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Abstract: — This paper evaluates the performance of fractal based variable step-size LMS (FB-
VSLMS) algorithm on the estimation of multipath fading channel for nonstationary process 
transmission. The algorithm exploits the statistics of the nonstationary process and uses non-diagonal 
step-size matrix to design an adaptive LMS filter in order to estimate slow fading correlated Rayleigh 
channel, in particular, asymptotically stationary AR channel and Jakes channel. Analytic expressions 
of steady-state mean-square weight error (MSWE) and optimum step-size parameter are computed for 
these channels. The analytical expression of optimum step-size would enable reliable channel 
estimation in real time.  Simulation results are compared with analytic expressions developed in this 
paper and are shown to agree with good conformity. 
 
Keywords:- Rayleigh fading channel, channel estimation, variable step-size LMS algorithm, nonstationary 
signals. 

 
1   Introduction 

In mobile radio communication, estimation of a 
time-varying channel is an area of active research. 
In a wireless channel, channel characteristics vary 
with time due to multipath fading. Thus, it is 
important for any LMS based algorithm on channel 
modeling to track the time-varying channel 
characteristics. Multipath fading has two effects: 
large-scale fading due to motion over large areas 
and small-scale fading due to small changes in 
position [1]. While large-scale fading is more 
relevant for cell-site planning, small-scale fading is 
more relevant for the design of efficient 
communication system such as channel equalization 
[2]. One of a very useful time-varying channel 
model in wireless communication is the Rayleigh 
channel model that is based on small-scale fading 
[2]. In this paper, we have considered the small-
scale fading effect caused by a randomly time 
varying channel that leads to slow fading. 

There have been a number of research studies on 
the estimation of multipath fading channel [3-9]. 
However, most of the research studies have 
considered stationary signal transmission over these 
channels. Some studies have considered 
transmission of 1st order fractional Brownian motion 
(nonstationary process) over time invariant and 
time-varying channels [10-11]. Because the 
orthogonal wavelet transform is assumed to mitigate 
[12-14] the nonstationary attribute of the signal, 

these studies have first used wavelet analysis 
filtering, designed adaptive filter for each of the 
subband and then, computed the inverse wavelet 
transform to restore the signal [10-11]. As a 
consequence, instead of designing one adaptive 
filter, there is a need to design a bank of adaptive 
filters, one corresponding to each subband. Also, the 
processing overhead increases because of the 
computation of forward and inverse wavelet 
transform, which is a critical issue in real time 
applications. This drawback provides us the 
motivation for exploring a channel estimation 
strategy that is naturally suited for a class of 
nonstationary signal transmission.   

In [15], Gupta et. al. presented an fBm based 
variable step-size LMS (FB-VSLMS) algorithm for 
tracking signals from a class of Gaussian 1/f β family 
of fractal signals, namely 1st order fractional 
Brownian motion, that are inherently nonstationary. 
In this paper, we have investigated the performance 
of this algorithm to estimate asymptotically 
stationary AR channels and Jakes channel that are 
examples of Gaussian Wide-sense Stationary 
Uncorrelated Scattering (WSSUS) channel model 
[19, 20]. Following are the salient features of this 
work:  1) we deal with multipath channel estimation 
for a specific class of Gaussian family of 
nonstationary signals as input to the channel. Instead 
of processing the input signal to mitigate the effect 
of non-stationarity and designing multiple adaptive 
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filters in the wavelet domain, we exploit the 
statistics of the nonstationary process to design a 
single adaptive variable step-size LMS filter for 
channel estimation; 2) we use a non-diagonal step-
size matrix which is simultaneously diagonalizable 
with the auto-covariance matrix of the input signal 
vector in the decoupled weight vector space; 3) we 
compute analytical expression of optimum step-size 
that would enable reliable channel estimation in real 
time; and 4) the available algorithms compute the 
range of step-size parameters by assuming the input 
signal to be stationary and ergodic while the 
statistical properties of the fractal signals required 
for the proposed fractal-based VSLMS (FB-
VSLMS) algorithm can be completely characterized 
by estimating the single parameter i.e., the Hurst 
exponent. 

The paper is organized as follows: In section 2, 
we review the fBm based variable step-size LMS 
(FB-VSLMS) algorithm in brief. In section 3, we 
present the analysis to estimate time-varying 
channels using FB-VSLMS algorithm. We also 
compute the expressions of steady-state mean-
square weight error (MSWE) and optimum step-size 
in this section. Section 4 presents numerical results 
to validate the analysis. Simulation results are 
compared with analytic expressions derived in 
section 3.  In the end, some concluding remarks are 
presented in Section 5. 

Notations: We use lowercase bold letters and 
uppercase bold letters to represent vectors and 
matrices, respectively. The scalar variables are 
represented by lowercase italicized letters. In 
addition, (·)* denotes Hermitian conjugation of a 
vector or a matrix, (·)T denotes the transpose of (·), 
Tr(·) is used to denote the trace of (·), and E(·) 
denotes the expectation operator. 
 
2   Brief Review of Fractal Based 
Variable Step-Size LMS (FB-VSLMS) 
Algorithm  

The aim of this section is to present the FB-
VSLMS algorithm in brief [15]. To this end, 
consider an adaptive linear combiner (ALC) of Fig.1 
which is used to estimate the desired signal d(n). 
The input to the ALC is a signal x(n) = [x(n) x(n-1) 
…. x(n-N+1)]T, where x(n) represents a sample 
function of a discrete-time fractional Brownian 
motion (fBm), also known as a fractal, with Hurst 
exponent (H) belonging to the range 0<H<1 [16]. 

The weight vector update process of the LMS 
algorithm is given by 
               w(n+1) = w(n) +  α(n)x(n)e*(n),            (1) 
where w(n) = [w0(n) w1(n) …. wN-1(n)]T is the weight 

vector of length N of ALC, )(ˆ)()( ndndne −=  is 
the output error, )()()( nnnd x*w=



 is the ALC 
output and α(n) is the algorithm step-size matrix. 
Because the input process is non-stationary; the 
step-size matrix used is a function of n. Here, it is to 
note that α(n) is a non-diagonal matrix and is 
chosen to be simultaneously diagonalizable with the 
auto-covariance matrix R(n) of the input signal [15]. 
Thus, the same ordered orthonormal basis that 
diagonalizes the auto-covariance matrix R(n) of the 
input signal diagonalizes the step-size matrix α(n) 
[15].  

 
 

Following assumptions are used in the FB-VSLMS 
algorithm:  
AS1) The step-size matrix can be diagonalized 
using a unitary transformation that also diagonalizes 
the auto-covariance matrix of the input signal. This 
implies that  

           α(n)=QΛα(n)QT,                                     (2) 
where Λα(n)= diag{α1(n), α2(n),…., αN-1(n), αN(n)}.                               

 
This matrix Q is an orthogonal matrix that 

diagonalizes the auto-covariance matrix R(n) of the 
input signal. Because of the specific choice of α(n) 
as stated above, it transforms the filter co-ordinate 
space such that update of one weight coefficient 
does not affect other weight coefficients [17]. The 
diagonal matrix Λα(n) defines the step-size 
parameters to be used with different weights in this 
transformed space and transforms to α(n) in the 
original filter weight co-ordinate space using Q in 
(2). 
 
AS2) x(n), v(n) and e0(n) are independent, where 
v(n) is the  deviation in weights from the optimum 
and e0(n) is the zero mean Gaussian error at the 
minimum point.  
At the global minima point, Wiener-Hopf solution 
for the optimum weight vector w*

 is given by 
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                   R(n)w* = p(n),                                   (3) 
and             )()()( *0 nndne xw ∗−= ,                         (4) 
 
where R(n) = E[x(n)x*(n)] is the auto-covariance 
matrix of the input signal vector x(n), and 
p(n)=E[d(n)x*(n)] is the cross correlation vector of 
the input signal vector x(n) and the desired signal 
d(n). 

To simplify for R(n), the algorithm uses the 
theorem proposed on the structure of auto-
covariance matrix of discrete-time fractional 
Brownian motion [18]. This theorem, for ready 
reference, is reproduced below. 

 
Theorem 1:  The N x N auto-covariance matrix 

R(n) of a discrete-time 1st order fractional Brownian 
motion, with 0<H<1, admits the following 
representation: 

 R(n) = Q(n)Λ(n)QT(n)  
For large n, R(n) can be approximated as )(ˆ nR  such 
that 

                  T)(ˆ)(ˆ QΛQR nn = ,                             (5) 
where Q(n) ≈ Q  is a constant orthogonal matrix  
and     Λ̂ (n) =  diag{λ1, λ2,…., λN-1, λN(n)}  for large 
n. 

Note that all these eigenvalues of R(n) are 
independent of  the time index n for large n except 
for λN(n). All these eigenvalues depend on the Hurst 
exponent H characterizing the discrete-time 
fractional Brownian motion. The largest eigenvalue 
is a function of time index n and Hurst exponent H. 
This eigenvalue is modeled as [18] 
(i) for H < Error!
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with σH

2 = Error!
 

as given in [16].                                                                

From the above theorem, we note that the structure 
of auto-covariance matrix of the input fractal signal 
depends only on the Hurst exponent of the input 
signal. Thus, unlike other VSLMS algorithms, 
signal statistics in FB-VSLMS algorithm are 
estimated using a single parameter H. This helps in 
choosing step-sizes for different weights of ALC. 
All the time-invariant eigenvalues of R(n) are 

tabulated in [18] that can be selected without any 
computation while the last time-varying eigenvalue 
can be computed using (6). Thus, the valid ranges of 
all step-size parameters are determined by 
estimating only the Hurst exponent H of the input 
fractal process. The fixed unitary matrix Q are also 
tabulated in [18] for different sizes of the auto-
covariance matrices and is available for ready 
reference. The same unitary matrix is used to form 
the step factor matrix α(n) in (AS1) to be used in the 
proposed FB-VSLMS algorithm for channel 
estimation.  
    For the adaptive linear combiner in Fig. 1, it is 
shown in [15] that the steady state is achieved if 
          0 < αj < 

jλ
2 ,           for j=1,…, N-1.    (7) 

For j=N, the condition for steady state is given by 
        | 1-αN(n)λN(n) |  <  1                                      (8) 
and  αN(n) = Error!

Equation (9) imposes time-varying constraint on 
αN(n) whereas the constraints on remaining step-size 
parameters in the decoupled weight vector space are 
time-invariant as is evident from (7). The selection 
of step-size parameters αi’s is very critical for the 
LMS algorithm. Inappropriate αi′s will result in 
divergence from the steady state solution because 
one eigenvalue is increasing as a function of time 
index n.  

,  where b is a constant.         (9) 

The next section discusses the MSWE analysis 
under steady state for estimation of frequency 
selective randomly time-varying channels. 
 
3 Estimation of Frequency Selective 
Randomly time-varying channels 

 
In this section, we first present the system model 

for channel estimation and then proceed with the 
analytic computation of MSWE under steady state. 
Consider a discrete-time channel estimation model 
shown in Fig.2. 
   The desired signal d(n) is an observation at the 
time index n that can be represented as 
                    )()()(*)( ncnnnd += xw ,                    (10) 
where c(n) denotes a zero mean Gaussian channel 
noise with variance σc

2, x(n) = [x(n) x(n-1) …. x(n-
N+1)]T represents channel input signal (or the 
transmitted signal) that is a discrete-time fractional 
Brownian motion with Hurst exponent H belonging 
to the range 0<H<1, and w(n)=[w0(n) w1(n)…..wN-

1(n)]T is the channel weight vector of length N. 
  From Fig.2, the LMS estimate of channel w(·), 
denoted by )(ˆ ⋅w , at time index n is given as 
            )(*)()()(ˆ)1(ˆ nennnn xαww +=+ ,       (11) 
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where α(n) is the non-diagonal step-size matrix that 
is simultaneously diagonalizable with the auto-
covariance matrix R(n) of the input signal (as 
discussed in Section-2) and e(n) denotes the 
estimation error at time index n and is given as 
                 )(ˆ)()( ndndne −= .                               (12) 
From Fig.2, the estimate of desired signal )(ˆ nd is 
given by 
                 )()(*ˆ)(ˆ nnnd xw= .                               (13) 

 
Figure-2: Channel Estimation Model 

 
On substituting (10) and (13) in (12), we obtain 
                )()(*ˆ)()()(*)( nnncnnne xwxw −+= .     (14) 
 
Define weight error vector as v(n), where 
                )(ˆ)()(

def
nnn wwv −= .                               (15) 

 
For the channel estimation model of Fig.2, we use 
one more assumption AS3 stated as below. 
AS3) The sequence {c(·)} is a zero mean, white-

noise stationary process, statistically 
independent of {x(·)} and {w(·)}. 

 
3.1   Computation of Analytic Expression for 
Mean Square Weight Error 

The performance of the channel estimation model 
is measured with respect to the minimum mean 
square weight error resulting from the error between 
actual channel weight vector and its estimated value. 
In this sub-section, we aim to compute the mean 
squared weight error to assess the performance of 
FB-VSLMS algorithm in channel estimation. 

Define mean squared weight error (MSWE) D(n) 
as 
              { })(Tr)( nnD K= ,                                      (16) 
where K(n) is the auto-covariance matrix of the 
deviation in weight vector v(n) and is defined as 

)]()(E[)( nnn ∗= vvK .                              (17) 
On substituting (14) and (15) in (11), the weight 

vector updating process of the LMS algorithm is 
given by 

           )()(*)()()(ˆ)1(ˆ nnnnnn vxxαww +=+  
                           )(*)()( ncnn xα+                   (18) 

 
It is shown in (A.28) of Appendix-A that under 

stationary conditions, the mean square weight error, 
MSWE at time index n is 

{ } [ ])(Tr)(
)1(2

1)( 2
ex nnJnD c αΛσ

γ
+

−
=

( ) [ ]∑
−

=
+−+−+

1

0
)2()1(Tr1

n

k

k kk ww RRγ

[ ])1()0(Tr
)-(1

1
ww RR −+

γ
, 

                            (19) 
where )(ex nJ is the excess mean square error,  

)]()([E)( knnk += ∗wwRw  

and              IΛΛ α γ=)()(ˆ nn                              (20) 
with γ as a scalar step-size parameter. 

 
For a discrete-time Wide-sense Stationary 

Uncorrelated Scattering (WSSUS) channel [1, 19, 
20], the discrete multipath intensity profile is given 
by a diagonal matrix as below: 
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(21a) 

Assuming that the channel coefficients have the 
same auto-correlation function R(τ)  
          )()]([Tr 2 τσ=τ RwwR ,                                  (21b) 

where 2
1

2
0

2 .... −++= Lρρwσ is the channel gain (for 
normalized channel σw

2=1). 
 
On substituting (21b) in (19), we obtain 

=)(nD { } [ ])(Tr)(
)1(2

1 2
ex nnJ c αΛσ

γ
+

−
 

                         ( ) [ ]∑
−

=
+−+−+

1

0

2 )2()1(1
n

k

k kRkRwσγ                     

                         [ ])1()0(
)-(1

1 2 RR −+ wσ
γ

.               (22) 

In the following subsection, we compute the 
analytic expression for optimum step-size parameter 
for two channel models. Because the use of MSE 
and MSWE is equivalent for step-size optimization 
[4], we focus only on MSWE to evaluate the 
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performance of the proposed approach of channel 
estimation. 
 
3.2  Mean Square Weight Error and 
Optimum FB-LMS Step-Size Parameter for 
Frequency Selective Time-Varying Channels 

 
In this subsection, we analyze MSWE for two 

channel models, namely, the class of asymptotically 
stationary AR processes [3-4, 20-21] and the Jakes 
model [19-20, 22-23]. These channels are important 
because small-scale fading Rayleigh channels are 
generally characterized by these channel models. 
The Jakes model and AR process channel model are 
examples of Gaussian WSSUS channel where each 
tap is uncorrelated. The individual taps are modeled 
with Rayleigh distributed amplitude and uniformly 
distributed phase between –π to π.  

First, let us consider the class of asymptotically 
stationary AR channel model. For an AR process 
channel, taps are generated via an AR process and 
have spectrum shape defined by Doppler spread 
profile [3].  
 
3.2.1 Asymptotically Stationary AR Process 
Channel Model 

The autocorrelation function associated with an 
asymptotically AR process of order M, after its 
transient period, can be expressed as [21] 

        0)(
0

=−∑
=

ilRa
M

i
i ,           l ≥ 0                      (23) 

and   ∑
=

=
M

i

k
ii pckR

1
)( ,                                        (24) 

where ai’s are AR parameters with a0=1, ci’s are 
constants, and pi’s are roots of the coefficient 
equation 
        0...1 2211 =+++ −−− MM zazaza .            (25) 
 

It is to note that for asymptotic stationarity of an 
AR process |pi|<1 for all i and because step-size 
parameter (γ) is also small in applications of 
wireless communications [4], we assume 
        |(1-γ) pi| < 1              for all i.                       (26) 
 
Because we know that IΛΛ α γ=)()(ˆ nn ,            (27) 
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The expression in (28) simplifies as below: 
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with the largest eigenvalues λN(n)→ ∞ and hence, 
1/λN(n) →0. 
 

On substituting (24) in (22), and using (26), (28), 
and (29), we obtain MSWE as given below [24]: 
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where [ ])()(Tr)(ex nnnJ RK= .  
 
The average excess mean square error can be easily 
shown to be bounded between [21] 
 
         )()()( maxexmin nDnJnD λλ ≤≤                      (31) 
 
On considering the worst case condition for Jex(n) 
and using the upper bound )(max nDλ of (31) in (30), 
we obtain  
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As time index n increases, 11
1
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i iλ
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therefore (32) can be rewritten as 
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γ = constant dependent on γ.  (34) 
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Because A has to be positive, this puts a constraint 
on γ as below 
                        

3
20 << γ                                        (35) 

In the steady state as n→ ∞, λN(n)→ ∞ and hence, 
1/λN(n) →0. Thus, MSWE becomes independent of 
time index n and is only a function of γ. Therefore, 
in the steady state, we can rewrite MSWE D(n,γ) 
using (33) and (34) as below:  
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From (36), for an AR process of order-1, MSWE in 
the steady state is given by                            

      ( )
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To minimize D(γ), we differentiate D(γ) in (37) 
with respect to the step-size parameter (γ) and 
equate it to zero. Thus, for a channel characterized 
by an asymptotically stationary AR process of 
order-1, we find the optimum step-size parameter 
(γ*) in (38). 
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   (38) 
Similarly, for a channel characterized by an 

asymptotically stationary AR process of order-2, 
MSWE in the steady state is given by 
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On differentiating D(γ) in (39) with respect to the 

step-size parameter (γ) and equating it to zero, we 
obtain  
     A0 + A1γ + A2γ2 + A3γ3 + A4γ4 = 0,                  (40) 
where, Ai’s are constants and γi’s are the solutions of 
(40).    
  Therefore, the optimum step-size (γ*) is given by 
      γ* = min{D(γ1), D(γ2), D(γ3), D(γ4)}.             (41) 
  
3.2.2  Jakes Channel Model 

For the Jakes channel model, the autocorrelation 
function is given by [22-23, 25] 
             ( )TkfJkR Dπ2)( 0=                                   (42) 

where J0(·) is the zero-order Bessel function of the 
first kind, 

c
D
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= is the maximum Doppler shift, v 

is the mobile speed, λc is the carrier wavelength, and 
T is the sample interval. On substituting (42) in (22), 
we obtain 
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       ( ) ( )[ ]TfJJ Dπσ
γ

20
)-(1

1
00

2 −+ w
.                        (43) 

 
In the steady state (43) reduces to (44) as shown 
below. 

∑
−

=−
=

1

1

2 1
)32(

)(
N

i i

cD
λγ

γσγ  

 ( ) ( ) ( )[ ]∑
∞

=

− +−+−
−

+
0

00
21 )2(2)1(21

32
2

k
DD

k kTfJkTfJ ππσγ
γ w      

     ( ) ( )[ ]TfJJ Dπσ
γ

20
)3-(2

2
00

2 −+ w .                     (44) 

 
Because a good analytical approximation of the 

Jakes model can be obtained with an AR process 
[3], we use the same technique as suggested in [4] to 
compute the optimum step-size parameter for Jakes 
channel model. Therefore, optimum parameters for 
a Jakes channel modeled as an AR process of order 
M are given by (45). 
           )1(1

JJ r−= Ra ,                                          (45) 
where 



















−

−
−

=

1)())1((

))2((1)(
))1((...)(1

00

00

00

ττ

ττ
ττ

JMJ

MJJ
MJJ

J







R , 

( )T00 ))1(()()( −+= MmJmJmrJ ττ 
, 

and TfDπτ 2= . From the parameter vector a, we can 
estimate pi’s by solving (25), and hence estimate ci’s 
using (46) given as below: 
        )0(1

Jr−= Pc ,                                              (46) 

where       



















=

−−− 11
2

1
1

21

1...11

M
M

MM

M

ppp

ppp







P . 

For a Jakes channel modeled using AR-2 system, 
the optimum step-size (γ*) can be calculated by 
differentiating D(γ) in (44) with respect to the step-
size parameter (γ) and using (40), and (41) as 
discussed in the previous subsection. 
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In the next section, we present simulation results 
on the above discussed channels. We present the 
comparison of analytical and the simulated results 
of MSWE as a function of scalar step-size parameter 
(γ). We also compare the analytical result of 
optimum step-size parameter (γ*) with the estimated 
simulation results. 
 
4   Simulation Results 
   In this section, we present some simulation results 
to validate the theory developed in section 3 above. 
We compare our analytical results of MSWE vs γ 
with the analytical results presented in [4].  All 
experiments are conducted assuming that first 20% 
samples of a block of samples are available at the 
receiver as the training samples for channel 
estimation. The channel coefficients do not vary 
over one block (a slow fading channel) and the 
channel is estimated during the training period using 
the training sample data.  
 
4.1   Simulation results on Asymptotically 
Stationary AR Process Channel Model 

In the first experimental set-up, we consider two 
tap channel model, i.e., N=no. of channel taps =2. 
Channel weights at each iteration are produced by 
feeding zero mean complex white Gaussian noise of 
variance σg

2 as input to an AR-1 system with 
parameter a1= -0.99. The parameter a1 lies between 
-0.9 to -0.999 for a wireless channel [3-4, 6]. The 
channel SNR is considered to be variable between 
5dB to 20 dB (by choosing appropriate value of 
σc

2), σw
2 =1 (normalized channel with unity channel 

power gain), and a non-stationary input signal with 
varying value of H as input to the channel. Table-1 
displays parameter values for the experimental set-
up. 

  Fig. 3 displays MSWE vs γ over asymptotically 
stationary AR-1 channel for analytical versus 
simulation results. Simulations are carried out over 
50 sample functions of noise, 25 sample functions 
of channel with 8000 time iterations (n) for each 
sample function. It is observed that the MSWE 
achieved via simulation is lower than that achieved 
with the analytical results. This is due to the fact 
that we considered worst (or the upper bound of) 
excess mean squared error from (31) in the 
analytical results. Thus, our analytical results are 
conservative leading to better simulation results 
compared to the analytical results.  

Fig. 4 displays analytical results of MSWE vs γ 
over asymptotically stationary AR-1 channel with 
varying variance σg

2 that is used to generate channel 
weights. It is observed that the performance of the 

proposed approach is better than [4] until σg
2 

increases beyond 0.1. 
 

Table 1: Parameter values for the experimental set-up-1 
Parameters Fig. 3 Fig. 4 Fig. 5 Fig. 6 
N=no. of 
channel taps  

2 2 2 2 

a1 (AR 1 
channel 
coefficient) 

-0.99 -0.99 -0.99 -0.99 

Variance (σg
2)of 

complex WGN 
used to generate 
channel weights 

0.01 Variable  0.01 0.01 

H (Hurst 
exponent of 
input signal) 

Variable  0.1 0.1 0.1 

Channel SNR 10dB 10dB Variable Variable  
Block length 80 80 80 80 
No. of training 
samples in a 
block 

16 16 16 16 

 
Fig. 5 displays MSWE vs γ over asymptotically 

stationary AR-1 channel with varying channel SNR. 
We observe that the performance of the proposed 
approach is better than [4] at lower SNR (at 5 dB 
and 10 dB), while at 20dB SNR, [4] perform 
slightly better than the proposed approach. 

From Fig. 6, we observe that the minimum mean 
squared weight error is achieved with the lowest 
value of H and as the value of H increases, the 
MSWE curve shifts upwards. This is obvious 
because as the value of H increases, the correlation 
in the input signal increases, while the LMS 
algorithm performs best when the input signal is 
uncorrelated. The performance of the FB-VSLMS 
algorithm is better than [4], until H increases 
beyond 0.25.    

 
     Figure-3:MSWE vs γ over an asymptotically stationary 
AR-1 channel: Simulation versus analytical results for the 

proposed approach 
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Figure-4: MSWE vs γ over an asymptotically stationary AR-1 

channel with varying variance σg
2 that is used to generate 

channel weights 

 
Figure-5: MSWE vs γ over an asymptotically stationary AR-1 

channel with varying channel SNR  

 
Figure-6: MSWE vs γ over an asymptotically stationary AR-1 

channel with nonstationary input signal of varying H 
 
From the above, it can be noted that our 

conservative analytical results are better or 

comparable to [4] under different scenarios. Also, 
from Table-2, it is observed that the optimum value 
of step-size parameter (γ*) from simulation matches 
with the analytical results obtained using (38). 

 
Table 2: Analytical vs Simulation values of optimum 

step-size  (γ*) 
Parameters γ* 

calculated 
from (38) 

γ* estimated 
via 

simulations 
H=0.1, channel SNR=5dB,  
σg

2=0.01 
0.15 0.11 

H=0.1, channel SNR=10dB,  
σg

2=0.01 
0.22 0.19 

H=0.1, channel SNR=20dB,  
σg

2=0.01 
0.31 0.33 

 
 
4.2 Simulation results on Jakes Channel Model 

In the second experimental set-up, we consider 
three tap (N=no. of channel taps =3) Jakes channel. 
For the Jakes Doppler spectrum, two values of fDT 
(0.005 and 0.01) are considered. The channel SNR 
is considered to be variable between 5dB to 20 dB 
(by choosing appropriate value of σc

2), σw
2 =1 

(normalized channel with unity channel power 
gain), and a non-stationary input signal with varying 
value of H as input to the channel. Table-3 displays 
parameter values for the experimental set-up. In [3], 
it has been shown that a good analytical 
approximation of the Jakes model can be obtained 
with an AR process of order 2, we have considered 
AR-2 system model for modeling Jakes spectrum 
and used (45) and (46) to estimate system 
coefficients (ai’s). 

 
Table 3: Parameter values for the experimental set-up- 2 

Parameters Fig. 7 Fig. 8 Fig. 9 Fig. 10 
N=no. of channel 
taps  

3 3 3 3 

fDT Variable 0.005 Variable 0.005 
H (Hurst exponent 
of input signal) 

0.1 Variable 0.1 0.1 

Channel SNR 10dB 10dB 10dB Variable  
Block length 100 100 100 100 
No. of training 
samples in a block 

20 20 20 20 

 
Fig. 7 displays MSWE vs γ over Jakes channel 

for analytical versus simulation results for two 
values of fDT (0.005 and 0.01). Simulations are 
carried out over 50 sample functions of noise, 25 
sample functions of channel with 8000 time 
iterations (n) for each sample function. It is 
observed that MSWE decreases as the value of fDT 
decreases where fDT is a measure of speed of the 
vehicle. This is obvious because as the mobile 
moves with a higher speed, the tracking 
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performance degrades. Again, we notice that the 
simulation results are better than the analytical 
results because the upper bound of averaged excess 
mean squared error (Jex) is used in the analytical 
computation of MSWE and that would be higher 
than the actual value of Jex in simulations. 

 
Figure-7: MSWE vs γ over Jakes channel with varying fDT: 

Simulation versus analytical results for the proposed approach 

 
Figure-8: MSWE vs γ over Jakes channel with nonstationary 

input signal of varying H 
 
Figures 8 to 10 present the comparative 

performance of [4] and the proposed approach for 
the analytical results of MSWE vs γ. It should be 
noted that the comparison is presented for the 
conservative results of the proposed approach as 
explained above. From Fig. 8, we observe that the 
MSWE curve shifts upwards as the value of H 
increases because the correlation in the input signal 
increases. Fig. 9 displays MSWE vs γ for two values 
of fDT. Fig. 10 displays MSWE vs γ over Jakes 
channel for varying channel SNR. From these 
figures, we observe that the performance of the 
proposed approach is better than [4] under different 

scenarios .Also, as the channel SNR decreases, 
comparative performance of the proposed approach 
improves further.  

Thus, we observe that the proposed approach is 
able to estimate multipath fading channel efficiently 
when nonstationary signal is transmitted over the 
channel. 

 
           Figure-9: MSWE vs γ over Jakes channel with varying 
fDT:  Comparison of analytical results of [4] with the proposed 

approach 

 
Figure-10: MSWE vs γ over Jakes channel for varying 

channel SNR: Comparison of analytical results of [4] with the 
proposed approach 

 
5 Conclusions 

In this paper, we have evaluated the performance 
of the fBm based variable step-size LMS (FB-
VSLMS) algorithm on the estimation of multipath 
fading channel for the transmission of a class of 
nonstationary process. We considered 
asymptotically stationary AR channels and Jakes 
channel that are examples of Gaussian WSSUS 
channel model. The algorithm exploits the statistics 
of the non-stationary process to design an adaptive 
LMS filter in order to estimate these channels. We 
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derived the analytical expressions of steady-state 
mean-square weight error (MSWE) and the 
optimum step-size parameter. Thus, instead of 
estimating the optimum step-size during 
simulations, analytical expression can be used for 
the same to estimate the channel reliably in real 
time. Simulation results show that the FB-VSLMS 
algorithm is indeed effective in estimating such 
randomly time-varying channels. 
 
Appendix-A 
 
Calculation of MSWE 
 
From (15), weight error vector at time index n +1 is 
      )1(ˆ)1()1( +−+=+ nnn wwv                           (A.1) 

 
Define a-priori weight vector error )(p nv as 

             )(ˆ)1()(
def

p nnn wwv −+= .                     (A.2) 
 
On substituting (18) and (A.2) in (A.1), we obtain 

)()(*)()()(ˆ)1()1( nnnnnnn vxxαwwv −−+=+  
                )(*)()( ncnn xα−  
         )(*)()()()(*)()()(p ncnnnnnnn xαvxxαv −−=  (A.3) 
 
We use (A.3) to evaluate the auto-covariance matrix 
of the deviation in weight vector, v(n), at time  
index n+1 as             
   [ ])1()1()1( ++=+ ∗ nnEn vvK  
    [ ] [ ])()(*)()()()()( ppp nnnnnEnnE αxxvvvv ∗∗ −=  

[ ])()()(*)(p ncnnnE αxv−      

[ ])()()(*)()( p nnnnnE ∗− vvxxα
[ ])()(*)()()()(*)()( nnnnnnnnE αxxvvxxα ∗−  
[ ])()()(*)()(*)()( ncnnnnnnE αxvxxα−      
[ ])(*)()()( p ncnnnE ∗− vxα
[ ])(*)()(*)()()()( ncnnnnnnE αxxvxα ∗−  

   [ ]2)()()(*)()( ncnnnnE αxxα− .                      (A.4) 
 

Using assumption AS2 and AS3, we can conclude 
that v(n), x(n) and c(n) are statistically independent. 
This further implies that vp(n), x(n) and c(n) are also 
statistically independent of each other. Thus, we can 
simplify (A.4) as 
 )(~)()()()()(~)()1( ppp nnnnnnnn KRααRKKK −−=+  
          

[ ] )()(*)()(*)()(*)()( nnnnnnnEn αxxvvxxα+                      

          2)()()( cnnn σαRα+                                 (A.5a) 

where    [ ])()()( pp
def

p nnEn ∗= vvK ,                    (A.5b) 

              [ ])()()(~
p

def
p nnEn ∗= vvK ,                     (A.5c)                                                              

and  [ ])(*)()(
def

nnEn xxR = .                                 (A.5d) 
 
It can be easily shown that  
[ ])(*)()(*)()(*)( nnnnnnE xxvvxx  

[ ])()(Tr)()()()(2 nnnnnn KRRRKR += .               (A.6) 
 
Therefore, on substituting (A.6) in (A.4), we get 

)(~)()()()()(~)()1( ppp nnnnnnnn KRααRKKK −−=+         
)()()()()(2 nnnnn αRKRα+  

  [ ])()(Tr)()()( nnnnn KRαRα+ 2)()()( cnnn σ+ αRα .    
(A.7) 

To simplify (A.7), define excess mean square error, 
)(ex nJ as  

          [ ])()(Tr)(ex nnnJ KR= .                         (A.8) 
 
On substituting (A.8) in (A.7), we obtain 

)(~)()()()()(~)()1( ppp nnnnnnnn KRααRKKK −−=+  

)()()()()()()()()(2 ex nJnnnnnnnn αRααRKRα ++
2)()()( cnnn σ+ αRα .                                            (A.9) 

 
We use (A.9) to compute the analytic expression of 
MSWE D(·), at time index n+1, as 
    [ ])1(Tr)1( +=+ nnD K            

[ ] [ ] [ ])(~)()(Tr)()()(~Tr)(Tr ppp nnnnnnn KRααRKK −−=  
     [ ])()()()()(Tr2 nnnnn αRKRα+  

    [ ]{ }2
ex )()()()(Tr cnJnnn σ++ αRα .             (A.10)  

 
From Theorem-1, we know that R(n) can be 
approximated as )(ˆ nR for large n such that 
         T)(ˆ)(ˆ QΛQR nn = ,                              (A.11) 
 
We use assumption AS1, (2), and (A.11) for large n 
to simplify (A.10) and obtain 

[ ] [ ]T
pp )()(ˆ)(~Tr2)(Tr)1( QΛΛQKK α nnnnnD −=+               

              [ ])()()()()(Tr2 nnnnn KRααR+  
     [ ]{ }2

ex
T )()()(ˆ)(Tr cnJnnn σ++ QΛΛQΛ αα .   (A.12)                   

Because the diagonal matrix Λα(n) defines the 
step-size parameters to be used with different 
weights in this transformed space and transforms to 
α(n) in the original filter weight co-ordinate space 
using Q in (2), we can write 
        IΛΛ α γ=)()(ˆ nn ,                                     (A.13) 
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where γ is a scalar step-size parameter. 
 
On substituting (A.13) in (A.12), we obtain 
    [ ] [ ])(~Tr2)(Tr)1( pp nnnD KK γ−=+  

               [ ] [ ]{ }2
ex

2 )()(Tr)(Tr2 cnJnn σγγ +++ αΛK .   
(A.14) 

In steady state, we can assume that 
     )()1( nDnD =+                                          (A.15) 
 
On substituting (A.15) in (A.14), we obtain 
( ) [ ] [ ])(~Tr2)(Tr)(1 pp

2 nnnD KK γγ −=−  

                        [ ]{ }2
ex )()(Tr cnJn σγ ++ αΛ      (A.16) 

 
To simplify (A.16), we compute the terms on the 
R.H.S. of (A.16).  

[ ])()()( ppp nnEn ∗= vvK  

             ( )( )[ ])(ˆ)1()(ˆ)1( nnnnE ∗∗ −+−+= wwww       

( )( )[ ])()(ˆ)1()()()1( nnnnnnE ∗∗∗ +−++−+= vwwvww            

( )[ ] ( )[ ])(ˆ)1()()()()1( nnnEnnnE ∗∗∗ −++−+= wwvvww     
    [ ])1()0(2)( ww RRK −++ n                           (A.17) 
 
To simplify (A.17), consider the terms on the R.H.S. 
of (A.17). 
        ( )[ ])()()1( nnnE ∗−+= vwwΓ  

            ( )( )[ ])(ˆ)()()1( nnnnE ∗∗ −−+= wwww               

            [ ] [ ])(ˆ)1()()1( nnEnnE ∗∗ +−+= wwww  

                 [ ] [ ])(ˆ)()()( nnEnnE ∗∗ +− wwww  

             [ ] [ ])(ˆ)1()0()1( nnE ∗+−−= wwRR ww      

               [ ])(ˆ)( nnE ∗+ ww                                  (A.18) 
 
Consider 
[ ] )1(ˆ)[1({)(ˆ)1( −+=+ ∗∗ nnEnnE wwww      

                             )]}1()1()1(* −−−+ nenn αx  

          [ ])1(ˆ)1( −+= ∗ nnE ww                  

   [ ])1()1(*)1()1(*)1( −−−−++ nnnnnE αxxww  

   [ ])1()1(*)1()1(*ˆ)1( −−−−−− nnnnnE αxxww  
     [ ][ ])1()1(.)1(*ˆ)1( −−−−+= nnnnE αRIww  
              )1()1()2( −−+ nn αRRw .                  (A.19) 
 
Iterating (A.19) (n-1) times, we obtain 
[ ] )1()1()2()(ˆ)1( −−=+ ∗ nnnnE αRRww w  

                ∑
−

=
−−−−++

1

1
)1()1()2(

n

k
knknk αRRw       

                      [ ]∏
=

−−−
1

)()(.
kj

jnjn αRI .           (A.20)  

Similarly, 
    [ ] )1()1()1()(ˆ)( −−=∗ nnnnE αRRww w  

              ∑
−

=
−−−−++

1

1
)1()1()1(

n

k
knknk αRRw                                   

               [ ]∏
=

−−−
1

)()(.
kj

jnjn αRI             (A.21) 

On substituting (A.20) and (A.21) in (A.18), we 
obtain 

( )[ ])()()1( nnnE ∗−+= vwwΓ  
    [ ] )1()1()2()0()1( −−−−= nn αRRRR www    

[ ]∏∑
=

−

=
−−−−−−−+−

11

1
)()()1()1()2(

kj

n

k
jnjnknknk αRIαRRw

)1()1()1( −−+ nn αRR w

[ ]∏∑
=

−

=

−−−−−−−++
11

1
)()()1()1()1(

kj

n

k
jnjnknknk αRIαRR w  

 
[ ] [ ] )1()1()2()1()0()1( −−−+−= nn αRRRRRΓ wwww

 
        [ ]∑

−

=
−−−−+−++

1

1
)1()1()2()1(

n

k
knknkk αRRR ww

                  

                 [ ]∏
=

−−−
1

)()(.
kj

jnjn αRI .               (A.22) 

Therefore, 
[ ] [ ] [ ])2()1(Tr)0()1(TrTr wwww RRRRΓ −+−= γ           

               ( ) [ ]∑
−

=
+−+−+

1

1
)2()1(Tr1

n

k

k kk ww RRγγ . 

(A.23) 
 
On substituting (A.23) in (A.17) and taking trace on 
both the sides, we obtain 

[ ] [ ] [ ]ΓRRK ww T r2)()1()0(T r2)(T r p ++−= nDn               

         [ ])2()1(Tr2)( ww RR −+= γnD  

    ( ) [ ]∑
−

=
+−+−+

1

1
)2()1(Tr1

n

k

k kk ww RRγγ .   (A.24) 

 
Likewise, computing for )(~

p nK , 

( )[ ])()()()1()(~
p nnnnEn ∗+−+= vvwwK )(nKΓ +=                                                             

(A.25) 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Anubha Gupta, Shivdutt Joshi

E-ISSN: 2224-3488 240 Volume 10, 2014



Taking the trace of (A.25), we obtain 

  [ ] [ ]ΓK T r)()(~T r p += nDn  
[ ] [ ])2()1(Tr)0()1(Tr)( wwww RRRR −γ+−+= nD       

   ( ) [ ]∑
−

=
+−+−+

1

1
)2()1(Tr1

n

k

k kk ww RRγγ .          (A.26) 

 
On substituting (A.24) and (A.26) in (A.16), we get 
( ) =γ− )(1 2 nD { } [ ])(Tr)( 2

ex nnJ c αΛσγ +                 
               [ ])2()1(Tr2)( ww RR −++ γnD  

              ( ) [ ]∑
−

=
+−+−+

1

1
)2()1(Tr1

n

k

k kk ww RRγγ                             

              [ ])0()1(Tr2)(2 ww RR −−− γγ nD       

              [ ])2()1(Tr2 2
ww RR −− γ                

( ) [ ]∑
−

=
+−+−−

1

1

2 )2()1(Tr12
n

k

k kk ww RRγγ . 

                                                      (A.27) 
On simplifying (A.27), we obtain 

{ } [ ])(Tr)(
)1(2

1)( 2ex nnJnD c αΛσ
γ

+
−

=  

                         

( ) [ ]∑
−

=
+−+−+

1

0
)2()1(Tr1

n

k

k kk ww RRγ              

                          [ ])1()0(Tr
)-(1

1
ww RR −+

γ
.    (A.28)  
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