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Abstract: — This paper evaluates the performance of fractal based variable step-size LMS (FB-
VSLMS) agorithm on the estimation of multipath fading channel for nonstationary process
transmission. The agorithm exploits the statistics of the nonstationary process and uses non-diagonal
step-size matrix to design an adaptive LM S filter in order to estimate slow fading correlated Rayleigh
channel, in particular, asymptotically stationary AR channel and Jakes channel. Analytic expressions
of steady-state mean-square weight error (MSWE) and optimum step-size parameter are computed for
these channels. The analytical expression of optimum step-size would enable reliable channel
estimation in rea time. Simulation results are compared with analytic expressions developed in this
paper and are shown to agree with good conformity.

Keywords:- Rayleigh fading channel, channel estimation, variable step-size LMS agorithm, nonstationary
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1 Introduction these studies have first used wavelet analysis

In mobile radio communication, estimation of a filtering, designed adaptive filter for each of the
time-varying channel is an area of active research. subband and then, computed the inverse wavelet
In a wireless channel, channel characteristics vary transform to restore the signal [10-11]. As a

with time due to multipath fading. Thus, it is  Cconsequence instead of designing one adaptive
important for any LMS based algorithm on channel filter, there is a need to design a bank of adaptive

modeling to track the timevarying channel filters, one corr&epondin_g to each subband. Also, the
characteristics. Multipath fading has two effects: processing overhead increases because of the
large-scale fading due to motion over large areas computation of forward and inverse wavelet
and small-scale fading due to small changes in transform, WhICh. is a critical issue in real time
position [1]. While large-scale fading is more applications. This drawback provides us the
relevant for cell-site planning, small-scale fading is motivation for exploring a channel estimation
more relevant for the design of efficient strategy that is naturaly suited for a class of
communication system such as channel equalization nonstationary signal transmission.
[2]. One of a very useful timevarying channel In [15], Gupta et. . presented an fBm based
model in wireless communication is the Rayleigh variable step-size LMS (FB-VSLMS) agorithm for
channel model that is based on small-scale fading ~ tracking signals from aclass of Gaussian 1/f” family
[2]. In this paper, we have considered the small- of fractal signals, namely 1° order fractional
scale fading effect caused by a randomly time Brownian motion, that are inherently nonstationary.
varying channel that leads to slow fading. In this paper, we have investigated the performance
There have been a number of research studies on of this algorithm to estimate asymptoticaly
the estimation of multipath fading channel [3-9]. stationary AR channels and Jakes channel that are
However, most of the research studies have examples of Gaussan Wide-sense Stationary
considered stationary signal transmission over these Uncorrelated Scattering (WSSUS) channel model
channds. Some sudies have considered [19, 20]. Following are the salient features of this
transmission of 1% order fractional Brownian motion work: 1) we deal with multipath channel estimation
(nonstationary process) over time invariant and for a specific class of Gaussian family of
time-varying channels [10-11]. Because the nonstationary sugnglsasmput to the_c_hannel. Instead
orthogonal wavelet transform is assumed to mitigate of processing the input signal to mitigate the effect
[12-14] the nonstationary attribute of the signal, of non-stationarity and designing multiple adaptive
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filters in the wavelet domain, we exploit the
statistics of the nonstationary process to design a
single adaptive variable step-size LMS filter for
channel estimation; 2) we use a non-diagonal step-
size matrix which is simultaneously diagonalizable
with the auto-covariance matrix of the input signal
vector in the decoupled weight vector space; 3) we
compute analytical expression of optimum step-size
that would enable reliable channel estimation in rea
time; and 4) the available algorithms compute the
range of step-size parameters by assuming the input
signal to be dstationary and ergodic while the
statistical properties of the fractal signals required
for the proposed fractal-based VSLMS (FB-
VSLMS) agorithm can be completely characterized
by estimating the single parameter i.e., the Hurst
exponent.

The paper is organized as follows. In section 2,
we review the fBm based variable step-size LMS
(FB-VSLMYS) dgorithm in brief. In section 3, we
present the analysis to estimate time-varying
channels using FB-VSLMS agorithm. We aso
compute the expressions of steady-state mean-
square weight error (MSWE) and optimum step-size
in this section. Section 4 presents numerical results
to validate the anaysis. Simulation results are
compared with analytic expressons derived in
section 3. In the end, some concluding remarks are
presented in Section 5.

Notations: We use lowercase bold letters and
uppercase bold letters to represent vectors and
matrices, respectively. The scalar variables are
represented by lowercase itdlicized letters. In
addition, (-)* denotes Hermitian conjugation of a
vector or a matrix, ()" denotes the transpose of (),
Tr(-) is used to denote the trace of (-), and E()
denotes the expectation operator.

2 Brief Review of Fractal Based
Variable Step-Sze LMS (FB-VSLMS)
Algorithm

The am of this section is to present the FB-
VSLMS dgorithm in brief [15]. To this end,
consider an adaptive linear combiner (ALC) of Fig.1
which is used to estimate the desired signal d(n).
Theinput to the ALC isasignal x(n) = [x(n) x(n-1)

. X(-N+1)]", where x(n) represents a sample
function of a discrete-time fractional Brownian
motion (fBm), also known as a fractal, with Hurst
exponent (H) belonging to the range O<H<1 [16].

The weight vector update process of the LMS
agorithmis given by

w(n+1) =w(n) + a(n)x(n)e*(n), 1)
where w(n) = [wo(n) wy(n) .... wna(n)] " isthe weight
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vector of length N of ALC, e(n):d(n)—a(n) is
the output error, d(n)=w* (n)x(n) is the ALC
output and a(n) is the agorithm step-size matrix.
Because the input process is non-stationary; the
step-size matrix used is afunction of n. Here, it isto
note that a(n) is a non-diagona matrix and is
chosen to be simultaneously diagonalizable with the
auto-covariance matrix R(n) of the input signal [15].
Thus, the same ordered orthonorma basis that
diagonalizes the auto-covariance matrix R(n) of the
input signal diagonalizes the step-size matrix o(n)
[15].

\\-'nin}‘
x(n) )
P
"\\'1 (n), ..'\_ din}
x(n-1) "'lr: S .’ '
D [w,
x(n-j) - “‘
S
x(n-j-1) A s ;
Sy (n) / LMS
Wi+1in algorithm

WN-14V) x"f
%,
o M

x(n-N+1}
Fig.1: Adaptive Linear Combiner

Following assumptions are used in the FB-VSLMS
agorithm:

ASl) The step-size matrix can be diagonaized
using a unitary transformation that also diagonalizes
the auto-covariance matrix of the input signal. This
impliesthat

a(N)=QA(NQ", &)

where A(N)= diag{ a1(n), ax(n),...., an.1(n), an(N)}.

This matrix Q is an orthogona matrix that
diagonalizes the auto-covariance matrix R(n) of the
input signal. Because of the specific choice of a(n)
as stated above, it transforms the filter co-ordinate
space such that update of one weight coefficient
does not affect other weight coefficients [17]. The
diagona matrix Ay(n) defines the step-size
parameters to be used with different weights in this
transformed space and transforms to a(n) in the
original filter weight co-ordinate space using Q in

).

AS2) x(n), v(n) and ey(n) are independent, where
v(n) is the deviation in weights from the optimum
and ey(n) is the zero mean Gaussian error at the
minimum point.

At the globa minima point, Wiener-Hopf solution
for the optimum weight vector w- is given by
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R(mw- = p(n),
&(n) =d(n) —w:x(n),

3
and 4
where R(n) = E[x(n)x*(n)] is the auto-covariance
matrix of the input signal vector x(n), and
p(n)=E[d(n)x*(n)] is the cross correlation vector of
the input signa vector x(n) and the desired signal
d(n).

To simplify for R(n), the algorithm uses the
theorem proposed on the structure of auto-
covariance matrix of discretetime fractiona
Brownian motion [18]. This theorem, for ready
reference, is reproduced below.

Theorem 1. The N x N auto-covariance matrix
R(n) of adiscrete-time 1% order fractional Brownian
motion, with 0O<H<1, admits the following
representation:

R(n) = Q(N)A(MQ'(n)

For large n, R(n) can be approximated as R(n) such
that

R(n) = QAMQ, )
where Q(n) = Q isaconstant orthogona matrix
and A (n) = diag{is Aa...... Ans, An(N)} for large
n.

Note that al these eigenvalues of R(n) are
independent of the time index n for large n except
for An(n). All these eigenvalues depend on the Hurst
exponent H characterizing the discrete-time
fractional Brownian motion. The largest eigenvalue
is afunction of time index n and Hurst exponent H.
This eigenvalueis modeled as [18]

(i) forH<Error!,
N-1

2
Ay () :UZH{ZNnZ“ +2Hn?"IN(N -1) —%Zi(N —i)ZH}
i=1

(ii) for H>Error!,

2
A (N) = UTH[anZH +2HNZH NN —1)]
2 N-1 2
OH | 2 NN _iy2H 2 2H-2 N(N“-1)
+ -2 SiN-)2H +2H %n RS
> { N D i(N-i)

= 12
(6)
with o> = Errorlasgivenin[16].

From the above theorem, we note that the structure
of auto-covariance matrix of the input fractal signal
depends only on the Hurst exponent of the input
signal. Thus, unlike other VSLMS agorithms,
signal satistics in FB-VSLMS algorithm are
estimated using a single parameter H. This helpsin
choosing step-sizes for different weights of ALC.
All the time-invariant eigenvalues of R(n) are
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tabulated in [18] that can be selected without any
computation while the last time-varying eigenvalue
can be computed using (6). Thus, the valid ranges of
al sep-size parameters are determined by
estimating only the Hurst exponent H of the input
fractal process. The fixed unitary matrix Q are also
tabulated in [18] for different sizes of the auto-
covariance matrices and is available for ready
reference. The same unitary matrix is used to form
the step factor matrix a(n) in (AS1) to be used in the
proposed FB-VSLMS agorithm for channel
estimation.

For the adaptive linear combiner in Fig. 1, it is
shown in [15] that the steady state is achieved if

0< g < 2, forj=1,...,N-1. (7)
Aj
For j=N, the condition for steady state is given by
| 1-an(MAn(n) | < 1 )

and an(n) = Error!, wherebisaconstant. 9

Equation (9) imposes time-varying constraint on
an(n) whereas the constraints on remaining step-size
parameters in the decoupled weight vector space are
time-invariant as is evident from (7). The selection
of step-size parameters ¢;'s is very critical for the
LMS algorithm. Inappropriate «'s will result in
divergence from the steady state solution because
one eigenvalue is increasing as a function of time
index n.

The next section discusses the MSWE analysis
under steady state for estimation of frequency
selective randomly time-varying channels.

3 Estimation of Frequency Selective
Randomly time-varying channels

In this section, we first present the system model
for channel estimation and then proceed with the
analytic computation of MSWE under steady state.
Consider a discrete-time channdl estimation model
shown in Fig.2.

The desired signal d(n) isan observation at the
time index n that can be represented as

d(n) =w* (n)x(n) +c(n) , (10)
where ¢(n) denotes a zero mean Gaussian channel
noise with variance o2, x(n) = [x(n) x(n-1) .... x(n-
N+1)]" represents channd input signal (or the
transmitted signal) that is a discrete-time fractional
Brownian motion with Hurst exponent H belonging
to the range O<H<1, and w(n)=[wy(n) wi(n).....W.
1(n)]" is the channel weight vector of length N.

From Fig.2, the LMS estimate of channel w(:),
denoted by w(-), at timeindex nis given as

w(n+12)=w(n) +a(n)x(n)e* (n), (11)
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where a(n) is the non-diagonal step-size matrix that
is simultaneoudly diagonalizable with the auto-
covariance matrix R(n) of the input signa (as
discussed in Section-2) and e(n) denotes the
estimation error a timeindex nand is given as

e(n) =d(n)—d(n). (12
From Fig.2, the estimate of desired signal d(n)is
given by

d(n) = W* (nx(n). (13)
[I\Ioisc I
[etn)
. . P
J Channel | ,‘"/ I \:.
wi(n)
din}
» .tk
Data [ Estimated Channel din)’ 1)
x(n) | win) | =N/

[ e(n)

Figure-2: Channel Estimation Model

On substituting (10) and (13) in (12), we obtain

e(n) = w* ()x(n) +c(n) —w* (n)x(n) .~ (14)
Define weight error vector as v(n), where
v(n)dif w(n) —w(n). (15

For the channel estimation model of Fig.2, we use

one more assumption AS3 stated as below.

AS3) The sequence {c(-)} is a zero mean, white-
noise stationary  process, datigticaly
independent of {x(-)} and {w()}.

3.1 Computation of Analytic Expression for
Mean Square Weight Error
The performance of the channel estimation model
is measured with respect to the minimum mean
square weight error resulting from the error between
actual channel weight vector and its estimated value.
In this sub-section, we am to compute the mean
squared weight error to assess the performance of
FB-VSLMS agorithm in channel estimation.
Define mean squared weight error (MSWE) D(n)
as
D(n) = Tr{K (n)}, (16)
where K (n) is the auto-covariance matrix of the
deviation in weight vector v(n) and is defined as
K (n) =E[v(n)v"(n)] - (17)
On subgtituting (14) and (15) in (11), the weight
vector updating process of the LMS agorithm is
given by
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w(n+1) =w(n) + a(n)x(n)x* (n)v(n)

+a(n)x(n)c* (n) (18)

It is shown in (A.28) of Appendix-A that under
stationary conditions, the mean square weight error,
MSWE at timeindex nis

1 2
D(n) = ) (e (M) + 2 JTr{AL ()]

-1
+ nZ(l—y)kTr[RW(kﬂ) “Ry (k+2)]
k=0

+ 1 TRy (O - Ry @]

(1-7)
(19)
where Jo, (n) is the excess mean square error,
Ry (K) = Elw(mw* (n+ k)]
and A(MA, () = (20)

with y as a scalar step-size parameter.

For a discretetime Wide-sense Stationary
Uncorrelated Scattering (WSSUS) channel [1, 19,
20], the discrete multipath intensity profile is given
by adiagonal matrix as below:

Ro(7)p3 0 oo 0
0  Ru)pf O
Rw(z) = ) 0
0
0 . . 0 R-1(0)p?
(219)

Assuming that the channel coefficients have the
same auto-correlation function R(z)

TR, (9] = 2R, (21b)
where o = p2 +....+ p?_,is the channel gain (for
normalized channd &;,°=1).

On substituting (21b) in (19), we obtain
(M) = 2t Dex (0o 1A )]

n-1

+ 3 (- y)Ko2 [Rk+1) - R(k + 2)]
k=0
+ i) o2 [RO) - RO (22)

In the following subsection, we compute the
analytic expression for optimum step-size parameter
for two channel models. Because the use of MSE
and MSWE is equivalent for step-size optimization
[4], we focus only on MSWE to evauate the
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performance of the proposed approach of channel
estimation.

3.2 Mean Square Weight Error and
Optimum FB-LM S Step-Size Parameter for
Frequency Selective Time-Varying Channels

In this subsection, we analyze MSWE for two
channel models, namely, the class of asymptotically
stationary AR processes [3-4, 20-21] and the Jakes
model [19-20, 22-23]. These channds are important
because small-scale fading Rayleigh channels are
generaly characterized by these channel models.
The Jakes model and AR process channel model are
examples of Gaussian WSSUS channel where each
tap is uncorrelated. The individua taps are modeled
with Rayleigh distributed amplitude and uniformly
distributed phase between —z to z.

First, let us consider the class of asymptotically
stationary AR channel model. For an AR process
channel, taps are generated via an AR process and
have spectrum shape defined by Doppler spread
profile[3].

3.2.1 Asymptotically Stationary AR Process
Channel Model

The autocorrelation function associated with an
asymptotically AR process of order M, &fter its
transient period, can be expressed as [21]

%aaR(l—i)=0v 120 (23)
i=0
and R(k)=%ci P (24)
i=1

where a’s are AR parameters with ay=1, ¢’s are
constants, and p's are roots of the coefficient
eguation

1+ alz‘1 -2

varz2+.amz M =o0. (25)

It is to note that for asymptotic stationarity of an
AR process |pi|<1 for al i and because step-size
parameter (y) is aso smal in applications of
wireless communications [4], we assume

(1y) pi| < 1 for all i. (26)

Because we know that f\(n)A(,L (n=H#, (27)

E-ISSN: 2224-3488

234

Anubha Gupta, Shivdutt Joshi

2 0 0
A
ya
° % R )
TrA,(M]=Tr . 0 _
0 L0
AN
0 Y
An ()
The expressionin (28) simplifies as below:
Tr[Aa(n)]= Z— (29)

i=1 Ai
with the largest eigenvalues An(N)— oo and hence,
1An(n) —O0.

On substituting (24) in (22), and using (26), (28),
and (29), we obtain MSWE as given below [24]:

7=Jex(n)+002; N 1

2(1-7) 21;

O'vval(l pl) .
7) (1 7/)2p|

D(n) =

(30)
where Jex (n) = Tr[K (n)R(N)].

The average excess mean square error can be easily
shown to be bounded between [21]

lminD(n) < \]ex (n) < j*maxD(n) (31)

On considering the worst case condition for Je(n)
and using the upper bound A, D(n)of (31) in (30),
we obtain

VA

max o 1 _m“i
b Ly

1 i 21-7) =
+Z

oG- pi)

S(L-7)-2-7)p

(32)

N
As time index n increases, ﬂmaxzi—ﬂ and
i=1 74
therefore (32) can be rewritten as
def 2 N
D(n7) = D =~-7C Y L
A2l-7)i7 4

13 O_V%Ci(l_ pi)
TN v
AT (@A-7)-0-7)p
whereAz[l_ y ]zconstant dependent on y. (34)
2(1-y)

(33)
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Because A has to be positive, this puts a constraint
on y as below

0<y<§ (35)

In the steady state as n— oo, Ay(n)— < and hence,
Vin(n) —0. Thus, MSWE becomes independent of
time index n and is only a function of y. Therefore,
in the steady state, we can rewrite MSWE D(n,y)
using (33) and (34) as below:

ol 1. 2
D(y) =

-+ WCI 1- Pi
(2—37);/1 (2-3y) 1=

ouci(1-pi)
) '('7)pi

From (36), for an AR process of order-1, MSWE in
the steady state is given by

()~ 17 SL, ialn) (@
2-3)GF 4 (2-3)1-1-7)p:)

To minimize D(y), we differentiate D(y) in (37)
with respect to the step-size parameter (y) and
equate it to zero. Thus, for a channel characterized
by an asymptotically stationary AR process of
order-1, we find the optimum step-size parameter
(r*)in(38).

(36)

[ 1} 3 O'WCl( )
) e e
1
2
L2 | cial-p)| | 20ia0-p)5-3p)
pl' o2 N
952y
ZJ; Ai ’ ;ﬂ,
(38)

Similarly, for a channd characterized by an
asymptoticaly stationary AR process of order-2,
MSWE in the steady stateis given by

700 N_li 2 2Uwcll p|) .
P =) &7 e -]

On differentiating D(y) in (39) with respect to the
step-size parameter (y) and equating it to zero, we
obtain

Ao+ Ary + Agy” + Agy’ + Agy* = 0, (40)
where, A’ s are constants and y;’ s are the solutions of
(40).

Therefore, the optimum step-size (y*) isgiven by
=min{ D(y1), D(y2), D(y3), D(y4)} . (41)

3.2.2 Jakes Channed M odel

For the Jakes channdl model, the autocorrelation

function is given by [22-23, 25]
R(k) = Jo(24f pTK)

(39)

(42)
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where Jy(+) is the zero-order Bessel function of the

first kind, __V_is the maximum Doppler shift, v
C

is the mobile speed, A is the carrier wavelength, and

T isthe sample interval. On substituting (42) in (22),

we obtain

D(n) = 2(11_ 5 {Jex(n) +ol }Tr[Aa )
-1
+ nZ(l—y)kcrv% [Jo(2ApT(k+1)- Jo(2ApT (k+2))]
k=0
+-262[35(0)- Jo(2ApT)]- (43
1-7)

In the steady state (43) reduces to (44) as shown
below.

yoo N1
D(;/)—( “3, Zj
Z Jo(25T(k+1)- Jo (22T (k+2))]
2
02[3,(0)= 3o (2, T)]- (44)
e [30(0)— Jo (2 T))]

Because a good analytical approximation of the
Jakes model can be obtained with an AR process
[3], we use the same technique as suggested in [4] to
compute the optimum step-size parameter for Jakes
channel model. Therefore, optimum parameters for
a Jakes channel modeled as an AR process of order
M are given by (45).

a=R3'1; (1), (45)
where
1 Jo(7) Jo(z(M -1))
R Jo(7) 1 Jo(z(M -2)) |
J = : : :
Jo(z(M -1)) Jo(7) 1

ry(m) = (Jo(zm) Jo(z(m+M -D))",
and ¢ = 24fT . From the parameter vector a, we can

estimate p;’ s by solving (25), and hence estimate ¢’ s
using (46) given as below:

c=P1r;(0), (46)
1 1 1
where p_ P P2 Pm
o't et it

For a Jakes channel modeled using AR-2 system,
the optimum step-size (y*) can be caculated by
differentiating D(y) in (44) with respect to the step-
size parameter (y) and using (40), and (41) as
discussed in the previous subsection.
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In the next section, we present simulation results
on the above discussed channels. We present the
comparison of analytical and the simulated results
of MSWE as afunction of scalar step-size parameter
(y). We dso compare the analytical result of
optimum step-size parameter (y*) with the estimated
simulation results.

4 Simulation Results

In this section, we present some simulation results
to validate the theory developed in section 3 above.
We compare our analytica results of MSWE vs y
with the analytical results presented in [4]. All
experiments are conducted assuming that first 20%
samples of a block of samples are available at the
receiver as the training samples for channel
estimation. The channel coefficients do not vary
over one block (a dow fading channel) and the
channel is estimated during the training period using
the training sample data.

4.1 Simulation results on Asymptotically
Stationary AR Process Channel M odel

In the first experimental set-up, we consider two
tap channel moddl, i.e., N=no. of channel taps =2.
Channel weights at each iteration are produced by
feeding zero mean complex white Gaussian noise of
variance ¢,” as input to an AR-1 system with
parameter a;= -0.99. The parameter a; lies between
-0.9 to -0.999 for a wireless channd [3-4, 6]. The
channel SNR is considered to be variable between
5dB to 20 dB (by choosing appropriate value of
o), ow? =1 (normalized channel with unity channel
power gain), and a non-stationary input signal with
varying value of H as input to the channel. Table-1
displays parameter values for the experimental set-
up.

Fig. 3 displays MSWE vs y over asymptotically
stationary AR-1 channel for anaytical versus
simulation results. Simulations are carried out over
50 sample functions of noise, 25 sample functions
of channel with 8000 time iterations (n) for each
sample function. It is observed that the MSWE
achieved via simulation is lower than that achieved
with the analytical results. This is due to the fact
that we considered worst (or the upper bound of)
excess mean squared error from (31) in the
analytical results. Thus, our analytical results are
conservative leading to better simulation results
compared to the anaytical results.

Fig. 4 displays analytical results of MSWE vs y
over asymptotically stationary AR-1 channel with
varying variance ag2 that is used to generate channel
weights. It is observed that the performance of the
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proposed approach is better than [4] until agz

increases beyond 0.1.

Table 1. Parameter values for the experimental set-up-1
Parameters Fig. 3 Fig. 4 Fig.5 Fig. 6
N=no. of 2 2 2 2
channel taps
a; (AR 1 -0.99 -0.99 -0.99 -0.99
channel
coefficient)
Variance (o;°)of|  0.01
complex WGN
used to generate
channel weights
H (Hurst
exponent of
input signal)
Channel SNR 10dB 10dB Variable | Variable
Block length 80 80 80 80
No. of training 16 16 16 16
samplesin a
block

Variable 0.01 0.01

Variable 0.1 0.1 0.1

Fig. 5 displays MSWE vs y over asymptoticaly
stationary AR-1 channel with varying channel SNR.
We observe that the performance of the proposed
approach is better than [4] at lower SNR (at 5 dB
and 10 dB), while a 20dB SNR, [4] perform
dlightly better than the proposed approach.

From Fig. 6, we observe that the minimum mean
squared weight error is achieved with the lowest
value of H and as the value of H increases, the
MSWE curve shifts upwards. This is obvious
because as the value of H increases, the correation
in the input signal increases, while the LMS
algorithm performs best when the input signa is
uncorrdlated. The performance of the FB-VSLMS
agorithm is better than [4], until H increases
beyond 0.25.

—— Simulation Results (10dE)
10 b | —%— Simulation Results (5dB)
---#%--- Analytical Results (10dB) ]
---4--- Analytical Results (5dE) A

1 1
0 0.1 0z 0.3 0.4 0.5 0.6

107 1 L

Step Size (Gamma) ——=

Figure-3:MSWE vsy over an asymptotically stationary
AR-1 channel: Simulation versus anaytical results for the
proposed approach
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—&— Approach Used in [4] {variance=0.01)
---&--- Approach used in this paper (variance=0.01)
—&— Approach Used in [4] (variance=0.05)

---$r--- Approach used in this paper (vatiance=0.05)
—— Approach Used in [4] (variance=0.1) 2]
T ---€--- Approach used in this paper fvariance=0.1) -

|
] 0.1 0.z 0.3 0.4 0.4 0.6
Step Size (Gamma) ——=

10° 1 1

Figure-4: MSWE vsy over an asymptotically stationary AR-1
channd with varying variance agz that is used to generate
channel weights

—&— Approach Used in [4] (5dB)

---&r-- Approach used in this paper (5dB)
1ot b | % Approach Used in [4] (1048)
---%-- Approach used in this paper (10dB) ]
T —&— Approach Used in [4] (20dB) ‘.OI
2

=

---8--- Approach used in this paper (20dE)

u] 0.1 02 0.3 0.4 0& 0B
Step Size (Gamma) ——— =
Figure-5: MSWE vs y over an asymptoticaly stationary AR-1
channel with varying channel SNR

10 T T T T T

—S— Approach Used in [4]

---#-- Approach used in this paper (H=0.08) i

---&-- Approach used in this paper (H=0.1) =t

---8--- Approach used in this paper (H=0.25) S ad
(H=0.4)

T ---BF-- Approach used in this paper
2
=

0 0.1 0.2 03 0.4 0.5 0.6
Step Size (Gamma) ————»

Figure-6: MSWE vs y over an asymptoticaly stationary AR-1
channel with nonstationary input signal of varying H

From the above, it can be noted that our
conservative anadytical results are better or
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comparable to [4] under different scenarios. Also,
from Table-2, it is observed that the optimum value
of step-size parameter (y*) from simulation matches
with the analytical results obtained using (38).

Table 2: Analytical vs Simulation values of optimum

step-size (y*)

Parameters y* y* estimated
calculated via
from (38) simulations

H=0.1, channel SNR=5dB, 0.15 0.11

0,°=0.01

H=0.1, channel SNR=10dB, 0.22 0.19

0,°=0.01

H=0.1, channel SNR=20dB, 0.31 0.33

0,°=0.01

4.2 Simulation results on Jakes Channel Model

In the second experimental set-up, we consider
three tap (N=no. of channel taps =3) Jakes channel.
For the Jakes Doppler spectrum, two values of fpT
(0.005 and 0.01) are considered. The channel SNR
is considered to be variable between 5dB to 20 dB
(by choosing appropriate value of o), o’ =1
(normalized channel with unity channel power
gain), and a non-stationary input signal with varying
value of H as input to the channel. Table-3 displays
parameter values for the experimental set-up. In [3],
it has been shown that a good analytica
approximation of the Jakes model can be obtained
with an AR process of order 2, we have considered
AR-2 system model for modeling Jakes spectrum
and used (45) and (46) to edtimate system
coefficients (a's).

Table 3: Parameter values for the experimental set-up- 2

Parameters Fig.7 | Fig.8 | Fig.9 | Fig. 10
N=no. of channel 3 3 3 3
taps

foT Variable| 0.005 |Varigble| 0.005

H (Hurst exponent| 0.1 |Variable| 0.1 0.1

of input signal)

Channel SNR 10dB 10dB 10dB |Variable
Block length 100 100 100 100
No. of training 20 20 20 20

samplesin ablock

Fig. 7 displays MSWE vs y over Jakes channel
for analytical versus simulation results for two
values of fpT (0.005 and 0.01). Simulations are
carried out over 50 sample functions of noise, 25
sample functions of channel with 8000 time
iterations (n) for each sample function. It is
observed that MSWE decreases as the value of fpT
decreases where fpT is a measure of speed of the
vehicle. This is obvious because as the mobile
moves with a higher speed, the tracking
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performance degrades. Again, we natice that the
simulation results are better than the anaytica
results because the upper bound of averaged excess
mean squared error (Je) is used in the analytica
computation of MSWE and that would be higher
than the actual value of J in sSimulations.

—S— Analytical Results (fDT=0.005)
T ---&-- Simulation Results (fOT=0.005)
—&— Analytical Results (fDT=0.01)
g ---8-- Simulation Results (fO0T=0.01)

10 1 1 1 1 1
03 0.4 0.5

Step Size (Gamma) ————»

0.6

Figure-7: MSWE vs y over Jakes channel with varying foT:
Simulation versus analytical results for the proposed approach

—S— Approach Used in [4]
---&r-- Approach used in this paper (H=0.05)

i ---8--- Approach used in this paper (H=0.1) 4
---%--- Approach uged in this paper (H=0.25) - £
---EF-- Approach used in this paper (H=0.4)

g % g

o & i
g 2

R
---Er

e
& il
[oRE-TE- 0

107} ]
I I 1

0 0.1 0z

0.4 0.5

1
0.3
Step Size (Gamma)

0.6

Figure-8: MSWE vs y over Jakes channel with nonstationary
input signal of varying H

Figures 8 to 10 present the comparative
performance of [4] and the proposed approach for
the analytical results of MSWE vs y. It should be
noted that the comparison is presented for the
conservative results of the proposed approach as
explained above. From Fig. 8, we observe that the
MSWE curve shifts upwards as the value of H
increases because the correlation in the input signal
increases. Fig. 9 displays MSWE vs y for two values
of fpT. Fig. 10 displays MSWE vs y over Jakes
channdl for varying channel SNR. From these
figures, we observe that the performance of the
proposed approach is better than [4] under different
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scenarios .Also, as the channe SNR decreases,
comparative performance of the proposed approach
improves further.

Thus, we observe that the proposed approach is
able to estimate multipath fading channel efficiently
when nonstationary signal is transmitted over the
channdl.

—&— Approach used in [4] (fDT=0.01)
1° \ ---¢--- Approach used in this paper (fDT=0.01) i
—&— Approach used in [4] (fDT=0.005)

---%-- Approach used in this paper (fDT=0.005)

0 0.1

0z

1
0.3

0.4

0.5

Step Size (Gamma)

—_—

0.6

Figure-9: MSWE vs y over Jakes channel with varying
foT: Comparison of analytical results of [4] with the proposed
approach

—%— Approach used in [4] (SNR=5dB)

---d--- Approach used in this paper (SNR=5dE)
—6— Approach used in [4] (SMNR=104B)
---&r-- Approach used in this paper (SNR=10d8)
| | =6 Approach used in [4] (SNR=204E)

& | ---¢-- Approach used in this paper (SNR=20d8)

S A

nz

03 0.4 0s
Step Size (Gamma) —————m
Figure-10: MSWE vsy over Jakes channel for varying
channel SNR: Comparison of analytical results of [4] with the
proposed approach

06

5 Conclusions

In this paper, we have evaluated the performance
of the fBm based variable step-size LMS (FB-
VSLMS) agorithm on the estimation of multipath
fading channel for the transmission of a class of
nonstationary process. We considered
asymptoticaly stationary AR channels and Jakes
channel that are examples of Gaussian WSSUS
channel model. The algorithm exploits the statistics
of the non-stationary process to design an adaptive
LMS filter in order to estimate these channels. We
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derived the analytical expressions of steady-state
mean-square weight eror (MSWE) and the
optimum step-size parameter. Thus, instead of
estimating the optimum  step-size  during
simulations, analytical expression can be used for
the same to estimate the channel reliably in red
time. Simulation results show that the FB-VSLMS
algorithm is indeed effective in estimating such
randomly time-varying channels.

Appendix-A
Calculation of MSWE
From (15), weight error vector at timeindex n+1is
v(in+) =w(n+1) -w(n+1) (A1)
Define a-priori weight vector error V() as
def
Vp(n) = w(n+1) —w(n)- (A.2)

On substituting (18) and (A.2) in (A.1), we obtain
v(n+1) =w(n+21) —w(n) —a(n)x(n)x* (n)v(n)
—a(mx(n)c* (n)
=V, (n) - a(MX(M)x* (Mv(n) - a(mx(n)c* (n) (A.3)

We use (A.3) to evaluate the auto-covariance matrix
of the deviation in weight vector, v(n), a time
index n+1 as

K(n+)=E v(n+1)v*(n+1)]
= E[v, (v (M)]- E[v, (mv* (mx(m)x* (na(n)]
— Elv, (x* (Na(n)c(n)]
— Ela(mx(n)x* (nyv(n)v;, (n)]
— Efa(mx(mx* ()v(n)v* (xn)x* (na(n)]
— Efa(mx(mx* (mv(n)x* (Na(n)c(n)]
— Ela(nx(n)v; (n)c* (n)]
— Efa(mx(mv: (mxm)x* (am)c* (n)]

— Ela(mxmx* (am|cm)|? | (A.4)

Using assumption AS2 and AS3, we can conclude
that v(n), x(n) and c(n) are statistically independent.
This further implies that v,(n), x(n) and c(n) are also
statistically independent of each other. Thus, we can
simplify (A.4) as

K(n+1) =K ,(n)-K (RN -a(RMK ,(n)

+a(MEX(n)x* (Mv(n)v* ()x(n)x* () ja(n)
+a(nNR(Na(n)c? (A.5a)
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def

where K ,(n) = E vp(n)v’,‘;,(n)], (A.5D)
~ def
Kp(n) = E[vp(n)v*(n)], (A.50)
and R(n) = E[x(n)x* ()] (A.50)
It can be easily shown that
E[x(n)x* (nv(n)v* (n)x(n)x* (n)]
= 2R(N)K (N)R(n) + R(N)Tr[R(n)K (n)]. (A.6)

Therefore, on substituting (A.6) in (A.4), we get
K(n+1) =K ,(n)-K,(nR(na(n) - a(mRMK , (n)
+ 20(NR(NK (N)R(n)a(n)
+a(MRMa(MTrRMK ()] + a(n)R(n)a(n)c?.
(A.7)
To simplify (A.7), define excess mean square error,
Jex(n)@s

Jex (0) = TAR(MK ()] (A8

On substituting (A.8) in (A.7), we obtain

K(n+1) =K (n)-K, (nR(na(n)—a(mR(nK (n)
+2a(nN)R(N)K (N)R(n)a(n) + a(n)R(N)a(n)J,, (n)
+a(nR(Na(n)c?. (A.9)

We use (A.9) to compute the analytic expression of
MSWE D('), at timeindex n+1, as
D(n+1) = Tr[K (n+1)]
=Tl , (]~ TR , (MR Ma() |- Ta@RMK , (m)]
+ 2Trla(N)R(N)K (N)R(n)a(n)]

+Tr[a(n)R(n)a(n)]{JeX(n) + 63}. (A.10)

From Theorem-1, we know that R(n) can be
approximated as R(n) for large n such that

R(n) = QA(N)Q", (A.11)

We use assumption AS1, (2), and (A.11) for large n
to ssimplify (A.10) and obtain
D(n+1) =Tr[K ()]~ 2Tr[|’<~ p(n)Q[\(n)Aa(n)QT]
+2Tr[R(n)a(n)a(n)R(N)K (n)]
+Tr[QAu(n)f\(n)Au(n)QTJ{JeX(n) +a§}. (A.12)
Because the diagonal matrix A,(n) defines the
step-size parameters to be used with different
weights in this transformed space and transforms to
o(n) in the original filter weight co-ordinate space
using Q in (2), we can write

AMAG (M) =4, (A.13)
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where y isascaar step-size parameter.
On substituting (A.13) in (A.12), we obtain
D(n+1) = TrK , ()]~ 2¢Tr[K , ()]

+ 272 TK )]+ 7TA g ()P () + 02
(A.14)
In steady state, we can assume that
D(n+1) = D(n) (A.15)
On substituting (A.15) in (A.14), we obtain
(1— 7/2)D(n) =Tr[K p(m]-27TrK p(m]
+7Tr[A, (n)]{JeX (n) + 03} (A.16)
To simplify (A.16), we compute the terms on the
R.H.S. of (A.16).
Kp(n) = E[vp(n)v’f,(n)]
= E[(w(n+1) —\fv(n))(w*(n+1) —w*(n))]
= E[(w(n+12)—w(n) + v(n)\w* (n+1) —W"* (n) + v*(n)
= E{(w(n+1) —w(n))v*(n)]+ E[v(n)(w*(n+1) —v‘v*(n))]
+K(m+2R,0)-R,®] (A.17)
To smplify (A.17), consider the terms on the R.H.S.
of (A.17).
r= E[(w(n+1) —w(n))v*(n)]
= E|(w(n+1) —w(n))(w*(n) e (n))]
= Ew(n+Dw* (n) |- Ew(n+1)W* (n)

- E[w(n)w* (n)]+ E[W(n)\fv* (n)]
~ [Ryy @ - Ry (O)]- Ew(n + i ()]
+Ew(i ()] (A.18)
Consider

Ew(n+1)#* (n)] = E{w(n+ D[’ (n-1)
+x*(n=Da(n-2)e(n-1)]}

= E[W(n +DW* (n —1)]
+ E[w(n+)w* (n—1)x(n-1)x* (n—a(n-1)]

— E[w(n=D)W* (n—1)x(n-Dx* (n—Da(n-1)]
= Ew(n+)W* (n-1)][| -R(n-Da(n-1)]
+Ry (QR(N-Da(n-1). (A.19)

Iterating (A.19) (n-1) times, we obtain
E[w(n+1)w*(n)]= Ry (QR(N—a(n-1)
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-1
+nZRW(k+ 2R(N-k-Da(n—k-1)
k=1

T -RO- an- - (A20)

j=k

Similarly,
E[W(n)\iv*(n)]: Ry @QR(N-Da(n-1)

n-1

+ > Ry (kK+)R(N—k-Na(n—k-1)
k=1
1

JTI -R(n- Da(n- )] (A.21)
j=k

On substituting (A.20) and (A.21) in (A.18), we

obtain

r= E[(w(n+1) —w(n))v*(n)]
=[R.®-R,(@]-R, (2R(N-Ya(n-1)

-1 1
—nZRW(k+2)R(n—k—l)a(n—k—l)H[I ~R(n- j)a(n-j)]
k=1 j=k

+R,, (DR(N-Dea(n-1)

+§Rw(k+1)R(n—k—l)u(n—k—l)H[I ~R(n- j)a(n-j)]

i=k

r=R,0-RrR,0]+R,®-R,(@RN-Da(n-1)

n-1
+ Y[Ry (k+D) Ry (k+2)R(n—k-Da(n—k-1)
k=1
1
JTI -R(= ja(n-p]- (A.22)
i=k
Therefore,

Trr]=Tr[Ry () - Ry (0)]+ /Tr[Ry () - Ry (2)]

n-1
+ 3 7= 7K TRy (k+D) = Ry (k + 2)]-
k=1
(A.23)

On substituting (A.23) in (A.17) and taking trace on
both the sides, we obtain

T{K p)]=2T {Ry (0) Ry, (]+ D(n) + 2T {r]

=D()+2Tr[Ry, (D) - Ry, (2)]
-1
+ nz y1-y)KTr[Ry (k+D) - Ry, (k+2)]- (A.24)
k=1

Likewise, computing for K p(N),

K p(N) = E[(w(n +1) —w(n) + v(n) v* (n)] =T +K(n)
(A.25)
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Taking the trace of (A.25), we obtain

TIK ,(m)]= D) + T {r]
=D(n)+TrR, M -R,, O)]+yT[R, ) -R,, (2)]

n-1
+ 3 - ) THRy (k+1) - Ry (k+2)]- (A.26)

k=1

On substituting (A.24) and (A.26) in (A.16), we get

(2 )D() = » P (M) + 02 Tr[A ()]
+D(n) + 2/Tr{Ry () - Ry (2]

n-1
+ 3 70K TRy (k+D) — Ry (k + 2)]
k=1

~2/D(n) - 2TH[Ryy () - Ry, (0]
~27°Tr[Ry () - Ry (2]

-1
- ZnZJ/z(l— 7/)kTr[RW(k+1) ~Ry (k+2)]
k=1

(A.27)
On simplifying (A.27), we obtain

D(n) = 2(11—}/) {Jex (n)+ a@}’rr[Aa ]

n-1
+ 3 @2 Tr[Ry (k+ D)~ Ry, (k+2)]
k=0

1
+@Tr[RW(0)—RW(1)]-

(A.29)
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