast 
growing ideal magnitude response to be 
approximated by the digital filter. 

The fitting quality may be improved by 
approximating the smaller portion of the fast 
growing ideal magnitude response with the larger 
number of coefficients, which requires increasing 
sampling period T and extending support size dx. For 
example, at 67.1=T  (which limits the noise 
amplification to the level 10<theorS ) and 16=N  
requiring the support size 

05.25=
x

d ,  (26) 

the frequency sampling method generates an 
estimator with magnitude response 1 shown in 

Fig. 9. However, despite the relatively good fit and 
acceptably low noise amplification, the estimator 
does not work well. In Fig. 10, the waveforms are 
compared for an asymmetric DRT obtained by 
16-point estimators designed by the frequency 
sampling method (waveform 1) and learning 
(waveform 2). In contrast to excellently deconvolved 
waveform 2, waveform 1 is biased and contains 
regions with physically senseless negative values at 
small (not shown) and large τ. 

 

 

Fig. 8. The magnitude responses of 8-point 
estimators: 1 – designed by the frequency sampling 
method, 2 – designed by learning. The solid line 
shows the ideal magnitude response. 

 

Fig. 9. The magnitude responses of 16-point 
estimators: 1 – designed by the frequency sampling 
method, 2 – designed by learning. The solid line 
shows the ideal magnitude response. 

Unfortunately, none of these 16-point estimators is 
applicable in practice due to unrealistic large support 
size. One has to remember that the ‘time domain’ for 
DRT estimators according to (23) relates to the 
logarithmic frequency scale  

( )−+−+−+ =−=−= ωωωω /lnlnlnttd
x
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resulting in  

)exp(/
x

d=−+ ωω  

and transforming the support size (26) into one 
practically unattainable on the linear scale  

 88.101057.7)05.20exp(/ 10 =⋅==−+ ωω decades. 
 

 

Fig. 10. DRT waveforms deconvolved by 16-point 
estimators: 1 – designed by the frequency sampling 
method, 2 – designed by learning. The solid line 
shows the true waveform. 

 
 

6 Conclusions 
Inversion of convolution transforms by FIR 
deconvolution filters has been considered from the 
perspective attaining deconvolved waveforms with the 
highest possible accuracy for user’s predefined noise 
gains and filter supports. The following difficulties 
have been disclosed hampering to gain this goal:  

(1) designing maximum accurate deconvolution 
fi lters is a data-dependent problem,  

(2) it is not known how the magnitude response 
of a filter to be designed shall deviate from 
ideal one to produce deconvolved 
waveforms as accurate as possible,  

(3) there are not unambiguous criteria for 
choosing the optimal sampling rate because: 
(i) formally, the unknown signal to be found 
by the inversion has a broader spectrum than 
that to be processed, (ii) the sampling rate, 
on the one hand, provokes aliasing 
distortions in the signal to be processed, and 
on the other hand, determines the inherent 
degree of ill-posedness of a deconvolution 
problem, (iii) the sampling rate and the filter 
length determines the support size, which, on 
the one hand, restricts physically information 
accessible for the computing an output 

sample and, so, the potential performance of 
a deconvolution filter, and on the other hand, 
must be compatible to available input data,  

(4) the accuracy shall be sacrificed for 
minimizing noise amplification due to ill-
posed nature of the inversion. 

To overcome the mentioned difficulties, a design 
approach has been developed based on learning in 
input-output signal domain and controlling noise 
amplification by varying sampling rate, which allows 
generating maximum accurate FIR filters for the 
prescribed noise gains and support sizes. 

As examples, designs of a digital differentiator for 
the logarithmic derivative and an estimator of the 
distributions of relaxation times (DRT) have been 
demonstrated by the developed approach. It has been 
found that a common feature of the filters producing 
accurate waveforms is flat (ripple-free) magnitude 
responses around zero frequency. The differentiator 
designed by the proposed approach demonstrates the 
higher accuracy and the lower noise gain over the filter 
constructed by the Remez exchange algorithm, 
however, gives approximately the same performance 
as the maximally linear differentiator. It has been 
ascertained that the frequency sampling method does 
not allow obtaining really working DRT estimators 
due to inability to ensure sufficiently good fit of the 
fast growing magnitude responses for the support 
intervals accessible in practice. 
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