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Abstract: - Inversion of convolution transforms is considered by FIR filters for aperiodic band- and time-unlimited
signals from the perspective attaining maximum accurate inverted waveforms with controllable noise
amplification of the filter The difficulties hampering to gain this goal, suchadack of knowledge how the

digital filter shall deviate from ideal one to produce waveforms as accurately as possible, complexity to choose
optimal sampling rate, necessity to sacrifice the accuracy for suppressing noise, etc. are analysed. Based o
learning in the input-output signal domain and controlling noise amplification by varying sampling rate, an
approach is developed for designing maximum accurate filters, which are specified only by two user’s relevant
parameters: (i) the desired noise gain and (ii)cth@inuoustime suppat. Implementation of the approach is
illustrated by designing a digital differentiator for the logarithmic derivative and a digital estimator of the
distribution of relaxation times. Simulation results are presented demonstrating that the approach allows
constructing more accurate FIR filters with predefined noise amplification and support sizes compared with
those designed by other commonly used techniques.

Key-Words: -Convolution Transform, Inversion, Deconvolution, FIR Filter, Accuracy, Noise Amplification,
Design by Learning

1 Introduction functions are of typical use in physics [2], mechanics

An important class of theoretical and practical tasks[3], material science [4], etc.
occurring in many branches of science and engineering !N the frequency domain, Eq. (1) takes the form

is related to solving a problem mathematically leading s (: .y —y (i w)K (i 2
to finding a function, which is interrelated to some (o)=Y{jo)K (jo), @)
other function by a convolution transform where capital letters are used for the Fourier

transforms. Equation (2) allows obtaining function
y(t) by the inverse Fourier transform of

€X=Cy (=] Yuk(t-u)du »
=[ ¥t Ykudu, -co<t<o, Y (jo) =X (jw) K (jo). 3)

where symbol * denotebe convolutionx(t) is some The time-domain counterpart of Eq. (3) is the
given or recorded functiony(t) is some unknown following convolution transform
function that we wish to recover, ak() is kernel.

The mentioned above task is inversion of yy=( x })(1):]‘” X U)h(t—u)du
convolution transform [1], which is known also as ; - (4)
continuous-time  deconvolution problem  The =J Xt=uhudu, -owo<t<o,
significance of the task is obvious from the fact that ;
convolution transforms are used to solve numerousvhereh(t) is theinverse kernglwhich is not always
problems of mathematical physics, and many ofbe known. Contrary, the frequency spectrum of the
classical integral transforms, such as Laplace, Fourierinverse kernel can usually be determined as the
sine, Fourier-cosine, Hankel, Meier, etc. are either inreciprocal of the Fourier transform of the direct
the form (1) or can be put into it by change of variable. kernel

In this study, we consider inversion of (1) for . _
aperiodic band- and time-unlimited functions. Such H (1@)=1/K(ja). ()
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In the case of absolute integrable direct kernelimprovement. Second, noise amplification of the
k(t), it follows from the Riemann-Lebesgue lemma filter will be controlled in a manner minimally

[5] that |K(ja))| is a decreasing function disturbing the frequency response by implementing
natural regularization based on choosing optimal
kIligg K (jo)EO sampling rate.

The resbf the work is organized in five sections.
and, consequently, |H (jw)| is an infinitely ~ Section 2 establishes the performance measures for
FIR deconvolution filters relating to accuracy of

deconvolved waveforms and noise amplification.
lim|H (jo) | . (6) The factors affecting the performance, such as
e support size, sampling rate, design methods and
Hence, inverse keméi(t) cannot be an integrable SPecifications, regularization measures, etc. are
function, and often exists in the class of the feviewed in Section 3. In Section 4, the proposed
generalized functions. approach is describped for designing FIR
deconvolution filters with the desired noise gains
producing maximum accurate waveforms for the
predefined filter supports. Two illustrative examples

. : . of designing a digital differentiator for the
frequency responsét j¢ producing output signal logarithmic derivative [6] and a digital estimator of

y() in response to input signa(t). The ideal he gistributions of relaxation times [7,8] are

deconvolution filter has infinite support, and its key presented in Section 5. Here, the performance of the
feature is infinitely increasing magnitude response (6)'designed systems is compared with that of FIR filters
which is responsible for ill-posed nature of . nciricted by some other commonly used

deconvolution. _ _techniques. Section 6 contains conclusions.
The above _fllterlng mod_el estab_llshes a theoret_lcal Part of the results presented herein was originally
basis for solving the continuous-time deconvolution reported in the conference [9].

problem by finite impulse response (FIR)
deconvolution filters, which may be presented in the
following non-causal form:

increasing function

According to Eq. (4), inversion of transform (1) can
be regarded as a filtering problem with &ieal
deconvolutiorfilter having impulse respong&t) and

2. Performance of Deconvolution
(N-1)/2

. Filters
mr) = N XmT-nT), 7
y(mr) n;;l)/i@ X ) @ Traditionally, the performance of frequency-selective

_ _ ) . FIR filters, such as lowpass, bandpass, highpass filters,
where T is sampling period, anti(nT) is impulse gt [10], intended for removing some unwanted
response containinlg non-zero coefficients. frequency parts or extracting some useful parts of a
_ However, implementing inversion of (1) by FIR ggna) is defined in terms of the deviation (i.e. the
filters for real — noisy, finite length (truncated), error) petween some desired frequency response and
discretely sampled datasets often gives disappointingpa achieved by the designed filter. This performance
results manifesting as inaccurate and bursty inverteqyaasure is unrelated to data to be processed and

(deconvolved) waveforms, whose application for genends mainly on the filter length (i.e. the number of
physically relevant and sensible solutions may befier coefficientsN). In general, the longer length is,
quite ambiguous. the higher is the performance.

The presented paper is devoted to improving the  Dye to the unlike objective posed here — to produce
performance of FIR deconvolution filters for inversion deconvolved waveforms as accurate as possib|e with
of convolution transforms in order to attain controllable noise amplification, the deviation between
deconvolved waveforms as accurate as possible witlhe desired frequency response and that of the digital
controllable noise amplification of the filter for a filter is insufficient and two performance aspects —
user’s available input data. deconvolution accuracgndnoise amplificatiorshall

To achieve this objective, first, the digital filter be controlled.
will be adapted to available input data. Because
design of a filter producing deconvolved waveforms
as accurate as possible data dependent problem 2.1 Deconvolution accuracy
adaption of the filter to the available input data We propose to defindeconvolution accuracyhrough
promises some potentialities for the performancethe accuracy of the deconvolved waveforms likewise
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to the measurement and test accuracy in thebandpass, highpass, etc.) filters [10], because
metrological documents [11-13] ascldseness of  condition |H (jo) <1 is typically fulfilled resulting

%%f;g?tan%em:z; Sensceeq?)?rt]rcuee v(\)/;vg’feocﬂ?t?(\alowe% S<1 according to the Parseval's relation. Contrary
9 to this, square integration (9) of increasing

theoretical waveforny(t) established by Eq. (1) or .

(4) will be used as true one for the definite referencermjgmtUOIe response (6) over frequency band
signal x(t). A deconvolutionis said to be more Q=[-z/T, z/T] (11)
accurate when it offers a smalleteconvolution

error, which will be expressed as mean squared erroextending wheril' decreases, results th&,, 6 — «©
between filter outpufy(mT) and true outpug(mT) for whenT — 0.

definite noiseless reference signal The Parseval's relation shows that noise
. amplification or more generally the degree of ill-
E =/ &Z[AYmD—XmT)]Z. (8) posedness and ill-conditioness depends on the

sampling rate. Two noise gair&e, and S, give
simple means to ascertain whether the observed
noise effect is an essential feature of the theoretical
structure of a deconvolution process or it comes
purely from a discrete-time algorithm used.

2.2 Influence of Noise Above noise characterization is valid for white

Noise effect of deconvolution filter can be ; . o
. ) : . noise [10]. For coloured noises, the characterization
characterized by various imprecision measures of the

deconvolved waveforms, such as SNR (signal—to—ShoUIOI be appropriately modified.

whereK is length of a deconvolved waveform.

noise ratio) standard deviation, variance, etc. In this Design Regularization Inversion of
study, however, following the suggestion in [14-16], e measures transform (1)
noise influence will be quantified in terms pbise | T
gainsshowing how the noise varianeg of signal to Inherent > FIR
Il-posedness | deconvolution
be processed is transmitted to the noise variasrjcef o filter
deconvolved signal : J,
_Dewatlon f_rom
S=07l0:. e
The advantage of such choice is a possibility to Sampling - totesign
quantify ill-posed nature of both a deconvolution | period T = < criteria
problem and a deconvolution filter. Thus, the degre I _Pee:‘;g;"éance:
of ill-posedness of the deconvolution problem will be - noise gain S =
calculated by the theoretical noise gain determined Filter lengih 1, 1 reguitzation
by the Parseval's relation [5,10] from the ideal 7
frequency response L~  Potential
. . i S_upport performance
S =T/@27)[ |H(jo)[ do, ©) 4 o
whereas the degree of ill-conditioness of | mamne 1 9: 1. Factors affecting the
deconvolution filter will be measured by the L input data I performanc_e of_a FIR
experimental noise gain calculated through the fiter deconvolution filter.
coefficients
S,,= 2 h*(nT). (10) 3 FactorsAffecting the Performance
" There are numerous factors affecting the
Noise gainsS>>1 are responsible of the ill- peformance of a deconvolution filter in rather

posedness of a deconvolution problem and the ill-complex and conflicting mannebetween which an
conditioness of the algorithms designed. Thus, noiseoptimal trade-off has to be attained. In pure filtering
amplification, as a rule, is not a problem for the sense, the performance of a FIR deconvolution filter
conventional frequency-selective (lowpass, depends on the filter lengthand sampling period
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(Fig. 1), and is determined by the design a) |H{jo)]

specification defined, the design method used to find gy
the filter coefficients, as well as the regularization
measures exploited to minimize noise amplification.
However, to solve a particular deconvolution
problem, the filter shall be compatible with the
available input data, which limits free choice Mf 5 :
andT. To gain a deeper understanding, the effect of —n:/T1 n:/Tz

0 /T, =T,

some factors on the performance will be analysed Frequency, ®
below. '
b) IH.jo)l
3.1. Support Size
Continuous support size of a deconvolution filter is
equal to the length of sliding window -
d=t-t=T(N-D, (12) E :
0.5 0 0.5

with which the filter slides over the input data
sequence. Thusl, shall be shorter the time interval
of available input sequence Fig. 2. Portions of infinitely increasing ideal
magnitude response corresponding to two sampling
periodsT, < T, (a) and their normalized versions (b).

Normalized frequency

D =T(M-1), (13)

whereM is number of samples of input sequence.

Physically, d; limits information accessible for :
computing an output sample, and so determines the>-2 Sampling Rate _
potential performance of a deconvolution filter. Thus, DesPite that a general recommendation [10] suggests

the support size should be long enough khaamples  © choose sampling rate according to the sampling
within it to contain information needed to calculate an (Shannon) theorem, the answer to the question how to

output sample with the desired accuracy and noisé:_hoo_se the correct samp_ling rate for_a dgconvolution
amplification. Replacement of the infinite support size filter is not as obvious as it seems at first sight be_cause
of (4) by finite one (12) is one of main reasons why theSamPpling affects on the performance through: (i) the

perfect” deconvolution cannot be achieved by FIRSInal to be processed as well as (i) the filter to be
filters. designed.

Sampling converts continuous signdl) into its
discrete-time version and loss of information between
input samples is another reason, why digital filters
cannot carry out the perfect deconvolution. Thus, for
band-unlimited signals considered here, some

promises potentially the higher accuracy of the ~." ". . . . .
deconvolved waveforms and the smaller noise gainsvmlatIon of the sampling theorem IS unavoidable In
any case. If even the correct sampling rate according

on the other hand, the larger support size, the shorter . . .
is usable output sequenci6] due to transient to the sampling theorem can be definedx@), this

responses when the first (input-on transient) and Ias]f'n eans only thak(t) can be perfectly reconstructed

nputof transien) otput samples are compued T 1 G5 SaTes, Honeuer e conec
from incomplete information containing zeros. After bing g

. . . sampling rate for deconvolution result [ 17] because
discarding these first and last output samples, & . )
ignal y(t) that we wish to recover as one, from

\‘jvsh"’i‘g']eissfa‘;'\}’fti‘t:argultggtSﬁgﬂgfﬂﬁzn'?heO?:]a'SfC\thich the effect of primary convolution (1) is
y - Samp p .removed, by definition, has the broader spectrum

sequence. In the limit case, when the support size I3han that of @

equal to the input data interval, i.e, =D, or For the digital filter, sampling limits (cuts) a

N=M, only one usable output sample can beportion of the infinitely increasing ideal magnitude

obtained. response to be approximated within frequency band

In the filtering context, support size (12) affects
the performance through the filter lenghh and
sampling periodT. For fixedd,, it defines possible
combinations ofN and T. The larger support size
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(11) (Fig. 2). This band according to the Parseval's3.4 Regularization

relation (9) establishes the inherent degree of ill-1ll-posed nature of the inversion requires that special

posedness, which, of course, will be transformed intoregularization measures [1,19,20] are used to

the actual noise amplification due to the deviationsminimize noise amplification. Despite relatively

caused by non-ideal fitting. large variety and complexity of the regularization
methods, they, in one way or another, decrease the
areas under increasing magnitude responses, usually

3.3 Design Specifications and Methods by suppressing the responses at higher frequencies,

Design techniques influence the performance through*Vhich according to the Parseval's relation (9) reduces
(i) design specification and criteria defined, and (ii) ("€ noise gains. For example, such popular
methods used to calculate filter coefficients [10], suchi€chniques as Wiener filtering and Tikhonov
as window method, frequency sampling method, "égularization can be interpreted as a cascade of the
weighted least squares design, minimax design, etc. NvVerse filter with frequency response (5) and some

Since a filter must be adapted to the intendedIOg%?fnsanégter'suggor?owtr;s Vﬁ;’éﬂﬂm rgre;gits
application, the design specification of a P ' P 9 P

deconvolution filter should be defined in the way to actually the for(_:ed dl_stortlon of the frequen_cy
produce deconvolved waveforms as accurately adesponses affecting, without doubt, deconvolution
possible. Unfortunately, such specification cannot pedccuracy unfavourably.

formulated because it is not known, how the

frequency response of a digital filter to be designed4 Proposed DeSign Approach

shall deviate from infinitely increasing ideal one to T e f fecti h f f
produce accurate waveforms, and this specification 0 summarize factors affecting the performance o
econvolution filters, a conclusion can be made that

depends on the data to be processed. Commonl
P P he following difficulties hamper to attain

used practice to consider a deconvolution filter as ved ¢ i ble-
highpass one and detailing its magnitude response8€convolved waveforms as accurately as possible:
(1) designing of accurate deconvolution filters is a

int ., stop- and transition bands [10 b
INT0 pass-, stop- an ransition pbands [ ] can pe daa-dependent problem,

rather subjective and can limit the potential - .
deconvolution accuracy already in the filter (2) itis notknown how the magnitude response of
a digital filter to be designed shall deviate

specification stage. ;
In general, it is impossible to normalize different from ideal one to produce accurate
9 ' P deconvolved waveforms,

portion_s of ideal freqqe_ncy response = to be (3) there are not unambiguous criteria for
appro>_<|mated by the_ digital - filter at different . choosing the optimal sampling rate because:
_sampllng rates (see Fig. .2) to the response that is (i) formally, the unknown signal to be found in
independent of the sampling raféor example, the deconvolution process has a broader spectrum

romalized porions It 11, 2) difer fom s, than tat 1o be processed. () the samping
Interp ging rate, on the one hand, provokes aliasing

different filters. As a consequence, a deconvolution distortions in the signal to be processed, and

filter cannot be deS|gne(_1I mdt_apendently of the on the other hand, determines the inherent
sampllng rate and the filter (impulse respo_nse) degree of ill-posedness of a deconvolution
obtained at one sampling rate, cannot be app.hed to problem, (iii) the sampling rate together with
other samplmg_ rate. An exception is d|ffe_rent|atqrs the filter length determines the continuous
(see _Sub—secnon 5.1), whose linearly increasing support size (sliding window), which, on the
magnlt_ude responses [10,18] "’.1"0\.” no_rmallza_ltlon o one hand, restricts physically information
the unity response and, so, designing differentiators in accessible for the computing an output sample

a sampling-rate invariant manner. and, so, the potential performance of a

Due to increasing magnitude responses (6), to deconvolution filter, and on the other hand,
attain maximum accuracy, it is desirable to design must be compatible to available input data
linear phase deconvolution filters as type | (dgcor (4) the accuracy shall be sacrificed for minimizing
type IV (everN) systems [10], which, contrary to type noise amplification due to ill-posed nature of
Il and 1l systems, have not a restriction that their deconvolution.
magnitude responses must be zero at end frequencies 145 overcome the mentioned difficulties. we
w=%7/T. propose a design approach that finds a digital filter
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producing waveforms as accurate as achievable for the (i) Simplicity of regularization. The natural

predefined desired noise gasieqand support size regularization is used based on finding
dy. The filter is constructed in thaput-output signal minimum sampling rate, which ensures the
domainby learning [14-16], an&;esieganddy are only desired noise gain. The difference between
design specifications. Noise amplification is controlled most of traditional regularization techniques
by varying sampling period to alter the filter length [1,19,20] and the method proposed here is that
N for the predefined, according toT=d /(N -1). the first ones minimize noise amplification at

the expense of decrease of the accuracy due to

TR distorting the frequency response at high
T, =d /N, 1) frequencies, while the latter — the expense of
decrease of the accuracy due to allowing some
\ aliasing.
\ Ny =N, +2 (i) Ease of implementation. The regularized
\ L=d./.7D algorithm is the original discrete convolution
N =304 algorithm (7) with the specifie@l andN.
T=d /(N,-1) (iv) Economical solution. The approach finds the
e ‘5, most economical solution in the sense as one
v O- with minimum N
(v) Optimal magnitude responses. Optimal flat

(ripple-free) magnitude responses around zero
Fig. 3. lterative process for searching an optimal frequency are obtained, which produce output
combination of T and N ensuring the desired noise waveforms as accurate as possible.

gain Siesired

Impulse responseh(nT) is found for a .
combination of filter lengtiN and sampling period 9  lllustrative Examples
allowed by the predefined support sidg which The developed approach has been approbated to
ersures the desired noise Qgaifesiea This design FIR filters for a wide variety of
combination ofN andT is searched by the iterative interconversions between monotonic material
procedure [14-16] based on typical monotonic functions [16]. Design by learning has been also
increase of the noise gain when sampling pefiod used to construct FIR Kramers-Kronig transformers
decreases (Fig. 3). Trial filters are designed by[21] and FIR filters for spectrum analysis and
learning for the combinations @fandN allowed by ~ synthesis [22]. Here, as illustrative examples,
Eg. (12) starting at some explicitly large (e.g. designs of a differentiator for the logarithmic

corresponding toN = 3 or¥yielding noise gain derivative [6] and an estimator of distribution of
relaxation times [7,8] will be demonstrated.
§xp < Sdesired (14)

by iterative increase of a number of coefficients 5,1 Differentiator for Logarithmic Derivative
N,=N+2 and the appropriate decrease of Ones of the most important types of digital filters are

sampling period T, =d, /(N.,-1). Once desired digital differentiators [18], which are widely used to

noise gain is reached, the iterative process is stoppe§2iculate the change rate of recorder data. An ideal
and the final values af andN are specified. ifferentiator has pure imaginary frequency response

If the desired performance cannot be ensured,H (1@)=]je [10] resulting in linearly increasing
design  specifications Sfsres 0 should be magnitude response, which, in its turn, causes
reconsidered. For example, if condition (14) cannot beinversely proportional dependence of the impulse
achieved at the first iteration, the sampling pefled ~ response to sampling period

Noise gain, S,,,
g
P
: ,d,‘
/
]

- Sampling period, T

must be increased, which requires extension of support _
sized,. HnT)=h(n)/T, (15)
_The features of the proposed approach are: where h(n) is the impulse response normalized to
() Ease of design specification. Only two unity sampling rate.
parameters — the desired noise g&igieqand In literature, differentiators usually are not treated
the _?_uzport size (sliding windowl, are a5 deconvolution filters, although differentiation is a
specified.
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typical deconvolution operation averting integration, gave the normalized coefficients listed in Table 1.
i.e. inverting convolution transform with kerrigt) in According to Eg. (10), they provide the noise gain
form of a step function. An ideal differentiator satisfies S, = 2322 exceeding the desired value (19). In line
condition (6) and according to the Parseval's relatio

(9) has theoretical noise gain "With the proposed procedure (see Section 4), support

size d, should be extended and increased sampling
S, =137 (16) period T, should be used.
heor -

FIR digital differentiators have been the subject Table 1. Coefficients of the differentiator designed
of numerous investigations [18]. A variety of by learning
methods with different design criteria, such as the —
Remez exchange algorithm [23], the window method hE1/2)=-hit/2) 1.1349626
[10], the weighted least squares method [24,25], h3/2)=-h(3/2) | -0.045064591
Taylor series [26], maximal linearity constraints
[27], hybrid optimization method [28], etc. have  powever, due to normalization  (15),
been developed. This is by no means the exhaustivgjtferentiators may be constructed in the sampling-

list. Such vast variety _of the m(_ethods c?nfirms thg—.\ rate invariant manner, arif can be found by an
fact that there is no unique solution for a “universal

digital differentiator, as well as — for a “universal’ Expression

deconvolution filter in general, and design of - T/S_$_ - 033 2322/10= 051
deconvolution filters is data-dependent problem. sired R0 B /

For dielectrics, the logarithmic derivative of the .ying from simple mathematical manipulations of
real part of complex dielectric permittivity o( [B] Egs. (10) and (15). Thus, the designed

4-point differentiator ensures the desired noise gain
(19) at T,.= 051 and requires support size

is used for estimation of the imaginary paftw ( ) d,=153. Due to non-ideal fitting,Taesirea differs
By denoting y(o) = ¢! (») and x(w)=¢&'(®) and from the sampling period coming from theoretical
introducing substitutiont =Inw, Eqg. (17) may be noise gain (16)

esired

el(w)=0¢'(w)lonw a7

rewritten as: TlheovS:lO =7 1/3/Sdesired = 057.
)(é)_a>(e )/at' (18) The designed differentiator was compared with
Suppose that a user wants to construct ad-point linear phase differentiators designed by the
differentiator with the desired noise gain Remez exchange algorithm [23] and by using
maximally linearity constraints [26,27]. The
S..s ¥ 10 (29) coefficients of these filters are given In Table 2,

_ _ while the normalized magnitude responses are shown
producing maximum accurate waveforms for the i, Fig. 4.

logarithmic derivative (17) to employ, for example,
support sized, = 1 Table 2. Coefficients of the equiriple minimax and

To attain maximum accuracy, the differentiator Maximally linear differentiators

shall be designed as type IV filter [10] with an even Equiriple Maximally
number of coefficients. So, to choose a minimum minimax linear

number of coefficientsN =4, from Eq. (12) it | hC1/2)=-h(1/2) | 1.3091930 1.1249996
follows hC3/2)=-h(3/2) | -0.13106367 | -0.04166693p

T=d /N-1)=0333 The differentiators have been tested fdreo ( )

Design of the differentiator by learning, using the corresponding to single Debye relaxation [16]

following training functions:
1

1+¢€*

X(t)=1/0+12), yt)=—2t/1+1t%)?, X€)= (20)
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representing the worst case in signal processing .. 7t y(e")
sense with maximum wide spectrum. Function (20) XE) = jm (24)
has the derivative: )
2.2t @ 1,0
Your(€) =2t—e (21) 2 | 2 A
1+e%) g 0.8l |
In Fig. 5, error curves of\ y:h( e)— y(€') are 3 061
showvn for the three differentiators operating at ?D
T=05 and T= 07 whereas the performance g o4l
parameters are summarized in Table 3. As it is seen, 3
the differentiator designed here has the highest % 0.2k
accuracy, although its performance is very close to %
that of the maximally linear differentiator. So, Z 00 : .
maximally flat differentiators should be used as the 0 /2 n

next more favourable option. Contrary, the equiriple Normalized frequency

minimax  differentiator  produces  noticeably rig 4 Normalized magnitude responses of 4-point
inaccurate waveforms and obviously is not swtabledigita| differentiators: 1 — designed by learning, 2 —

for the logarithmic derivative. equiriple minimax, 3 — maximally linear.

5.2 Estimator of Distribution of Relaxation 0’1§

Times o,o1:
As it is known [7,8], the distribution of relaxation

times (DRT) — a quantity coming also from the > 0,001;_
material science [16], is an attribute of the response s g
functions of systems (materials), whose time-domain = 0,0001[

behaviour does not comply with the simple i
exponential law. It is generally accepted that the 0,00001
impulse responses of such systems result from the

superposition of exponential processes with certain 1E-6 L
relaxation times forming the appropriate non-
negative DRT functions. DRT recovery is 0,01L

categorized as one of all the time the most

challenging and hard ill-posed inversion problems. > 000
Here, we consider DRT recovery from the real = 0,001}
part of complex dielectric permittivit’ o ¥ the utJ t
same function has been used for calculating the =~ 0:00001¢
logarithmic derivative in the previous Sub-section, 1E6L
which requires inversion of an integral transform
[7.8] e 4 2 0 2 4 6
“ d Time, t
g'(w):jLz)z—T, O<w<o, (22) _
o 1+@°t° T Fig. 5. Error curves for deconvolved waveform (21)

. o _ _ produced by 4-point differentiators: 1 — designed by
whereris relaxation time, ang(z) is the function of learning, 2 — equiriple minimax, 3 — maximally
DRT. For x @ )= ¢’ @) and substitutions linear.

t=Inw andu=-Inr, (23) The inverse kernel for transform (24) exists in the
class of the generalized functions. To the best of our
Eq. (22) can be converted into the following knowledge, its analytic expression is not known at
convolution transform present, however, according to (5) one can derive its
Fourier transform representing the frequency
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response of ideal DRT estimator [7,8] to Cole-Cole relaxation model [29]. In Fig. 7(a), the
_ magnitude responses are shown for the filters obtained
H (w)=]j lr sh@zal2) . (25 in the first three iterations with the highlighted areas
under the responses, whereas in Fig. 7(b) variation of
Table 3. Performance parameters noise gainS,, and erroiE is presented as functions of
T 0.5 0.7 the sampling period.
Sheor 13.16 6.71
Differentiator designed by learning
E 0.254 10* 0.00429
Soxp 10.32 5.37 °
Equiriple minimax differentiator g
E 0.0337 0.0256 &
S 13.9 7,29 g
Maximally linear differentiator §
E 0.459 10” 0.00495 £
Sop 10.14 5.28 g
=
The magnitude response for (25) (Fig. 6) is an
extremely fast growing function (pay attention on

logarithmic scale of Y axis) pointing on a high
degree of the ill-posedness of DRT recovery

problem. 1000000g R
100000 [ 10
9 10000 |

o 1000F c -

2 F S 1000} I

5 I o 01 8

Q. 100 2 100 F A

o i Z 10} 0.01

§ 10 F 1L 0,001

= 0,1 0,0001

% 1F . .

S E Sampling period, T

oql— e Fig. 7. Magnitude responses (a) and variation of the
-4 2 0 2 4 noise gain and the error (b) of trial filters in the first
Frequency, o three iterations. Shaded regions in (a) show the areas

Fig. 6. Magnitude response of ideal DRT estimator. under the magnitude responses; the solid line in (a) is
the ideal magnitude response. The solid line in (b)

As an illustrative example, consider design of @ chows the theoretical noise gain.

digital DRT estimator with the desired noise gain (19)

employing support sized = .6 Similarly to As it is seen, the magnitude responses are ripple-

differentiators, DRT estimators shall be designed asiree (flat) coinciding very accurately with the ideal one
in a region of approximately(0.3— 06)Q2 centred at

linear phase systems of type IV [10] to attain _
maximum accuracy. The magnitude responses ofero frequency. The areas under the magnitude
DRT estimators cannot be normalized to unity responses increase significantly with decreasing the

sampling rate, so, the estimators have to be designegampling period causing great augment in the noise
at the specified sampling rates. gain. Due to the non-ideal fitting, the experimental

According to Eq. (12), minimum filter length noise gain is smaller than the theoretical one. The
N =4 with sampling periodT, = Zhall be used in augment in the noise gain, however, is accompanied
N . , , by favourable effect of approximately the same
the first iteration, whileN,= 6and N, = 8 with . . :
_ decrease in the error. It is interesting to note that the
T,=12 andT,= 0857respectively must be chosen error E  decreases approximately  inversely
at the second and third iterations. The estimators wergproportionally to the noise gai@ in accordance with
designed by using the training functions correspondingthe relationshipE~ 0.1/ S.
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The 6-point filter obtained in the second iteration Fig. 9. However, despite the relatively good fit and

has noise gair§,,= 103Satisfying condition (19), acceptably low noise amplification, the estimator

so, it could be taken as the maximum accuratedoes not work well. In Fig. 10, the waveforms are

estimator ford, = 6 The coefficients of this filter compqred fqr an asymmetric DRT obtained by
x 16-point estimators designed by the frequency

are given in Table 4. sampling method (waveform 1) and learning
o ) ] (waveform 2). In contrast to excellently deconvolved
Table 4. Coefficients of 6-point DRT estimator waveform 2, waveform 1 is biased and contains
hE1/2)=-h(1/2) -2.25364 regions with physically senseless negative values at
hE3/2)=-h(3/2) 0.577504 small (not shown) and large
h5/2)=-h(5/2) -0.0621334 100
o
| | e Bef| o
Experiments have been carried out for designing | Sun= 208
DRT estimators also by the frequency sampling o 60F
method [10]. However, they showed that the g I
frequency sampling method does not allow obtaining 2 40
really working DRT estimators for the reason that 5 .|
the method cannot provide sufficiently good fit of § 201

the fast growing magnitude responses for the support ol = g
sizes usable in practice. _ 4 2 o 2 4

F|g. 8 shows_ the magnitude responses of 8-pq|nt Frequency, o
estimators designed by the frequency sampling _ _
method and by learning (this is the filter obtained atFig. 8. The magnitude responses of 8-point
the third iteration above). Contrary to the learning €Stimators: 1 — designed by the frequency sampling
method, the frequency sampling method generates &€thod, 2 — designed by learning. The solid line
filter with large ripples resulting in the deconvolved Shows the ideal magnitude response.
waveforms, which have little in common with the
true solutions. At the same time, noise gain of the
filter is approximately 7 greater to compare with the
estimator designed by learning.

A conclusion can be made that 8 coefficients are
insufficient for the frequency sampling method to
provide sufficiently good fit. Unfortunately, there is
no way out of the situation for the fixed support size.
Increase of a number of filter coefficients
decreases sampling period which according to
(11) expands bang? and so the portion of the fast
growing ideal magnitude response to be
approximated by the digital filter. Frequency, o

The fitting quality may be improved by
approximating the smaller portion of the fast
growing ideal magnitude response with the larger
number of coefficients, which requires increasing
sampling period™ and extending support sidg For

example, _ at T= 167 (which fimits the noise Unfortunately, none of these 16-point estimators is
amplification to the levelS,,, < 1Pand N=16  ppjicable in practice due to unrealistic large support
requiring the support size size. One has to remember that the ‘time domain’ for

3 DRT estimators according to (23) relates to the
d, = 2505, (26) logarithmic frequency scale

N=16, T=1.67
S, =6.4

exp1 ™

S,...= 4.8

exp2 ™

Magnitude response

Fig. 9. The magnitude responses of 16-point
estimators: 1 — designed by the frequency sampling
method, 2 — designed by learning. The solid line
shows the ideal magnitude response.

the frequency sampling method generates an

estimator with magnitude response 1 shown in ~t-t=ho -ho =i/o)
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resulting in sample and, so, the potential performance of
a deconvolution filter, and on the other hand,
o, lo_=expd,) must be compatible to available input data,

(4) the accuracy shall be sacrificed for
minimizing noise amplification due to ill-
posed nature of the inversion.

To overcome the mentioned difficulties, a design

o, o = expRO05r 757 1€ = 1088decades.  approach has been developed based on learning in

input-output signal domain and controlling noise

amplification by varying sampling rate, which allows

and transforming the support size (26) into one
practically unattainable on the linear scale

012 generating maximum accurate FIR filters for the
0.08 prescribed noise gains and support sizes.
Ol As examples, designs of a digital differentiator for
= the logarithmic derivative and an estimator of the
= 0.04 distributions of relaxation times (DRT) have been
demonstrated by the developed approach. It has been
0.00F found that a common feature of the filters producing
T accurate waveforms is flat (ripple-free) magnitude
00T 001 o T T M0 00 000 responses around zero frequency. The differentiator

Relaxation time, designed by the proposed approach demonstrates the
, .. higher accuracy and the lower noise gain over the filter
Fig. 10. DRT waveforms deconvolved by 16-point .qngircted by the Remez exchange algorithm,
estimators: 1 — designed by the frequency sampling,,yever, gives approximately the same performance
method, 2 — designed by learning. The solid liné 55 the maximally linear differentiator. It has been
shows the true waveform. ascertained that the frequency sampling method does
not allow obtaining really working DRT estimators
due to inability to ensure sufficiently good fit of the
6 Conclusions fast growing magnitude responses for the support

Inversion of convolution transforms by FIR INtervals accessible in practice.

deconvolution filters has been considered from the
perspective attaining deconvolved waveforms with the
highest possible accuracy for user's predefinese ~ Acknowledgements
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