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Abstract: - Bridge decks deteriorate over time as a result of freezing-and-thawing, heavy use, and water 
penetration resulting in internal defects. Ground penetrating radar (GPR) can be used as a non-destructive 
method for detecting such defects. Unfortunately, reflections from closely spaced objects overlap which 
prevents the accurate estimation of the round-trip travel time of GPR waves to the closely spaced objects. In 
this paper, singular value decomposition (SVD), subset selection (SSDA), and independent component analysis 
(ICA) deconvolution algorithms are used to solve this problem using GPR scans of simulated concrete bridge 
decks. Then, velocity analysis method is used to estimate depth of defects as an evaluation criterion. Results 
show that ICA has better performance than SVD and SSDA at a cost of slower execution time.  
 
 
Key-Words: - Singular value decomposition, subset selection deconvolution algorithm, independent component 
analysis, ground penetrating radar, bridge condition assessment, non-destructive testing 
 
1 Introduction 
Bridge and road structures consist of layers of 
concrete, soil, asphalt, and rebar. These structures 
deteriorate over time as a result of freezing-and-
thawing, heavy use, water penetration, and deicing 
salts, leading to internal defects. Ground penetrating 
radar (GPR) can be used to detect defects such as 
delaminations and air-filled voids inside concrete 
structures such as in bridge decks and roads [1-2]. 
Delaminations result from rebar corrosion due to 
moisture and deicing salts which causes a fracture 
plane to develop, resulting in the creation of 
concrete-air-concrete interfaces in raw GPR scans. 

However, the analysis of GPR scans is typically 
done manually and may lead to errors in 
interpretation. Also, the manual processing of GPR 

scans is time-consuming. Therefore, the motivation 
behind the work discussed in this paper is to find 
automated and accurate signal analysis techniques 
for processing GPR scans to eliminate human 
interpretation errors and reduce the condition 
assessment time.  

The most commonly used non-destructive testing 
formats for GPR data presentation are known by the 
A-scans and B-scans. The A-scan is conducted at a 
single location where raw GPR data are represented 
as a column vector (a trace). The B-scan is 
conducted by moving a GPR antenna over the target 
surface and then recording the reflected signals at 
regular intervals. An example of a B-scan is shown 
in Fig. 1. Each column of the B-scan is a single A-
scan taken at the xth location.  
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Fig.1: A raw GPR scan data from a 15-cm slab with 
embedded air-void defect 
 

Once the transmitted radar pulse hits the target, it 
is reflected and refracted at every boundary between 
any two electrically different materials that it passes 
through. Fig. 1 shows an actual GPR scan taken 
from a 15-cm slab of concrete with embedded air-
void defect. Using the standard model of 
interpreting GPR scans, the horizontal bands at the 
top of the image represent air-concrete interface. 
The hyperbolic arcs represent the concrete-rebar 
interface [3]. We expect to see horizontal lines 
representing reflections from the concrete-to-slab 
bottom interface. These reflections show non-
continuous segments because they destructively 
interfere with reflections from the distant rebar. As 
Fig. 1 shows, there is interference between the 
hyperbolic tails causing spurious hyperbolic arcs 
which may obscure reflections from underneath 
targets. The migration method can be used to 
eliminate such artifacts [3]. In the case of bridge 
deck condition assessment, the medium is known 
and the deterioration, which is usually formed 
around the rebar mesh, is not masked by these 
artificial hyperbolae. Fig. 2 shows an extracted trace 
at column 255 from the B-scan of Fig. 1 where the 
three above interfaces are marked as 1, 2, and 3. The 
reflected GPR signals from closely spaced objects 
overlap. Therefore, reflections from the shallow air-
void defect are completely overlapped with 
reflections from air-concrete interface. Also, a 
partial overlapping is shown between reflections 
from concrete-rebar and concrete-platform 
interfaces. 

Deconvolution can be used to reduce the 
overlapping and improve the estimation accuracy of 
the round-trip travel time of GPR waves to the 
closely spaced objects. Deconvolution transforms 
the broad reflected pulses in GPR scan data into 
"sharp" spikes. Many algorithms are proposed and 
used for deconvolution such as Fourier-based 

algorithms [4], Optimization-based algorithms [5], 
blind deconvolution algorithms [6-7], discrete 
wavelet transform based algorithms [8], correlation-
based methods [9], and conjugate gradient methods 
[10] to list few.  

 
 

 
 
 
 
 
 
 
 
 
 
 
Fig.2: An extracted trace at column 255 (marked by 
white vertical line in Fig. 1) 
 

Six different deconvolution methods were 
examined including Wiener-based methods using 
GPR data [11]. It was reported that the 
Homomorphic deconvolution outperformed all the 
other methods they considered. Also, a comparison 
between Weiner deconvolution, Homomorphic 
deconvolution, singular value decomposition 
(SVD), subset selection deconvolution algorithm 
(SSDA), and Discrete wavelet transform was 
conducted for deconvolving GPR data [12]. They 
reported that SVD outperformed the other 
algorithms where the values of the amplitude of the 
embedded targets and their depth in the recovered 
impulse response of the scanned medium using 
SVD were closer to the actual measurements in 
comparison with results of the other algorithms. 

The ultimate goal of our project is to automate 
the process of analyzing GPR scans using 
techniques that detect and identify defects in 
concrete bridge decks. The work presented in this 
paper focuses on investigating direct and blind 
deconvolution algorithms to achieve our goals. 
Three techniques are chosen for the comparative 
study: 1) the singular value decomposition (SVD) is 
selected as a classical tool for direct deconvolution, 
2) the subset selection deconvolution algorithm 
(SSDA) is selected as another direct deconvolution 
technique that is intrinsically different from SVD as 
SVD is not a transform based algorithm while 
SSDA is, and 3) the independent component 
analysis (ICA) is selected because it is a recent 
technique for blind signal separation.   
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2 Background on Deconvolution 
Algorithms 
Raw GPR data are complex and difficult to analyze 
because it is a convolutive mixture of the 
transmitted signal (incident pulse) and the reflective 
characteristics of the target slab (impulse response 
of the slab). Deconvolution is sought in this work as 
a preprocessing step for the automation of 
embedded defects’ detection and identification. The 
measured response g and the incident pulse f are 
related by 
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j
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where * represents the mathematical convolution 
operation and h represents the impulse response of 
the system (i.e., what characterizes the scanned slab, 
its internal objects and defects, and the measurement 
system). The incident pulse of the 1.5 GHz (GSSI 
model 5100) bistatic antenna is estimated by 
transmitting a pulse into a metal plate (a perfect 
reflector) and recording the reflected signal as 
shown in Fig. 3 [9]. The convolution process can be 
modeled using matrix operations as shown in 
Equations 2 and 3 where columns of the convolution 
matrix F are constructed from delayed versions of 
the incident pulse vector
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where n is the number of samples of the GPR trace 
g, nw is the number of samples of the discrete 
random vector f, it represents time index, and 

nwi ,,2,1 = .  Typically F will be a large matrix 
with near zero main diagonal values and so it is an 
ill-conditioned matrix that may not have an inverse. 
If an inverse does exist, F-1 may be extremely 
sensitive to additive noise in g and consequently, h 
may not be easily estimated.  
 

 
 
Fig.3: The estimated incident pulse of the 1.5 GHz 
antenna 
 
 
3 Framework and Modeling   
 
3.1 Singular Value Decomposition (SVD) 
In general, singular value decomposition (SVD) is 
used to decompose a real or complex matrix F as the 
product of an M x M column-orthogonal matrix U, 
an M x N diagonal matrix Σ, and an N x N column-
orthogonal matrix V [13]. Using SVD method, the 
convolution matrix F can be decomposed using 
Equation (4), 
 

TVUF Σ=      (4) 
 

where Σ is a diagonal matrix whose entries are the 
singular values (i.e., the absolute values of the 
eigenvalues) on the diagonal direction. SVD 
transforms the original matrix into a domain where 
the covariance matrix is diagonal with singular 
values given by  
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Using SVD, the convolution in Equation (1) may 

be restated as  
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and thus an inverse process can be constructed 
using matrix operations resulting in an estimate of 
the impulse response h 
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For several reasons, this inversion tends to fail. 

Some σi may equal to zero making the division 
process impossible. Some σi may be smaller than 
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machine precision resulting in machine errors in 
division. Additionally, additive noise in g may be 
greatly amplified if it correlates to unit vectors with 
a small σi. One solution is to replace the division by 
σi with multiplication by a similar yet better-
behaved function. The approach can be described as 
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The choice of threshold allows us to avoid 

division errors and to discard components of g 
which are determined to be mostly noise. To 
deconvolve an A-scan of GPR data using SVD 
method, a convolution matrix F is created based on 
the transmitted pulse f as modeled in Equation (3). 
Matrix F is then decomposed into its U, Σ and V 
components, and a threshold for values of σi is 
chosen. Equation (7) is then used to process the 
corresponding GPR trace g. The resulting h vector 
should show signature of the embedded objects and 
possible defects.  

 
3.2 Subset Selection Deconvolution 
Algorithm (SSDA) 
SSDA assumes that the real data g can be closely 
approximated by convolving the transmitted pulse f 
with a small number of delta function pulses [9,14]. 
The time delays and amplitudes of these delta 
functions are chosen to minimize Equation (8), 
similar to the linear least squares method,  
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where ia and iτ  represent amplitude and delay time 
of the corresponding impulse function. Finding the 
values of iτ  and ia which minimize Equation (8) is 
a non-trivial challenge especially for large values of 
i.  When a minimum is found, the sought impulse 
response of the medium is  
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If the difference in delay times of two separate 
pulses is under a preselected critical threshold value 
( nsT 214.0= ), SSDA will detect a single pulse 
whose delay time is roughly the average of the two 
original pulses and whose amplitude is their sum. 
Such a false detection obscures the true position of 
pulses, and generates noise which may obscure low 
amplitude details. The success of SSDA relies on 
the initial choices of iτ  and ia . To deconvolve a 
GPR trace g using SSDA, the number of expected 
pulses i is selected and the minimum values of iτ  
and ia are found using the Gauss-Newton’s 
optimization method which is an iterative-based 
method and then the vector h is reconstructed using 
Equation (9).  

 
3.3 Independent Component Analysis (ICA) 
Independent component analysis (ICA) is a 
statistical technique that can be used to solve 
problems in blind signal separation as it has the 
ability to blindly decompose hidden components 
within a set of observed data [15]. The discrete 
convolution model of Equation (1) can be expressed 
as a linear ICA model ( Asx = ) where the radar 
trace vector is defined as T

ntgtgtgx )](,),(),([ 21 = , 
the impulse response vector is defined as

T
nththths )](,),(),([ 21 = , and the mixing matrix A 

is defined according to Equation (3). As Equation 
(3) indicates, the mixing matrix A is a banded matrix 
with the nonzero elements of its columns contain the 
unknown incident pulse vector. This prior 
information can be utilized to convert a blind 
deconvolution problem into a blind source 
separation problem [16]. However, this represents a 
single-input single-output instantaneous ICA model 
which is inadequate since statistics of the 
independent components cannot be characterized. In 
order to form a multiple-input multiple-output ICA 
model ( ASX = ), time delayed versions of x(t) and 
s(t) are used to construct multidimensional matrices 
as shown in the following equations [15]. 
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where m < n. Let g represent an A-scan, the 
proposed banded-ICA algorithm can be summarized 
in the following steps: 

- The trace is centered to make its mean zero. 
- The mixture matrix X is constructed 

according to Equation (10). 
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- The matrix X is whitened using the 
Mahalanobis transformation according to the 
following Equation [17]. 
 

)(. XXCZ −= 50−
                (12) 

 

where C is the covariance matrix and X is 
the mean of the matrix X. The whitening 
process uncorrelates components of a 
centered vector and results in unity variances 
and identity covariance matrix.  

- A statistical efficient version of the FastICA 
algorithm (EFICA) is used to obtain the 
estimated independent components [18]. 
EFICA is a slightly higher computationally 
demanding than FastICA algorithm [19] but 
has superior separation performance.  

- ICA recovers a number of independent 
components equal to m. The source signal 
that needs to be estimated (impulse response 
of the concrete slab) is a sparse signal 
representing the layered structure of the 
scanned concrete slab. It consists of a 
number of sharp spikes with relatively flat 
area between them. Therefore, the 
independent component with a number of 
spikes according to Equation (13) and with 
the highest sparsity is selected as the best 
candidate. Equation 14 has been used to 
measure sparsity of a signal since Y would be 
higher in magnitude when the signal is more 
sparse [20].  
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where sN  represents number of interfaces in 
the scanned concrete slab. The defect 
sometimes masks reflections from objects 
underneath it (rebar and concrete-platform 
interfaces) while it adds extra interface other 
times. 
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4 Velocity-Analysis Based Depth 
Estimation and Experimental Results 
The previous deconvolution algorithms estimate the 
round-trip travel time of GPR waves to the detected 
defects. In order to evaluate their performance, 

velocity-analysis method is used to estimate depth 
from the round-trip travel time and compare it with 
the actual depth. It can be summarized in the 
following steps: 
1. Velocity of GPR waves through the medium can 

be estimated per Equation (15).  
 

r

r
t
dV 2

=
            

(15) 

 
where V is the speed in m/s, rd  is rebar depth, 
and rt  is the round-trip travel time to the rebar. 

2. The actual depth of the defect is found using 
Equation (16). The round-trip travel time of the 
defect tt  and rebar are found from the 
deconvolved trace which contains spikes 
correspond to ground line, defect, rebar, and 
substrate interfaces.  
 

2
=

Vtd t
t

            
(16) 

 
In this work, we used two types of GPR scans, 
synthetic and real scans. In the following 
subsections we present analysis using two 
synthetic traces and nine real GPR traces.  
 

4.1 Results Using Synthetic GPR Scans 
By convolving the incident pulse of Fig. 3 with the 
synthetic impulse responses of Fig. 4, synthetic 
traces are obtained as shown in Fig. 5. The two 
impulse responses of Fig. 4 model a concrete slab 
with three layers, ground line, rebar, and substrate. 
The arrival times of Fig. 4(A) are 0.3ns, 2.085ns, 
and 2.385ns resulting in differential time delays of 

nst 785.11 =∆  and nst 3.02 =∆ while Fig. 4(B) 
indicates arrival times of 0.3ns, 2.205ns, and 2.25ns 
with differential times of nst 905.11 =∆  and 

nst 045.02 =∆ . Since bandwidth of the GSSI 
(Geophysical Survey Systems, Inc.) antenna is 
approximately equal to its center frequency [3], the 
incident pulse of Fig. 3 has duration of

nsGHzBT 625.06.1/1/1 === . The overlapping 
between the second and third reflections of Fig. 
5(A) is a result of the fact that their differential time 
delays ( t∆ ) are less than duration of the incident 
pulse. The second and third reflections of Fig. 5(B) 
are completely overlapped while partial overlapping 
is shown in Fig. 5(A).  
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Fig.4: A and B are two synthetic impulse responses 
both consisting of three spikes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.5: A and B are synthetic traces with overlapping 
second and third reflections 

 
The process of determining the best threshold 

value for the singular values of Equation (7) should 
be automated. In a previous work, it was found that 
the reconstructed impulse response using number of 
singular values equal to the cut-off frequency of the 
power spectrum of the corresponding GPR trace can 
accurately represent the impulse response of the 
scanned medium [21]. This due to the fact that most 
information in the data are captured by few number 
of singular values. Using SVD algorithm, Fig. 6 
shows the retrieved impulse responses of Fig. 4 
scans with 137 singular values.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6: A and B are the retrieved impulse responses 
of figure 4 using SVD 

 
Figs. 7 and 8 show the retrieved impulse 

responses of Fig. 4 using the SSDA and ICA 
algorithms. The estimated impulse responses using 
SSDA and ICA are sparse in comparison with 
results of SVD indicating their similarity to the 
original sparse impulse responses. Since the second 
and third spikes of Fig. 4(B) have a differential time 
delay less than the threshold for SVD and SSDA to 
detect, both detect a spike whose differential time 
delay is roughly the average of the two original 
spikes and whose amplitude is their sum as Figs. 
6(B) and 7(B) show. In both results of SSDA and 
ICA, one can notice that spike amplitudes are 
inconsistent with original ones of Fig. 4 due to the 
scaling ambiguity of the optimization method used 
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in both SSDA and ICA algorithms. However, since 
the ultimate goal is to determine spike location 
which corresponds to target’s depth, this is not a 
problem. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7: A and B are the retrieved impulse responses 
of figure 4 using SSDA 

 
Table 1 shows the measured ( mt∆ ) and estimated 

( et∆ ) differential time delays between the largest 
three spikes of the estimated impulse response of 
Fig. 4(A) using the three methods. The differential 
time delay is chosen for the comparison between the 
methods since it shows location of the other spikes 
relative to the first spike and thus location of a 
target/defect can be determined relative to location 
of the first spike which represents the ground line. 
The best results are obtained using the SVD and 
ICA algorithms. On the other hand, Table 2 shows 
the actual and estimated differential time delays 
between the largest three spikes of the estimated 
impulse response of Fig. 4(B). As the table 
indicates, ICA algorithm is the only one able to 
detect the very small differential time delay between 
the second and third spikes. Results of Tables 1 and 
2 indicate that ICA has better performance than 
SVD and SSDA.  

 
4.2 Results Using Real GPR Scans 
A simulated 114-cm long by 114-cm wide by 15-cm 
deep concrete bridge deck (slab) is constructed with 
embedded defects of known locations and 

dimensions with a bottom layer of rebar in both 
directions at depth of 6-cm and 7.6-cm. Air voids 
are simulated by embedding PVC (Polyvinyl 
Chloride) pipes of different lengths and diameters 
while delaminations are simulated by embedding 
Styrofoam blocks in the concrete that are later 
dissolved using acetone. Fig. 9 shows a slab with 
embedded defects. The simulated bridge deck was 
scanned using the GPR antenna described earlier in 
a ground coupled mode. The GPR antenna is set to 
3.3 scans per cm during the data collection process. 
The determination of this number is based on the 
antenna frequency, estimated size of smallest target, 
and estimated depth of the shallowest target. Nine 
scans are performed and labeled scans 1 through 9 
in order to test performance of the proposed 
deconvolution algorithms. These scans cover all the 
defects in the constructed concrete slab with 
different scanning directions and locations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

Fig.8: A and B are the retrieved impulse responses 
of figure 4 using ICA 
 

Fig. 1 shows the GPR scan data (scan1) from the 
concrete slab with embedded rebar and air-void 
defect. The black section of the ground coupling 
band is obscured by the embedded defect as shown 
in the figure. Also, the fourth and fifth rebar arcs 
look brighter than other rebar arcs due to the 
embedded defect. Fig. 2 shows an extracted trace at 
column 255 representing a defective trace.  

Fig. 10(A) shows a raw B-scan (scan2) with two 
embedded delamination defects. Fig. 10(B) and Fig. 
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10(C) show extracted traces at the center of the 
defective regions. The first defect masked 
reflections from underneath objects and  overlapped 
with the ground coupling band as shown in Fig. 
10(B) while the second defect was totally 
overlapped with rebar reflections as shown in Fig. 
10(C). Fig. 11(A) shows a raw B-scan (scan3) with 
embedded air-void defect. Fig. 11(B) shows an 
extracted trace at the center of the defective region 
where the defect is overlapped with rebar 
reflections. 
 
Table 1: Measured and estimated differential times 
of the first impulse response 
Method t∆  mt∆  (ns) et∆  (ns) Diff (ns) 

SVD 1t∆  1.785 1.785 0 

2t∆  0.3 0.3 0 

SSDA 1t∆  1.785 1.77 0.015 

2t∆  0.3 0.3 0 

ICA 1t∆  1.785 1.785 0 

2t∆  0.3 0.3 0 

 
 

Table 2: Measured and estimated differential times 
of the second impulse response 
Method t∆  mt∆  (ns) et∆  (ns) Diff (ns) 

SVD 1t∆  1.905 1.905 0 

2t∆  0.045 0 0.045 

SSDA 1t∆  1.905 1.905 0 

2t∆  0.045 0 0.045 

ICA 1t∆  1.905 1.905 0 

2t∆  0.045 0.045 0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.9: A laboratory concrete slab with embedded 
defects 

Fig. 12(A) shows a raw B-scan (scan4) with 
embedded delamination and air-void defects. Fig. 
12(B) shows overlapping with rebar reflections 
while Fig. 12(C) shows partial overlapping. Fig. 
13(A) shows a raw B-scan (scan5) with embedded 
delamination and air-void defects. Fig. 13(B) and 
Fig. 13(C) show overlapping between defect and 
ground line reflections. In Fig. 13(B), the defect is 
barely visible due to the low contrast with its 
background. The rest of the scans and the scanning 
process are summarized in Tables 3 and 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.10: A is a raw GPR scan data from a 6-inch slab 
with two embedded delamination defects. B and C 
are extracted traces at columns 75 and 260 
 

The SVD, SSDA, and ICA deconvolution 
algorithms are used to reduce the overlapping 
between reflections from closely spaced targets and 
to estimate the round-trip travel time of GPR waves 
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to the overlapping targets from which velocity 
analysis method estimates depth. Table 4 shows 
actual and estimated depth for the defects of the 
aforementioned scans. As the table indicates, the 
average difference between estimated and actual 
depth is 1.14 cm, 0.91 cm, and 0.53 cm for SVD, 
SSDA, and ICA algorithms. The SVD, SSDA, and 
ICA are able to estimate depth within 1.2 cm in 
57.1%, 78.6%, and 92.9% of the cases. ICA, under 
certain circumstances, may give the worst accuracy 
such as the case of Scan2 with the actual depth of 
4.72. This means that ICA gives worst accuracy in 
one case out of fourteen cases with lowest average 
difference error among the three deconvolution 
algorithms, indicating that ICA algorithm has better 
performance than SVD and SSDA which is in 
agreement with the results of the synthetic data.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11: A is a raw GPR scan data from a 6-inch 
slab with embedded air-void defect. B is an 
extracted trace at column 302 
 

Each scan has different acquisition direction, 
location, and different embedded objects at deferent 
depths. For example, the first defect of scan 2 
masked reflections from underneath objects while 
the second defect is totally overlapped with rebar 
reflections. The relative errors of ICA are greater 
than 40% in only Scan 2 (14.3% of the total scans). 
The SVD, SSDA, and ICA have relative errors 
greater than 20% in 85.7%, 71.4%, and 28.6%, 

respectively. However, the difference error in all 
cases of ICA is less than 2 cm which is acceptable 
for bridge deck condition assessment problem.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12: A is a raw GPR scan data from a 6-inch 
slab with embedded delamination and air-void 
defects. B and C are extracted traces at columns 195 
and 322 
 

 
5 Concluding Remarks 
Ground Penetrating Radar is a sophisticated 
nondestructive technique that can be used for 
detecting internal defects in concrete bridge decks. 
The underlying motivation behind the work 
presented in this paper is to automate the process of 
detecting defects from GPR scans to reduce 
processing time and increase accuracy of 
identification for the purposes of bridge condition 
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assessment, leading to better repair decisions and 
possibly higher cost savings. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13: A is a raw GPR scan data from a 6-inch 
slab with embedded delamination and air-void 
defects. B and C are extracted traces at columns 24 
and 90 
 

Estimation of the impulse response of concrete 
bridge decks and their internal objects and defects 
from raw GPR signals can be modeled as a 
deconvolution problem. The SVD, SSDA, and ICA 
algorithms can be used for deconvolution to 
overcome obstacles such as overlapping between 
reflections from closely spaced targets. We found 
that ICA is better than SVD and SSDA in average 
difference between actual and estimated depth. 
Also, ICA can estimate depth within 1.2 cm from 
the actual depth in 92.9% of the cases while SVD in 

57.1% and SSDA 78.6%. Finally, SVD and SSDA 
methods failed to accurately detect spike locations 
in case of very small differential time delay between 
the two adjacent spikes.  

Two types of GPR scans are used to test the 
performance of the deconvolution methods. The 
synthetic data are used to show performance of the 
deconvolution algorithms in an ideal environment. 
The experimental data are raw data obtained using 
the GPR antenna which may contain high and/or 
low frequency noise. Therefore, the performance of 
the deconvolution algorithms is compared in the 
presence of noise.  

The ICA algorithm used in this work requires 
more execution time than SVD and SSDA 
algorithms which can be improved by utilizing 
faster ICA methods. All three algorithms in this 
work are numerical methods used to deconvolute an 
A-scan without exploiting any prior knowledge of 
GPR data. Future work should integrate any prior 
knowledge based on data used and/or defects 
expected to improve results.  
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Table 3: Collected scans from 15-cm slab with 
different acquisition coordinates 

Scan Defects Y-axis 
(cm) 

X-axis 
(cm) 

1 Air void along 100 

2 Two 
delaminations 61 along 

3 Air void 94 along 

4 Delamination + 
air void along 22.9 

5 Delamination + 
air void along 94 

6 Air void 40.6 along 

7 Two 
delaminations 17.8 along 

8 Air void along 104.1 

9 Two 
delaminations along 78.7 
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Table 4: Actual and estimated defect depth of scans1 through 9 
Scan Actual 

Depth (cm) 
Estimated Depth 

SVD (cm) 
Diff 
(cm) 

Estimated Depth 
SSDA (cm) 

Diff 
(cm) 

Estimated Depth 
ICA (cm) 

Diff 
(cm) 

Scan 1 1 1.57 0.57 0.61 0.39 1.09 0.09 

Scan 2 2.51 2.92 0.41 4.47 1.96 3.58 1.07 
4.72 3.63 1.09 5.03 0.31 6.71 1.99 

Scan 3 3.61 5.31 1.7 4.72 1.11 3.35 0.26 

Scan 4 4.72 5.54 0.82 5.08 0.36 4.83 0.11 
3.61 5.99 2.38 4.65 1.04 3.48 0.13 

Scan 5 2.51 3.94 1.43 3.71 1.2 1.55 0.96 
1 2.82 1.82 3.66 2.66 0.94 0.06 

Scan 6 1 1.53 0.53 1.5 0.5 1.22 0.22 

Scan 7 2.92 1.52 1.4 2.28 0.64 2.34 0.58 
4.19 5.83 1.64 2.45 1.74 3.69 0.5 

Scan 8 1 1.46 0.46 0.35 0.65 1.26 0.26 

Scan 9 4.19 5.33 1.14 4.17 0.02 3.07 1.12 
2.54 1.99 0.55 2.7 0.16 2.44 0.1 

Average   1.14  0.91  0.53 
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