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Abstract: - Face detection has been regarded as the most complex and challenging problem in the field of 
computer vision, due to the large intra-class variations caused by the changes in facial appearance, lighting, and 
expression. Face detection is the essential first step towards many advanced computer vision, biometrics 
recognition and multimedia applications, such as face tracking, face recognition, and video surveillance. One of 
the most famous approaches that is successful is the Viola & Jones algorithm. In this paper, systems were 
designed based on this approach to measure the effectiveness of the different Haar feature types, and to 
compare two types of threshold computing methods. The two methods used for computing thresholds are the 
average of means and the optimal threshold methods. There are 8 different Haar features has been used in 
building these systems. The implemented systems have been trained using a handpicked database. The database 
contains 350 face and nonface images. Adaboost algorithm has been used to build our detectors. Each detector 
consists of 3 cascade stages. In each stage, we randomly use a number of weak classifiers to build the strong 
classifier. Each weak classifier is computed based on threshold before entering the Adaboost algorithm. If the 
image can pass through all stages of the detector, then the face will be detected. The detectors have been tested 
using the CMU+MIT database. Some recommendations have been suggested according to the Haar features 
and the computed threshold to improve the face detection of Viola  Jones approach.  
  
Key-Words: - Face Detection, Haar-Like Features, Pattern Recognition, Weak Classifier, Integral Image, 
Strong Classifier, Adaboost Algorithm. 
 
1   Introduction 
Face detection is a computer technology that 
determines if there are any faces in arbitrary images 
and identifies: location, size, and  content of each 
human face. It also detects the facial features and 
ignores anything else, such as: buildings, trees, 
animals and bodies.  
 
Human face detection is an active area of research 
covering several disciplines such as: image 
processing, pattern recognition and computer 
vision. Face detection is the first step in any 
automated system, which solves Face recognition 
or face identification, face authentication, face 
tracking, facial expression recognition, and face 
localization. It's also the first step of any fully 
automatic system that analyzes the information 
contained in faces (e.g., identity, gender, 
expression, age, race and pose). Face detection is 
used in a lot of applications, such as a part of a 
facial recognition system, video surveillance, 
human computer interface, image database 

management, and newer digital cameras use face 
detection for autofocus and bodies [10-12]. 
 
Face detection is considered a part of object 
detection as in [1-3]; Object detection and 
classification holds the key to many other high 
level applications such as: face recognition, human 
computer interaction, security and tracking among 
others.  
 
2 Literature Review 
Face detection is a computer technology that 
has received a lot of interest in the last few 
years. In the last ten years, face detection and 
facial expression recognition have attracted 
much more attention, even though they had 
been studied for more than 30 years by 
psychophysicists  neuroscientists, and 
engineers. Face detection is one of the most 
active areas in computer science, so there are is 
a lot of effort and researches in this area. 
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It is known that isolated pixel values cannot give 
any information except the luminance and/or the 
color of the radiation received by the camera at a 
given point. Therefore, there are two motivations 
for using features instead of the pixel intensities 
directly. First, features encode domain knowledge 
is better than pixels, so the features help to encode 
some information about the class to be detected. 
The second reason is that a Feature-Based System 
can be much faster than a Pixel Based System [1-
2]. 
 
One of these features is the Haar feature, which 
encodes the existence of oriented contrasts between 
regions in the image. A set of these features can be 
used to encode the contrasts exhibited by a human 
face and their special relationships  
 
2.1 Haar-Like Features 
Haar features, are represented by a template (shape 
of the feature). Each feature is composed of a 
number of  “black” and “white” rectangles joined 
together. After the approach of Viola & Jones 
succeeded, an extended set of Haar-like features are 
added to the basic feature set. There are more than 
15 kinds (or prototypes) of Haar feature types. 
Fig.1 shows the basic Haar features , and the fifteen 
extended Haar features respectively  
 

 
Fig.1 A set of basic Haar features and Extended 

Haar features 
 
To obtain the value of a Haar-like feature, it is 
computed as the difference between the sums of the 
pixel gray level values within the black and white 
rectangular regions. This is done by subtracting the 
pixels covered by white rectangles from the sum of 
the pixels covered by black rectangles as in eq.1  
 

 
2.2 Integral Image  
It is a new image representation, “Integral Image” 
is similar to the "Summed Area Table" (SAT) idea 
which is used in computer graphics for texture 
mapping. It can be defined as 2-dimensional “look 

up table" in the form of a matrix with the same size 
of the original image  
The integral image’s value at each pixel (x,y) could 
be computed by summing the values of the pixels 
above and to the left of (x,y). However, it can 
quickly be computed in one pass through the image 
and can be calculated by using eq.2 and fig.2  
 

    (2) 
 

 
Fig.2 Integral Image for point (x,y) 

 
2.3 Adaboost Algorithm  
Boosting is an efficient classifier, which converts a 
weak classifier to a strong one by combining a 
collection of weak classifier to form a strong one. 
The adaptive boosting (Adaboost) algorithm exists 
in various varieties[3]. In addition, there are three 
modifications of the original algorithm that were 
proposed: Gentle-, Logit-, and Real Adaboost [4]. 
 
The aim of boosting is to improve the classification 
performance of any given simple learning 
algorithm. It is used to select rectangle features and 
combine them into an ensemble classifier in a 
cascade node, which is used to reduce the training 
time. 
 
2.4 Weak Classifier and Threshold 
Weak classifiers are constructed using one or a few 
Haar features with trained threshold values. In most 
papers, one feature for every weak classifier is 
used. To determine the weak classifier, first we 
must compute the threshold value. The threshold is 
a value used to separate the value of face and non-
face into building the weak classifier. It is 
important because it is the base of building the 
weak classifier.  
 
There are more than one way to compute the 
threshold value. In this paper, we will compare 
between two of these methods to see which of them 
is better to use in face detection system. Based on 
these two methods, two algorithms will be used to 
compute the threshold value as follows:  
• Taking the average of their mean’s using eq.3:  

∑
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Where  is the mean of positive samples 
and  is means of the negative samples. 

• Finding the optimal threshold that use an 
algorithm that chose the value that best 
separates the faces from the non-faces.  

2.5 Adaboost and Strong Classifier  
The strong classifier is a combination of several 
weak classifiers. Each of the weak classifiers is 
given weights depending on its detection accuracy. 
When classifying a detection window with a strong 
classifier, all of the weak classifiers are evaluated. 
The pertained weights of the weak classifiers that 
classify the window as a face are added together. In 
the end, the sum of the weights is compared with a 
predefined threshold to determine if the strong 
classifier classifies the detection window as a face 
or not.  
There are several types of the Adaboost algorithms 
used for boosting, Gentle-, Logit-, and Real 
Adaboost. In [6] they compared the three different 
boosting algorithms: Discrete Adaboost, Real 
Adaboost, and Gentle Adaboost. Three 20-stage 
cascade classifiers were trained with the respective 
boosting algorithm using the basic feature set. 
In [8] they  used a cascaded classifier trained by 
gentle Adaboost algorithm, one of the appearance-
based pattern learning method. In [5] they 
addressed joint Haar-like features using Adaboost, 
In [7, 9] they addressed a fast and effective multi-
view face tracking algorithm based on Adaboost 
algorithm.  
 
2.6 Cascade classifier 
The main idea of building the Cascade Classifier is 
to reduce computation time, by giving different 
treatments to different kinds of input, depending on 
their complexity. 
In general works, they use a cascade structure as a 
detector to detect a face. Cascade detectors have 
demonstrated impressive detection speeds and high 
detection rates, using the cascade structure, in order 
to ensure high testing speed. Where detection rate 
is the ratio of the true faces to the number of the 
database . 
The cascade training process involves two types of 
tradeoffs. In most cases, the classifiers with the 
most features will achieve higher detection rates 
and lower false positive rates. At the same time, 
classifiers with more features require more time to 

compute. In general, one could define optimization 
framework by the number of classifier stages, the 
number of features in each stage, and the threshold 
of each stage, are traded off in order to minimize 
the expected number of evaluated features. 
Each stage in the cascade reduces the false positive 
rate as well as the detection rate as in eq.4 and eq.5. 
False positive rate is the probability of falsely 
rejecting the null hypothesis for a particular test 
among all the tests performed. (also known as type 
1 errors). Where Fp is False positive. An image is 
called false positive if the image is not a face, but 
the detector labels it as positive, Tn is True 
negative which a negative image is correctly 
labeled as negative. As  

 False positive rate (α)=Fp/(Fp + Tn)              (4) 

Or 

False Positive Rate(Α)= 1–Specificity            (5) 

Where Specificity = number of Tn/(number of 
   Tn + number of Fp) 

 
3 Face Detection System Architecture 
In our proposed architecture, we used a statistical 
style for measuring the effectiveness of some of the 
prototypes of the Haar features on the detector, and 
compares them using two methods that compute the 
threshold value. This will be done by building a 
system based on the ideas of The Viola & Jones 
approach, but different in some ways like changing 
the number of stages, and changing the number of 
features in each stage.  
 
Each of the systems is designed to locate multiple 
faces with a minimum size of 24×24 pixel. The 
detector will go through a thorough search, at all 
positions, all scales for faces under all light 
conditions. The systems will be grouped in pairs ; 
each pair will have 4 basic features, 4 features, 5 
features, 6 features, 7 features, or 8 features, to a 
total of 12 systems. Each pair’s threshold will be 
computed based on one of two methods. 
 
3.1 Systems description 
Before talking about the main parts of the systems, 
the following will be discussed: 
 
Subwindow size (window size): is the image size 
that is used in parts of the feature generation and in 
the units of training and testing. There are different 
window sizes that are used in other systems like 
19×19, 20×20 and 24×24. These sizes affect the 
number of the features that could be generated for 
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each image. The 24×24 Subwindow size is used in 
this paper because it was used in the viola & Jones 
paper, furthermore it is popular in a lot of other 
papers that use the Haar like feature generation. 
Therefore this size will be used in all of our 
implemented systems. 
 
Fig.3  describes the architecture of the system that 
will be used as a face detection. It will be based on 
the Haar features and the Adaboost algorithm in 
general and each stage will have a detailed 
description: 
 

 Generate features
 set Training set 

Features value
(apply on images)

Threshold compute

Weak classifier set

Adaboost
Training

T=2

strong 
classifier

“A”

Evaluation the classifier 
and discard correctly 
detected non-faces

New Training set
Evaluated by “A” 

 threshold  compute

 threshold  compute

 Weak classifier set

Weak classifier  set

Adaboost
Training

T=5

strong 
classifier

“c”

strong 
classifier

“B”

Adaboost
Training

T=10
Evaluation the classifier 

and discard correctly 
detected non-faces

Evaluation the classifier 
and discard correctly 
detected non-faces

New Training set
Evaluated by “A”,”B” 

Integral image

Add 50 nonface
 apply by features

Add 50 nonface
 apply by features

 

Fig.3 The Cascade Training Process for three 
stages 

3.1.1 Generate Features Set 
The features which are generated will be in 
different sizes and locations as shown in fig.4.  

 
Fig.4 Examples of Haar-like features in different 

sizes and different locations. 
 
To find the number of the features that could be 
obtained for any subwindow in any size. The 
number of features derived from each prototype is 
quite large and differs from prototype to another . 

Let X=  and Y=  be the maximum 
scaling factors in x and y direction where W is the 
width of window size H is the high of window size 
and w is the width of feature rectangle h is the high 
of feature rectangle. An upright feature of size wxh 

then generates the number of raw features as in 
eq.6: 

 
Eq.7 could be used to calculate this number for 
every feature, and the researchers could change it 
as needed. As an example, the number of features 
generated from the first and third features 
respectively are 43200, 27600. This equation is 
used to compute the Haar features. 
 
There are several types of features used in our 
systems. Fig.5 shows the feature types that will be 
used in all systems. Table 1 describes the number 
of features that will be used in each system, which 
of them use in each one, and how many features 
will they generate. 

 
Fig.5 The Haar features used 

 
Table 1. Lists the feature numbers and the type 

used in each system 
System 

Number 
Features 
number 

Feature types 
used Total 

System 1 4feature 1a, 1b, 2a, 2c 141600 

System 2 4feature 1a, 1b, 2a, 3a 134736 

System 3 5feature 1a, 1b, 2a, 2c, 3a 162336 

System 4 6feature 1a, 1b, 2a, 2c, 3a, 
3b 183072 

System 5 7feature 1a, 1b, 2a, 2c, 3a, 
3b, 2b 202872 

System 6 8feature 1a, 1b, 2a, 2c, 3a, 
3b, 2b, 2d 222672 

 
3.1.2 Training Set  
Viola & Jones approach deals with gray scale 
images. In this approach every image must be 
provided in gray scale. Therefore all the images in 
it that are not in gray scale must be converted. The 
reason for that is because this approach deals with 
only gray intensities, so the system needs to 
preprocess the images in it to build the database. 
 
The first preprocessing will be in the dataset step 
which consists of the following steps: 
Step 1. Determining the two groups  
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The images that need to be stored in our dataset 
will be in one of the two groups, which are 
either: 
a. face (positive examples)  
b. nonface (negative examples) 
The data set consists of two labeled parts. The 
face dataset consist of numbers of different 
human face images for different ages, poses, 
and different luminances and some images with 
glasses. The rest of the images are taken from 
The IMM (Informatics and Mathematical 
Modelling) Face Database which is a Face 
Database without glasses consist of six 
different Image types which are: 
1. Full frontal face, neutral expression, diffuse 

light. 
2. Full frontal face, "happy" expression, and 

diffuse light. 
3. Face rotated approx. 30 degrees to the 

person's right, neutral expression, diffuse 
light. 

4. Face rotated approx. 30 degrees to the 
person's left, neutral expression, diffuse 
light. 

5. Full frontal face, neutral expression, spot 
light added at the person's left side. 

6. Full frontal face, "joker image" (arbitrary 
expression), diffuse light. 

The nonface dataset part can consist of set of 
different images for anything like trees, flowers, 
except for human faces. Those images are 
picked in an arbitrary manner. 

Step 2. Preprocessing the face images 
After determining the two groups, the first group 
needs to be processed. The parts in the first group 
which contain a face image are determined in the 
images. Once that is done, the faces are cut and 
saved as a new image in dataset 1 manually. 
 
Step 3. Resizing the images in the data set  
After the first step, and determining the two groups 
of images, the images need to be resized into the 
subwindows size (24×24). 
 
Step 4. Gray scale  
The data set must be in grayscale. All  the images 
will be converted to grayscale if they’re not already 
in grayscale.   
To achieve the goal of the preprocessing and obtain 
dataset 2, we will need to build a function, or a 
small program, which will consist of two loops that 
will read the files (images), from the two folders; 
face and non-face. The images will then be saved in 
a new folder called dataset 2, this dataset will 

consist of 250 images for both face and nonface 
groups. The dataset built contains (250) images, 
150 images as face image, and 100 images as 
nonface images. Fig.6 shows the steps used in 
building the training datase 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data set 1 

nonfaces faces 

picked and determined the face parts 

  

Resize the images 

 Convert to Gray scale 

 

Data set 2 

 

 

 

 

 

 
Fig.6 The training set 

3.1.3 Integral Image (Fast Feature Evaluation) 
The value of the integral image will be computed 
for all the images using the "Summed Area Table 
(SAT)" idea and eq.2 . To guarantee that the 
integral image function does its job correctly, 
another function will be used which is called the 
pad function. This function is used to pad two lines 
of zeros, one at the top of the image, and one to the 
left of the image, to guarantee a correct result as 
shown in the fig.7 and fig.8. 
 
To explain the idea of the integral image let's say 
that there are 2 rectangles 3*3 in  fig.7,  one 
represents part of original image and the other 
represent parts of the integral image. 
 

 
Fig.7 The implementation of the pad and the 

integral image function as an array 
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Fig.8 The implementation of the pad and the 

integral image function in an image 

As shown in the second rectangle each pixel will 
represent the summation value of pixels above and 
to the left of it. This rectangle is padded, therefore 
the index starts at p(2,2). If we want to calculate the 
integral image, we’ll need to start at the point +1 
(e.g. point x,y, would be start at (x+1,y+1).  For 
example, the integral image for pixel p(2,3) is 208 
where the value of summation of all pixels left and 
up is: (51+41+33+26+30+27), this is represented in 
p(3,4). 
 
When using this implementation, it is easy to 
compute the value of the rectangular sum at any 
scale or position. For example if we want to 
compute the value of the pixel s of [p(1,2), p(1,3), 
p(2,2), p(2,3)] we can easily obtain the sum of them 
by summing the values 208+0-0-77=131 and so on. 
 
3.1.4 Features Extraction 
Feature extraction is a special form of 
dimensionality reduction in pattern recognition and 
image processing. When the input data to an 
algorithm is too large to be processed, and is 
suspected to be notoriously redundant (much data, 
but not much information), then the input data will 
be transformed into a reduced representation set of 
features (also named features’ vector). 
Transforming the input data into the set of features 
is called feature extraction. 
 
If the features extracted are carefully chosen, it is 
expected that the features’ set will extract the 
relevant information from the input data in order to 
perform the desired task, using this reduced 
representation instead of the full size input. Feature 
extraction will be used to extract the features of 
every image in the training set.   
 
This part is used to generate a large number of 
features very quickly, by computing the integral 
image for a given set of training images. Then use 
the feature extraction method to reduce the 

represented set of features, and afterwards extract a 
small number of these features by using for the 
Adaboost algorithm. As the hypothesis of Viola & 
Jones supposes that a very small number of these 
features can be combined to form an effective 
classifier. 
 
3.1.5 Threshold Computing 
The threshold is important because it is the base of 
computing the weak classifier. It is the value that 
separates the face from the non-face images. The 
weak classifier is the input to the Adaboost 
algorithm.  
 
There are several steps for this approach for each 
feature extraction: 
1. Start with the lowest possible threshold. 
2. Evaluate the weak classifier with the current 

threshold on every face example, and store the 
sum of correctly classified faces in a histogram 
(Hfaces) at the current threshold. 

3. Evaluate the weak classifier with the current 
threshold on every non-face example, and store 
the sum of incorrectly classified non-faces in 
another histogram (Hnonfaces) at the current 
threshold. 

4. Increase the threshold to the next discrete value 
and start again at step 2 until all thresholds 
have been evaluated. 

5. Compare Hfaces with Hnonfaces and find the 
threshold t that maximizes the difference 
function in eq.7. 

threshold(t)=Hfaces(t)-Hnonfaces(t)          (7) 

Based on this information about threshold, we built  
12 systems. Each of the 6 systems are built based 
on one of the threshold algorithms, but different in 
the number of the features as shown in table 1. The 
first 6 systems that are built are based on the 
average of means and saved as thrshold1.mat for 
each one of these 6 systems. The other 6 systems 
that are built based on the algorithm of the optimal 
threshold are saved as threshold2.mat for each one 
of them. 
 
3.1.6 Weak Classifier Set (retrain) 
The Adaboost learning algorithm needs to build 
simple classifiers by using the Haar like features. 
Each single feature will be associated with a 
threshold value to build a weak classifier that is 
used as a simple classifier which is an input to the 
Adaboost algorithm. A practical method for 
completing the analogy between weak classifiers 
and features can be explained as follows:    
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1. Restrict the weak learner to the set of 
classification functions, each of which depend 
on a single feature. The weak learning 
algorithm is designed to select the single 
rectangle feature which best separates the 
positive and negative examples.  

2. For each feature, the weak learner determines 
the optimal threshold classification function, 
such that the minimum number of examples is 
misclassified. 

3. A weak classifier (hi) thus consists of  Feature 
(fi), Threshold (θi) Parity (pi), indicating the 
direction of the inequality sign. 

An easy way to link the weak learner and Haar 
features is to assign one weak classifier to one 
feature. The value of a given single feature vector fi 
is evaluated at x, and the output of the weak 
classifier hi(x) is either -1 or 1. The output depends 
on whether the feature value is less than a given 
threshold θi in eq.8. 

                           
(8) (8) 

Where pi is the parity and x is the image-box to be 
classified. Thus our set of features defines a set of 
weak classifiers. From the evaluation of each 
feature type on training data, it is possible to 
estimate the value of each classifier’s threshold and 
its parity variable. 
 
The weak classifier that is generated will be an 
array of two dimensions (features, database) of 1,-
1. To retrain the weak classifier, use the new value 
of the threshold to compute the weak classifier.  
 
3.2 Adaboost training 
The task of the Adaboost algorithm is to pick a few 
hundred features and assign weights to each 
feature. A set of training images is reduced to 
compute the weighted sum of the chosen rectangle-
features and apply a threshold. The algorithm 
builds a strong classifier from the weak classifier 
by choosing the lowest error in the weak classifier 
groups. 
 
3.2.1 The Training Algorithm 
  The following explains how training algorithm 
works:   
• give example images(x1 ,y1 )…………(x250, 

y250),where yi=1,-1 for negative and positive 
respectively, where X is the images in 24 ×24 
size and it consist of the 150 images are face 

and the rest 100 images are non-face, where the 
Y is label of 1,-1 for face , non-face.  

• Initialize weights w1,i =   ,    for  yi=1,-1 
respectively, where m =100_and  =150 are 
the numbers of negatives (non-face) and 
positives (face) respectively. 

• For t=1……..T, in this paper T=3 in each 
system  

1. Normalize the weights, by using eq.9. 

w t , i    

(9) 

             So that wt is a probability distribution.  
2. For each feature j, train a classifier hj which 

is restricted to using a single feature. (weak 
classifier compute) The error is 
evaluated with respect to wt computed by 
eq.10. 

                (10) 

3. Choose the classifier ht, with the lowest 
error t  

4. Update the weights, using eq.11. 

(11) 

Where ei= 0 if example xi is classified 
correctly, ei =1 otherwise, and β t 

=  

• The final strong classifier can be calculated 
using eq.12. 

 

 where αt =log  
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To explain how the Adaboost algorithm works, 
fig.9 describes the process of the Adaboost training. 
 

Negative 
(nonface) Positive(face)

 the final classifier
Update the weight

Initialize the  
sample with 

weight

Normalize weights 
for samples

Chose the 
lowest error

Calculate the error 
value for each one

Calculate features on 
each sample training  

Generate large set of 
features Training samples

save features select in 
classifier

no

t=Tyes

Weak classifier

 
Fig.9 The Adaboost training flowchart 

 
The Adaboost algorithm will have two inputs, the 
sample weight and the values that are generated 
from applying the Haar features on the images. For 
each alteration, the Adaboost computes the 
threshold, weak classifier, and calculates the error 
value for each classifier. After that the algorithm 
chooses the classifier with lowest error, updates the 
weights, and then normalizes the weights after each 
update. The feature that was chosen in the classifier 
is saved, and then the round is iterated. Finally, the 
final classifier contains all the features that were 
saved. At the end of the algorithm, there will be a 
single strong classifier. The accuracy of this 
classifier depends on the training samples and the 
weak classifier. After several strong classifiers are 
trained, they are combined together to build the 
detector.  

 
3.2.2 The Strong Classifier 
After using the Adaboost algorithm to reduce the 
number of features, by selecting the best features 
and building a strong classifier from combining the 
weak classifiers, and according to Viola et.al, the 
detection performance of a single classifier with a 
limited number of features is very poor for a face 
detection system. They suggest the concept of a 
cascade, instead of evaluating one large strong 
classifier on a detection window. It is simply a 
sequence of strong classifiers which all have a high 
correct detection rate.  
 
The key idea is using a multi-stage classifier as 
shown in Fig.10. The system needs another 
algorithm to help reduce significantly high 
computation time for the face detection system, and 
achieves better detection performance. It is an 
efficient algorithm, because it depends on the 

principle of rejecting the negative subwindow 
quickly in the earlier stages of the cascade, which 
uses a small number of features to increase the 
computation process. If the subwidow is positive, it 
will pass it to the next stage which is more complex 
from the previous stage, and so on, until it reaches 
the last stage. The last stage is more complex, and 
has a large number of features compared the other 
stages. The cascade structure uses a degenerate 
decision tree. In the cascade classifier, the 
subwindow which is used to input the classifier has 
two probabilities. The first probability is to reject in 
one of the stages, which is classified as a negative 
sample (nonface), or pass all the stages, then it will 
be classified as a (positive) face. 
 
The training cascade structures the number features 
on each stage, and the number of stages depend on 
the two constraints, which are the face detection 
rate and the false positive rate. 
 
The cascade structure has three main parameters 
that need to be determined: The total number of 
classifiers, the number of features in each stage, 
and the threshold of each stage.   
  

 

 

 
nonFace nonFace nonFace 

Face Face Face 
Stage 1 Stage 2 Stage 3 

Subwindow 

image 

 
Fig.10 The Cascade Classifier structure. 

3.3 Evaluating the Classifier and Discarding 
Correctly Detected Non-Faces 
To obtain better results for the next strong 
classifier, evaluate the training images for all of the 
non-face images, and correctly discard all of the 
non-face images. The training set is then decreased, 
and used to build a New Training Set Evaluated 
By New Classifier. Since the data training is not 
too big, it might cause a problem in the training 
with the Adaboost, and cause errors in computing. 
Therefore we need to add data training in the step 
with 50 images in each Adaboost train. About 100 
images will be added to the original image test to 
enhance the training part. 
 
3.3.1 The Detector and the Detection 
The detector is considered as a second part for this 
system in other papers. It is used after applying the 
previous steps. The detector’s structure is based on 
the Adaboost algorithm. For each strong classifier 
that the Adaboost generates, the threshold of the 
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stage will be computed and saved to be compared 
later, this threshold is different than the threshold 
used in the training stage. It will be decided if the 
input image is a face or not as shown in fig.11. 
 

Sub image 

Strong classifier

Sum>=threshold 
of stage 

Classifier 3

Next stage

reject

Classifier 2

Classifier 1 Threshold 
of stage 

yes

no⊕

 
Fig.11 The detection procedure 

 
Another thing that must be known in this principle 
is the size of the image that was scanned and the 
detector scale. The detector that was generated 
from the training has a specific 24×24 size. To scan 
images bigger than this size, the detector will have 
to scan the entire image to find whether a face 
exists or not, also there might be other things that 
interfere with the detector to find whether a face 
exists or not. Therefore two solutions to solve this 
issue could be used. First, resize the detector make 
the detector bigger (feature values), or resize the 
image to make the image smaller. Each time the 
detector will scan the image to find whether a face 
exists or not. To make the image that the system 
can scan, a function is needed to convert the image 
if it is bigger than 384 ×288 to an image in this 
size. 
 
In the proposed system, the idea of resizing the 
image was used, which is shown in fig.12. There 
are 12 layers for any image size 384 ×288 to pass, 
and in each one the detector will scan all the 
images trying to find any face. First layer, the 
original images is divided into subwindows, each 
window size will be 24×24. The subwindows will 
be inputted in the detector to decide if the sub 
image is a face or nonface. If the image was 
nonface, it would be discarded, otherwise the image 
is saved. This operation is repeated on the 11 sizes 
of the image until the image size becomes 24×24 or 
smaller, and then plot the result on the original 
image. 
 

 
Fig.12 The used  block diagram of the face detector  

 
4 Experimental Results 
The face detection systems presented in this paper 
was trained and tested using MATLAB 7.0 on Intel 
core (TM) i3 2.13 GHz 4GB of RAM and windows 
Vista TM Ultimate operating system. 
 
The 12 systems were built similarly, but they differ 
in what features they have and the method used to 
compute the threshold. The systems will be 
grouped into six groups based on the number of 
features, and two groups based on the threshold’s 
calculation method. 
 
5.1 Training  
The database used in training is built by hand for 
the purpose of obtaining a database that has 
everything in terms of face details like glasses, 
scarf on the head, beards, Mustaches, face color, 
Illumination, and anything that may help build a 
strong database. Even though it may have different 
type of images, the number of the images in this 
database not too big like in other databases. In this 
database 250 images were used. An examples of 
the images that were used in the training database is 
shown in fig.13. All of the images were scaled to 
the size of the subwindow, which is used in the 
systems (24×24).  
 

……… 
(a) faces 

………. 
(b) nonfaces 

Fig.13 Examples of images that were used in the 
training database 
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All of the training data was labeled as face and 
non-face images manually. The dataset has 2 inputs 
to the system for training, the first input is the 
image and the second input is a label for image 
groups as 1 for face and -1 for nonfaces. 
 
In parallel with processing the dataset images there 
are feature generation process. In this process, the 
features will be generated for each type, in every 
scale and location, and for each system. The 
number of features in each system is explained in 
table 1. After that the training process will apply 
every feature of these features on the training 
images, and extract features to prepare them to 
compute the threshold, and generate the weak 
classifier and then continue the other process. The 
time needed to apply the features on the images, 
increases as the number of features increase. 
 
After computing the threshold values, using the two 
methods, the weak classifiers for each system 
before and after the training using the Adaboost 
will give the rates for every system as shown in the 
tables 2 and 3 where FP is False positive. An 
image is called false positive if the image is not a 
face, but the detector labels it as positive, TP is a 
True positive image where an image of a face that 
the detector correctly labeled positive. False 
negative FN is a face image, but the detector labels 
it as negative, which means it does not find that 
face. TN is True negative which a negative image 
is correctly labeled as negative. 
 

Table 2. Systems results before and after training 
based on Threshold 1 (Average of Means) 

Rate 1 Training Tp Fn Tn Fp 
System 

1 
before 0.582 0.419 0.564 0.436 
after 0.727 0.273 1 0 

System 
2 

before 0.558 0.442 0.548 0.452 
after 0.72 0.28 1 0 

System 
3 

before 0.571 0.429 0.554 0.446 
after 0.72 0.28 1 0 

System 
4 

before 0.568 0.432 0.359 0.641 
after 0.947 0.053 0.905 0.095 

System 
5 

before 0.562 0.438 0.549 0.451 
after 0.653 0.347 1 0 

System 
6 

before 0.563 0.437 0.550 0.450 
after 0.707 0.293 1 0 

 
Table 3. Systems results before and after training 

based on Threshold 2 (Optimal Threshold) 
Rate 1 Training Tp Fn Tn Fp 
System 

1 
before 0.890 0.109 0.327 0.672 
after 0.813 0.187 1 0 

System 
2 

before 0.907 0.093 0.283 0.716 
after 0.78 0.22 1 0 

System 
3 

before 0.897 0.101 0.302 0.698 
after 0.78 0.22 1 0 

System 
4 

before 0.864 0.136 0.169 0.831 
after 0.987 0.013 1 0 

System 
5 

before 0.905 0.095 0.282 0.718 
after 0.713 0.287 1 0 

System 
6 

before 0.904 0.096 0.285 0.716 
after 0.787 0.213 1 0 

 

5.3 Testing  
In the testing, all systems have been tested on the 
CMU+MIT database and compare between them. 
One image from this database is shown in Fig.14. 
The image consists of 25 faces. The result of each 
detection is shown on it.  
 
Table 4 will display the detection window, false 
positive and true negative. The left side of the table 
represents the result of the group that is based on 
the average of mean, to compute the threshold, and 
the right side contains the results of the other 
method.  

   
 

Fig.14 Sample of testing classifiers 
 

Table 4. The result of detector on the test image 
Systems Detected TP  FP Systems  Detected TP FP 

4a-1 17 5 12 4a-2 115 8 107 

4b-1 15 4 11 4b-2 62 8 54 

5-1 18 5 13 5-2 75 8 67 

6-1 52 0 52 6-2 6 1 5 

7-1 18 7  11 7-2 16 3 13 

8-1 13 6 7 8-2 47 5 42 

 
As a result of these systems, the first group 
generates faster, but is less accurate than the second 
group. Furthermore , the second group generates 
more rectangles than the first, so the FP images in 
the second group is higher than the FP in the first 
systems. 
 
5 Discussion 
The detector that was used in this paper was a 
simple detector; it was used to gather statistical 
data when comparing between features and the two 
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methods to compute the threshold. As seen in the 
tables 2 and  3, the results confirm that the 
Adaboost algorithm increases the efficiency of the 
system for all of the systems. As for the feature 
types, the results have shown that when using eq.2 
to calculate the threshold, the results were better if 
Viola & Jones system, that included, feature 5 was 
used. On the other hand, if eq.3 was used, the 4 
feature (not basic), 8 features system is better. Also 
it was noted that the systems that used the diagonal 
features showed that the detection rate was 
decreased, except when it was used for the Viola & 
Jones system. This shows why researchers don’t 
use this feature in their research, and why it was not 
used by Intel in open CV. 
  
The number of features is directly proportional to 
the detector’s accuracy, it was mentioned in 
different papers that the number of features in a 
single classifier should be at least 15 to give good 
results. But in the 3 stages in this paper is the 
highest number was 10. 
According to the table 4, the threshold values were 
better for systems that used eq.3 in the training 
stages. On the other hand during the testing stages 
that were done on the CMU+MIT databases, and 
according to table 4, the data show that the results 
varied between the systems, but in general it 
slightly better for systems used eq.3. The difference 
between the two is the time required to calculate 
the threshold. The time required to calculate a 
single value using eq.3 is approximately 0.32ms, 
while the time required for eq.2 is approximately 
0.02ms. 
 
The number of the databases greatly affects the 
detector’s efficiency, and since the data is not big 
compared to the other systems, it will affect the 
threshold’s calculation. That’s why adding 50 non-
face images to the data is used after discarding 
some images. 
 
Since the detector has low accuracy, the number of 
faces detected will be low. Another problem that 
this might cause is the high number of false 
positives (FP), furthermore we haven’t mentioned 
the overlap that might happen which caused an 
increased number of FP. 

6 Conclusion 
In this paper 12 systems were implemented based 
on the Haar features and Adaboost algorithm. 
There are 8 different types of Haar features, on the 
other hand there are two methods that were used to 
compare the threshold. Based on the above 

configurations, the systems were divided into 6 
groups based on the features, and 2 groups based 
on the threshold calculation methods. These 
features were divided to create 6 groups based on 
them; each group containing 4 simple, 4, 5, 6, 7, or 
8 of these Haar features. On the other hand, the 2 
groups based on the threshold were based on the 
average of means and the optimal threshold 
methods. 
 
Based on these results, we could solve the problem 
of the overlap to get better detection rates, do more 
comparisons with more threshold methods (single 
or multi threshold), add multi-face detection and 
building a face detection system that’s more 
accurate and faster. 
 
As a recommendation for the designed systems to 
be more efficient and achieve higher detection rate, 
we could enhance the stages by adding more 
features or by adding more stages (strong 
classifier).  
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