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Abstract: The previous work in [1], Tseng et al. have designed a fractional order differentiator using radial basis
function by directly truncating the coefficients to approximate the fractional order derivativeDα of the given digital
signal. This paper presents the designing of fractional order differentiator using radial basis function and window.
Three design examples are given to illustrate that the use of window along with radial basis function method,
improve the frequency response characteristics and minimize the integral root square error than the existing radial
basis function method.
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1 Introduction

In recent years, fractional order differentiators and in-
tegrators have been an important topic of research in
fractional calculus. A digital fractional order differen-
tiator can estimate the fractional order derivative of a
digital signal [2]. From the last few decades, the con-
cept of fractional derivative has received great atten-
tion in many applications of engineering, science and
technology including image processing [3], fractional
order PID controller, automatic control [4], fluid dy-
namics [4], electromagnetic theory [5], phase lock
loop [6], electrical networks and probability [7] etc.

In the area of fractional calculus, the integer or-
der derivative ofDnf(x) = dnf(x)

dxn (nth orderderiva-
tive of the functionf(x)) is generalized to fractional
order derivativeDαf(x) = dαf(x)

dxα , wheren is an in-
teger andα is a real number [2][4]. The fractional
operatorDα is implemented both in continuous and
digital domain. An excellent survey of this imple-
mentation has been presented in [8]. Some methods
have been developed to design digital FIR and IIR
filters such as Taylor series method [9], Newton se-
ries [10], fractional fourier transform [11], impulse
invariant method [12], least squares method [13], frac-
tional sample delay [14], and Savitzky-Golay method
[15][16].

In [1], Tseng et al. have designed a fractional
order differentiator using radial basis function by di-

rectly truncating the coefficients to approximate the
fractional order derivativeDα of the given digital sig-
nal. We are applied window for truncating the filter
coefficients.

The rest of the paper is organized as follows: In
Section 2, the definition of Grnwald-Letnikov deriva-
tive and the design of fractional order FIR differen-
tiator using window for truncation are explained. In
Section 3, three numerical examples demonstrate that
the fractional derivative of given signal can estimated
accurately. Finally, conclusions are made.

2 Design of Fractional Order FIR
Differentiator

The details of RBF interpolation method can be found
in [1]. For the completeness of the paper, we are
briefly explaining the RBF design method, which is
taken from [1]. The ideal frequency response of frac-
tional order differentiator is given by(jw)α, where
α is a fractional number in the range(0, 1). We are
designing a fractional order digital differentiator that
approximates the given frequency response

Hd(ejω) = (jω)αe−jωI (1)

whereI is a prescribed delay value. There are three
most frequently used definitions for the general frac-
tional differintegral are: the Riemann-Liouville (R-L),
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Figure1: Magnitude and phase response of fractional
order differentiator using direct truncation and win-
dowed gaussian RBF withσ = 2.3 andα = 0.5.

the Grnwald- Letnikov (G-L) and the Caputo defini-
tions [2][4][17][18]. The Grnwald- Letnikov deriva-
tive is given by

Dαf(t) = lim
∆→0

∞∑

k=0

(−1)kCα
k

∆α
f(t− k∆) (2)

wherecα
k is the binomial coefficient. For calculating

the value ofcα
k , we can use the relation between Eulers

Gamma function and factorial, defined as

cα
k =

(
α
k

)
=

Γ(α + 1)
Γ(k + 1)Γ(α− k + 1)

(3)

cα
k =

{
1 k = 1
α(α−1)(α−2)···(α−k+1)

1.2.3.··· .k k ≥ 1
(4)

Theabove notationΓ(.) is the gamma function. First,
let us define coefficientsa(k) below

a(k) = (−1)kCα
k (5)

then the fractional derivative in eq.(2) can be rewritten
as

Dαf(t) = lim
∆→0

∞∑

k=0

a(k)
∆α

f(t− k∆) (6)

The right hand side of this equation is of infinite
length. In [1], Tseng et al. have taken firstL terms
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Figure 2: Integral root-squared errorE of the frac-
tional order differentiator using gaussian RBF with
different shape parameterσ

only and ignore the remaining terms. This is equiv-
alent to multiplying the right hand side of eq. (6) by
rectangular window of lengthL. We can apply tapered
windows to obtain finite number of terms. Consider a
Hamming window of lengthM defined as

w(n) =
[
0.54− 0.46 cos

(
2πn

M − 1

)]

0 ≤ n ≤ M − 1 (7)

Thus, by using Hamming window for truncating
the filter coefficients, the fractional order derivative
Dαf(t) in eq. (6) can be approximated as

Dαf(t) ≈ lim
∆→0

M∑

k=0

a(k)w(k)
∆α

f(t− k∆) (8)

Moreover, by removing limit, the fractional order
derivativeDαf(t) can be further approximated as

Dαf(t) ≈
M∑

k=0

a(k)w(k)
∆α

f(t− k∆) (9)

A smallervalue of∆ needs to be chosen for reducing
the approximation error of eq. (9). By takingt =
n− I, the discrete-time derivative signalDαf(n− I)
can be obtained as

Dαf(n− I) ≈
M∑

k=0

a(k)w(k)
∆α

f(n− I − k∆) (10)
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Figure 3: Integral root-squared errorE of the frac-
tional order differentiator using gaussian RBF with
different shape parameterσ

Table 1: Integral root-squared errorE with Gaussion
RBF in Example 1

Shape Error Error
parameter using using window

σ Gaussian RBF Gaussian RBF
4.0 0.03143 0.03012
4.3 0.02887 0.02703
4.6 0.02680 0.02447
4.9 0.02542 0.2237
5.2 0.02436 0.02066
5.5 0.02362 0.01927
5.8 0.02315 0.01815
6.1 0.02290 0.01723
6.4 0.02281 0.01648
6.7 0.02283 0.01587

Becausef(n − I − k∆) arenon-integer delay sam-
ples of signalf(n), the f(n − I − kh) needs to be
estimated by using non-integer delay sample formula
in [1], defined as

f(n− I − k∆) =
N∑

m=0

g(m, I + k∆)f(n−m)

(11)
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Figure4: Magnitude and phase response of fractional
order differentiator using direct truncation and win-
dowed inverse multi-quadric RBF withσ = 6.4 and
α = 0.5.

Substituting eq. (11) into eq. (10), we get

Dαf(n− I) ≈
M∑

k=0

a(k)w(k)
∆α

N∑

m=0

g(m, I + k∆)

f(n−m)
(12)

≈
N∑

m=0

[
1

∆α

M∑

k=0

a(k)w(k)g(m, I + k∆)

]
f(n−m)

(13)

Defining the filter coefficients as

h(m) =
1

∆α

M∑

k=0

a(k)w(k)g(m, I + k∆) (14)

theneq. (13) can be rewritten in the form of convolu-
tion as

Dαf(n− I) ≈
N∑

m=0

h(m)f(n−m) (15)

Dαf(n− I) = h(n) ∗ f(n) (16)

where∗ denotes the convolution sum operator. The
z-transform of eq. (15) yields

Y (z) =

[
N∑

m=0

h(m)z−m

]
F (z) = H(z)F (z) (17)
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whereY (z) is thez-transformof Dαf(n−I), F (z) is
the z-transform off(n) andH(z) is the transfer func-
tion of designed fractional order differentiator using
window, whose frequency response will approximate
the ideal response of fractional order differentiator.
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Figure 5: Integral root-squared errorE of the frac-
tional order differentiator using inverse multi-quadric
RBF with different shape parameterσ.

Figure 6: Integral root-squared errorE of the frac-
tional order differentiator using inverse multi-quadric
RBF with different shape parameterσ.

3 Design Examples

To demonstrate the effectiveness of the tapered win-
dowed method, several examples are presented in this
section. To evaluate the performance, the integral

Table 2: Integral root-squared errorE with inverse
multi-quadratic RBF in Example 2

Shape Errorusing Error using window
parameter inverse multi- inverse multi-

σ quadratic RBF quadratic RBF
4.0 0.03046 0.03044
4.3 0.02749 0.02745
4.6 0.02505 0.02499
4.9 0.02308 0.02299
5.2 0.02149 0.02137
5.5 0.02020 0.02005
5.8 0.01918 0.01899
6.1 0.01835 0.01813
6.4 0.01769 0.01744
6.7 0.01716 0.01687

root-squarederrorof frequency response is defined by

E =

√∫ λπ

0
|H(ejω)−Hd(ejω)|2 dω (18)

The error is computed in the range[0, π].
Example 1: The design of Example1 as given in

[1] is repeated whereN = 60, I = 30, ∆ = 0.05,
σ = 2.3, α = 0.5 andλ = 0.9 using Hamming win-
dow of lengthM = 620, equal to the lengthL of the
rectangular window used in [1]. Here, we have ap-
plied Gaussian RBF and Hamming window. Fig. 1 (a)
and (b) shows the magnitude response and phase re-
sponse of fractional order differentiator, respectively.
Fig. 2 and 3 shows the integral root-squared error.
Table I lists the integral root-squared errorE of fre-
quency response for different values of shape param-
eterσ ∈ [4, 6.7]. It is observed that the performance
of the Hamming windowed method is better than that
of [1].

Example 2: This example deals with the inverse
multi-quadric RBF design of fractional order differ-
entiators along with Hamming window. The design of
Example2 as given in [1] is repeated whereN = 60,
I = 30, ∆ = 0.05, σ = 6.4, α = 0.5 andλ = 0.9 us-
ing Hamming window of lengthM = 620. The mag-
nitude response and phase response of fractional order
differentiator are shown in Fig. 4(a) and (b), respec-
tively. Fig. 5 and 6 shows the integral root-squared
error. Table II lists the integral root-squared errorE
of frequency response for different values of shape pa-
rameterσ ∈ [4, 6.7]. The method in [1], yields inte-
gral root-squared errorE = 0.01716, which shows
that the Hamming windowed method is better for the
design.
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Figure 7: Magnitude and phase response of frac-
tional order differentiator using direct truncation and
windowed inverse quadratic RBF withσ = 6.7 and
α = 0.5.

Example 3: In this example, the performance
of fractional order differentiator using inverse multi-
quadratic RBF and Hamming window is studied for
the given design parameters asN = 60, M = 620,
I = 30, ∆ = 0.05, σ = 6.7, α = 0.5 andλ = 0.9.
The magnitude response and phase response of frac-
tional order differentiator are shown in Fig. 7 (a) and
(b), respectively. Fig. 8 and 9 shows the integral root-
squared error. Table III lists the integral root-squared
errorE of frequency response for different values of
shape parameterσ. The method in [1], yield integral
root-squared errorE = 0.01731, which shows that the
Hamming windowed method is better for the design.

4 Conclusion

In [1], Tseng et al. have designed a fractional order
differentiator using radial basis function by directly
truncating the filter coefficients. In this paper, we have
shown that the use of window along with the RBF
achieve higher design accuracy with significant reduc-
tion in integral root squared error. We can use other
windows also to improve the frequency response.
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Figure 8: Integral root-squared errorE of the frac-
tional order differentiator using inverse quadratic RBF
with different shape parameterσ
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