
Towards Enhancing the Face Detectors Based on Measuring the
Effectiveness of Haar Features and Threshold Methods

Nidal F. Shilbayeh*, Khadija M. Al-Noori**, Asim Alshiekh*

*University of Tabuk, Faculty of Computers and Information Technology, Tabuk, Saudia,

Arabia
nshilbayeh@ut.edu.sa, aalshiekh@ut.edu.sa

**Middle East University, Faculty of Information Technology, Amman, Jordan
Kmk-84@yahoo.com

Abstract: - Face detection has been regarded as the most complex and challenging problem in the field of
computer vision, due to the large intra-class variations caused by the changes in facial appearance, lighting, and
expression. Face detection is the essential first step towards many advanced computer vision, biometrics
recognition and multimedia applications, such as face tracking, face recognition, and video surveillance. One of
the most famous approaches that is successful is the Viola & Jones algorithm. In this paper, systems were
designed based on this approach to measure the effectiveness of the different Haar feature types, and to
compare two types of threshold computing methods. The two methods used for computing thresholds are the
average of means and the optimal threshold methods. There are 8 different Haar features has been used in
building these systems. The implemented systems have been trained using a handpicked database. The database
contains 350 face and nonface images. Adaboost algorithm has been used to build our detectors. Each detector
consists of 3 cascade stages. In each stage, we randomly use a number of weak classifiers to build the strong
classifier. Each weak classifier is computed based on threshold before entering the Adaboost algorithm. If the
image can pass through all stages of the detector, then the face will be detected. The detectors have been tested
using the CMU+MIT database. Some recommendations have been suggested according to the Haar features
and the computed threshold to improve the face detection of Viola Jones approach.

Key-Words: - Face Detection, Haar-Like Features, Pattern Recognition, Weak Classifier, Integral Image,
Strong Classifier, Adaboost Algorithm.

1 Introduction
Face detection is a computer technology that
determines if there are any faces in arbitrary images
and identifies: location, size, and content of each
human face. It also detects the facial features and
ignores anything else, such as: buildings, trees,
animals and bodies.

Human face detection is an active area of research
covering several disciplines such as: image
processing, pattern recognition and computer
vision. Face detection is the first step in any
automated system, which solves Face recognition
or face identification, face authentication, face
tracking, facial expression recognition, and face
localization. It's also the first step of any fully
automatic system that analyzes the information
contained in faces (e.g., identity, gender,
expression, age, race and pose). Face detection is
used in a lot of applications, such as a part of a
facial recognition system, video surveillance,
human computer interface, image database

management, and newer digital cameras use face
detection for autofocus and bodies [10-12].

Face detection is considered a part of object
detection as in [1-3]; Object detection and
classification holds the key to many other high
level applications such as: face recognition, human
computer interaction, security and tracking among
others.

2 Literature Review
Face detection is a computer technology that
has received a lot of interest in the last few
years. In the last ten years, face detection and
facial expression recognition have attracted
much more attention, even though they had
been studied for more than 30 years by
psychophysicists neuroscientists, and
engineers. Face detection is one of the most
active areas in computer science, so there are is
a lot of effort and researches in this area.

WSEAS TRANSACTIONS on SIGNAL PROCESSING Nidal F. Shilbayeh, Khadija M. Al-Noori, Asim Alshiekh

E-ISSN: 2224-3488 662 Volume 10, 2014

mailto:n_shilbayeh@yahoo.com�
mailto:Kmk-84@yahoo.com�

It is known that isolated pixel values cannot give
any information except the luminance and/or the
color of the radiation received by the camera at a
given point. Therefore, there are two motivations
for using features instead of the pixel intensities
directly. First, features encode domain knowledge
is better than pixels, so the features help to encode
some information about the class to be detected.
The second reason is that a Feature-Based System
can be much faster than a Pixel Based System [1-
2].

One of these features is the Haar feature, which
encodes the existence of oriented contrasts between
regions in the image. A set of these features can be
used to encode the contrasts exhibited by a human
face and their special relationships

2.1 Haar-Like Features
Haar features, are represented by a template (shape
of the feature). Each feature is composed of a
number of “black” and “white” rectangles joined
together. After the approach of Viola & Jones
succeeded, an extended set of Haar-like features are
added to the basic feature set. There are more than
15 kinds (or prototypes) of Haar feature types.
Fig.1 shows the basic Haar features , and the fifteen
extended Haar features respectively

Fig.1 A set of basic Haar features and Extended

Haar features

To obtain the value of a Haar-like feature, it is
computed as the difference between the sums of the
pixel gray level values within the black and white
rectangular regions. This is done by subtracting the
pixels covered by white rectangles from the sum of
the pixels covered by black rectangles as in eq.1

2.2 Integral Image
It is a new image representation, “Integral Image”
is similar to the "Summed Area Table" (SAT) idea
which is used in computer graphics for texture
mapping. It can be defined as 2-dimensional “look

up table" in the form of a matrix with the same size
of the original image
The integral image’s value at each pixel (x,y) could
be computed by summing the values of the pixels
above and to the left of (x,y). However, it can
quickly be computed in one pass through the image
and can be calculated by using eq.2 and fig.2

 (2)

Fig.2 Integral Image for point (x,y)

2.3 Adaboost Algorithm
Boosting is an efficient classifier, which converts a
weak classifier to a strong one by combining a
collection of weak classifier to form a strong one.
The adaptive boosting (Adaboost) algorithm exists
in various varieties[3]. In addition, there are three
modifications of the original algorithm that were
proposed: Gentle-, Logit-, and Real Adaboost [4].

The aim of boosting is to improve the classification
performance of any given simple learning
algorithm. It is used to select rectangle features and
combine them into an ensemble classifier in a
cascade node, which is used to reduce the training
time.

2.4 Weak Classifier and Threshold
Weak classifiers are constructed using one or a few
Haar features with trained threshold values. In most
papers, one feature for every weak classifier is
used. To determine the weak classifier, first we
must compute the threshold value. The threshold is
a value used to separate the value of face and non-
face into building the weak classifier. It is
important because it is the base of building the
weak classifier.

There are more than one way to compute the
threshold value. In this paper, we will compare
between two of these methods to see which of them
is better to use in face detection system. Based on
these two methods, two algorithms will be used to
compute the threshold value as follows:
• Taking the average of their mean’s using eq.3:

∑
≤≤

=
yyxx

yxiyxP
','

)','(),(

WSEAS TRANSACTIONS on SIGNAL PROCESSING Nidal F. Shilbayeh, Khadija M. Al-Noori, Asim Alshiekh

E-ISSN: 2224-3488 663 Volume 10, 2014

Where is the mean of positive samples
and is means of the negative samples.

• Finding the optimal threshold that use an
algorithm that chose the value that best
separates the faces from the non-faces.

2.5 Adaboost and Strong Classifier
The strong classifier is a combination of several
weak classifiers. Each of the weak classifiers is
given weights depending on its detection accuracy.
When classifying a detection window with a strong
classifier, all of the weak classifiers are evaluated.
The pertained weights of the weak classifiers that
classify the window as a face are added together. In
the end, the sum of the weights is compared with a
predefined threshold to determine if the strong
classifier classifies the detection window as a face
or not.
There are several types of the Adaboost algorithms
used for boosting, Gentle-, Logit-, and Real
Adaboost. In [6] they compared the three different
boosting algorithms: Discrete Adaboost, Real
Adaboost, and Gentle Adaboost. Three 20-stage
cascade classifiers were trained with the respective
boosting algorithm using the basic feature set.
In [8] they used a cascaded classifier trained by
gentle Adaboost algorithm, one of the appearance-
based pattern learning method. In [5] they
addressed joint Haar-like features using Adaboost,
In [7, 9] they addressed a fast and effective multi-
view face tracking algorithm based on Adaboost
algorithm.

2.6 Cascade classifier
The main idea of building the Cascade Classifier is
to reduce computation time, by giving different
treatments to different kinds of input, depending on
their complexity.
In general works, they use a cascade structure as a
detector to detect a face. Cascade detectors have
demonstrated impressive detection speeds and high
detection rates, using the cascade structure, in order
to ensure high testing speed. Where detection rate
is the ratio of the true faces to the number of the
database .
The cascade training process involves two types of
tradeoffs. In most cases, the classifiers with the
most features will achieve higher detection rates
and lower false positive rates. At the same time,
classifiers with more features require more time to

compute. In general, one could define optimization
framework by the number of classifier stages, the
number of features in each stage, and the threshold
of each stage, are traded off in order to minimize
the expected number of evaluated features.
Each stage in the cascade reduces the false positive
rate as well as the detection rate as in eq.4 and eq.5.
False positive rate is the probability of falsely
rejecting the null hypothesis for a particular test
among all the tests performed. (also known as type
1 errors). Where Fp is False positive. An image is
called false positive if the image is not a face, but
the detector labels it as positive, Tn is True
negative which a negative image is correctly
labeled as negative. As

 False positive rate (α)=Fp/(Fp + Tn) (4)

Or

False Positive Rate(Α)= 1–Specificity (5)

Where Specificity = number of Tn/(number of
 Tn + number of Fp)

3 Face Detection System Architecture
In our proposed architecture, we used a statistical
style for measuring the effectiveness of some of the
prototypes of the Haar features on the detector, and
compares them using two methods that compute the
threshold value. This will be done by building a
system based on the ideas of The Viola & Jones
approach, but different in some ways like changing
the number of stages, and changing the number of
features in each stage.

Each of the systems is designed to locate multiple
faces with a minimum size of 24×24 pixel. The
detector will go through a thorough search, at all
positions, all scales for faces under all light
conditions. The systems will be grouped in pairs ;
each pair will have 4 basic features, 4 features, 5
features, 6 features, 7 features, or 8 features, to a
total of 12 systems. Each pair’s threshold will be
computed based on one of two methods.

3.1 Systems description
Before talking about the main parts of the systems,
the following will be discussed:

Subwindow size (window size): is the image size
that is used in parts of the feature generation and in
the units of training and testing. There are different
window sizes that are used in other systems like
19×19, 20×20 and 24×24. These sizes affect the
number of the features that could be generated for

WSEAS TRANSACTIONS on SIGNAL PROCESSING Nidal F. Shilbayeh, Khadija M. Al-Noori, Asim Alshiekh

E-ISSN: 2224-3488 664 Volume 10, 2014

each image. The 24×24 Subwindow size is used in
this paper because it was used in the viola & Jones
paper, furthermore it is popular in a lot of other
papers that use the Haar like feature generation.
Therefore this size will be used in all of our
implemented systems.

Fig.3 describes the architecture of the system that
will be used as a face detection. It will be based on
the Haar features and the Adaboost algorithm in
general and each stage will have a detailed
description:

 Generate features
 set Training set

Features value
(apply on images)

Threshold compute

Weak classifier set

Adaboost
Training

T=2

strong
classifier

“A”

Evaluation the classifier
and discard correctly
detected non-faces

New Training set
Evaluated by “A”

 threshold compute

 threshold compute

 Weak classifier set

Weak classifier set

Adaboost
Training

T=5

strong
classifier

“c”

strong
classifier

“B”

Adaboost
Training

T=10
Evaluation the classifier

and discard correctly
detected non-faces

Evaluation the classifier
and discard correctly
detected non-faces

New Training set
Evaluated by “A”,”B”

Integral image

Add 50 nonface
 apply by features

Add 50 nonface
 apply by features

Fig.3 The Cascade Training Process for three
stages

3.1.1 Generate Features Set
The features which are generated will be in
different sizes and locations as shown in fig.4.

Fig.4 Examples of Haar-like features in different

sizes and different locations.

To find the number of the features that could be
obtained for any subwindow in any size. The
number of features derived from each prototype is
quite large and differs from prototype to another .

Let X= and Y= be the maximum
scaling factors in x and y direction where W is the
width of window size H is the high of window size
and w is the width of feature rectangle h is the high
of feature rectangle. An upright feature of size wxh

then generates the number of raw features as in
eq.6:

Eq.7 could be used to calculate this number for
every feature, and the researchers could change it
as needed. As an example, the number of features
generated from the first and third features
respectively are 43200, 27600. This equation is
used to compute the Haar features.

There are several types of features used in our
systems. Fig.5 shows the feature types that will be
used in all systems. Table 1 describes the number
of features that will be used in each system, which
of them use in each one, and how many features
will they generate.

Fig.5 The Haar features used

Table 1. Lists the feature numbers and the type

used in each system
System

Number
Features
number

Feature types
used Total

System 1 4feature 1a, 1b, 2a, 2c 141600

System 2 4feature 1a, 1b, 2a, 3a 134736

System 3 5feature 1a, 1b, 2a, 2c, 3a 162336

System 4 6feature 1a, 1b, 2a, 2c, 3a,
3b 183072

System 5 7feature 1a, 1b, 2a, 2c, 3a,
3b, 2b 202872

System 6 8feature 1a, 1b, 2a, 2c, 3a,
3b, 2b, 2d 222672

3.1.2 Training Set
Viola & Jones approach deals with gray scale
images. In this approach every image must be
provided in gray scale. Therefore all the images in
it that are not in gray scale must be converted. The
reason for that is because this approach deals with
only gray intensities, so the system needs to
preprocess the images in it to build the database.

The first preprocessing will be in the dataset step
which consists of the following steps:
Step 1. Determining the two groups

WSEAS TRANSACTIONS on SIGNAL PROCESSING Nidal F. Shilbayeh, Khadija M. Al-Noori, Asim Alshiekh

E-ISSN: 2224-3488 665 Volume 10, 2014

The images that need to be stored in our dataset
will be in one of the two groups, which are
either:
a. face (positive examples)
b. nonface (negative examples)
The data set consists of two labeled parts. The
face dataset consist of numbers of different
human face images for different ages, poses,
and different luminances and some images with
glasses. The rest of the images are taken from
The IMM (Informatics and Mathematical
Modelling) Face Database which is a Face
Database without glasses consist of six
different Image types which are:
1. Full frontal face, neutral expression, diffuse

light.
2. Full frontal face, "happy" expression, and

diffuse light.
3. Face rotated approx. 30 degrees to the

person's right, neutral expression, diffuse
light.

4. Face rotated approx. 30 degrees to the
person's left, neutral expression, diffuse
light.

5. Full frontal face, neutral expression, spot
light added at the person's left side.

6. Full frontal face, "joker image" (arbitrary
expression), diffuse light.

The nonface dataset part can consist of set of
different images for anything like trees, flowers,
except for human faces. Those images are
picked in an arbitrary manner.

Step 2. Preprocessing the face images
After determining the two groups, the first group
needs to be processed. The parts in the first group
which contain a face image are determined in the
images. Once that is done, the faces are cut and
saved as a new image in dataset 1 manually.

Step 3. Resizing the images in the data set
After the first step, and determining the two groups
of images, the images need to be resized into the
subwindows size (24×24).

Step 4. Gray scale
The data set must be in grayscale. All the images
will be converted to grayscale if they’re not already
in grayscale.
To achieve the goal of the preprocessing and obtain
dataset 2, we will need to build a function, or a
small program, which will consist of two loops that
will read the files (images), from the two folders;
face and non-face. The images will then be saved in
a new folder called dataset 2, this dataset will

consist of 250 images for both face and nonface
groups. The dataset built contains (250) images,
150 images as face image, and 100 images as
nonface images. Fig.6 shows the steps used in
building the training datase 2.

Data set 1

nonfaces faces

picked and determined the face parts

Resize the images

 Convert to Gray scale

Data set 2

Fig.6 The training set

3.1.3 Integral Image (Fast Feature Evaluation)
The value of the integral image will be computed
for all the images using the "Summed Area Table
(SAT)" idea and eq.2 . To guarantee that the
integral image function does its job correctly,
another function will be used which is called the
pad function. This function is used to pad two lines
of zeros, one at the top of the image, and one to the
left of the image, to guarantee a correct result as
shown in the fig.7 and fig.8.

To explain the idea of the integral image let's say
that there are 2 rectangles 3*3 in fig.7, one
represents part of original image and the other
represent parts of the integral image.

Fig.7 The implementation of the pad and the

integral image function as an array

WSEAS TRANSACTIONS on SIGNAL PROCESSING Nidal F. Shilbayeh, Khadija M. Al-Noori, Asim Alshiekh

E-ISSN: 2224-3488 666 Volume 10, 2014

Fig.8 The implementation of the pad and the

integral image function in an image

As shown in the second rectangle each pixel will
represent the summation value of pixels above and
to the left of it. This rectangle is padded, therefore
the index starts at p(2,2). If we want to calculate the
integral image, we’ll need to start at the point +1
(e.g. point x,y, would be start at (x+1,y+1). For
example, the integral image for pixel p(2,3) is 208
where the value of summation of all pixels left and
up is: (51+41+33+26+30+27), this is represented in
p(3,4).

When using this implementation, it is easy to
compute the value of the rectangular sum at any
scale or position. For example if we want to
compute the value of the pixel s of [p(1,2), p(1,3),
p(2,2), p(2,3)] we can easily obtain the sum of them
by summing the values 208+0-0-77=131 and so on.

3.1.4 Features Extraction
Feature extraction is a special form of
dimensionality reduction in pattern recognition and
image processing. When the input data to an
algorithm is too large to be processed, and is
suspected to be notoriously redundant (much data,
but not much information), then the input data will
be transformed into a reduced representation set of
features (also named features’ vector).
Transforming the input data into the set of features
is called feature extraction.

If the features extracted are carefully chosen, it is
expected that the features’ set will extract the
relevant information from the input data in order to
perform the desired task, using this reduced
representation instead of the full size input. Feature
extraction will be used to extract the features of
every image in the training set.

This part is used to generate a large number of
features very quickly, by computing the integral
image for a given set of training images. Then use
the feature extraction method to reduce the

represented set of features, and afterwards extract a
small number of these features by using for the
Adaboost algorithm. As the hypothesis of Viola &
Jones supposes that a very small number of these
features can be combined to form an effective
classifier.

3.1.5 Threshold Computing
The threshold is important because it is the base of
computing the weak classifier. It is the value that
separates the face from the non-face images. The
weak classifier is the input to the Adaboost
algorithm.

There are several steps for this approach for each
feature extraction:
1. Start with the lowest possible threshold.
2. Evaluate the weak classifier with the current

threshold on every face example, and store the
sum of correctly classified faces in a histogram
(Hfaces) at the current threshold.

3. Evaluate the weak classifier with the current
threshold on every non-face example, and store
the sum of incorrectly classified non-faces in
another histogram (Hnonfaces) at the current
threshold.

4. Increase the threshold to the next discrete value
and start again at step 2 until all thresholds
have been evaluated.

5. Compare Hfaces with Hnonfaces and find the
threshold t that maximizes the difference
function in eq.7.

threshold(t)=Hfaces(t)-Hnonfaces(t) (7)

Based on this information about threshold, we built
12 systems. Each of the 6 systems are built based
on one of the threshold algorithms, but different in
the number of the features as shown in table 1. The
first 6 systems that are built are based on the
average of means and saved as thrshold1.mat for
each one of these 6 systems. The other 6 systems
that are built based on the algorithm of the optimal
threshold are saved as threshold2.mat for each one
of them.

3.1.6 Weak Classifier Set (retrain)
The Adaboost learning algorithm needs to build
simple classifiers by using the Haar like features.
Each single feature will be associated with a
threshold value to build a weak classifier that is
used as a simple classifier which is an input to the
Adaboost algorithm. A practical method for
completing the analogy between weak classifiers
and features can be explained as follows:

WSEAS TRANSACTIONS on SIGNAL PROCESSING Nidal F. Shilbayeh, Khadija M. Al-Noori, Asim Alshiekh

E-ISSN: 2224-3488 667 Volume 10, 2014

1. Restrict the weak learner to the set of
classification functions, each of which depend
on a single feature. The weak learning
algorithm is designed to select the single
rectangle feature which best separates the
positive and negative examples.

2. For each feature, the weak learner determines
the optimal threshold classification function,
such that the minimum number of examples is
misclassified.

3. A weak classifier (hi) thus consists of Feature
(fi), Threshold (θi) Parity (pi), indicating the
direction of the inequality sign.

An easy way to link the weak learner and Haar
features is to assign one weak classifier to one
feature. The value of a given single feature vector fi
is evaluated at x, and the output of the weak
classifier hi(x) is either -1 or 1. The output depends
on whether the feature value is less than a given
threshold θi in eq.8.

(8) (8)

Where pi is the parity and x is the image-box to be
classified. Thus our set of features defines a set of
weak classifiers. From the evaluation of each
feature type on training data, it is possible to
estimate the value of each classifier’s threshold and
its parity variable.

The weak classifier that is generated will be an
array of two dimensions (features, database) of 1,-
1. To retrain the weak classifier, use the new value
of the threshold to compute the weak classifier.

3.2 Adaboost training
The task of the Adaboost algorithm is to pick a few
hundred features and assign weights to each
feature. A set of training images is reduced to
compute the weighted sum of the chosen rectangle-
features and apply a threshold. The algorithm
builds a strong classifier from the weak classifier
by choosing the lowest error in the weak classifier
groups.

3.2.1 The Training Algorithm
 The following explains how training algorithm
works:
• give example images(x1 ,y1)…………(x250,

y250),where yi=1,-1 for negative and positive
respectively, where X is the images in 24 ×24
size and it consist of the 150 images are face

and the rest 100 images are non-face, where the
Y is label of 1,-1 for face , non-face.

• Initialize weights w1,i = , for yi=1,-1
respectively, where m =100_and =150 are
the numbers of negatives (non-face) and
positives (face) respectively.

• For t=1……..T, in this paper T=3 in each
system

1. Normalize the weights, by using eq.9.

w t , i

(9)

 So that wt is a probability distribution.
2. For each feature j, train a classifier hj which

is restricted to using a single feature. (weak
classifier compute) The error is
evaluated with respect to wt computed by
eq.10.

 (10)

3. Choose the classifier ht, with the lowest
error t

4. Update the weights, using eq.11.

(11)

Where ei= 0 if example xi is classified
correctly, ei =1 otherwise, and β t

=

• The final strong classifier can be calculated
using eq.12.

 where αt =log

WSEAS TRANSACTIONS on SIGNAL PROCESSING Nidal F. Shilbayeh, Khadija M. Al-Noori, Asim Alshiekh

E-ISSN: 2224-3488 668 Volume 10, 2014

To explain how the Adaboost algorithm works,
fig.9 describes the process of the Adaboost training.

Negative
(nonface) Positive(face)

 the final classifier
Update the weight

Initialize the
sample with

weight

Normalize weights
for samples

Chose the
lowest error

Calculate the error
value for each one

Calculate features on
each sample training

Generate large set of
features Training samples

save features select in
classifier

no

t=Tyes

Weak classifier

Fig.9 The Adaboost training flowchart

The Adaboost algorithm will have two inputs, the
sample weight and the values that are generated
from applying the Haar features on the images. For
each alteration, the Adaboost computes the
threshold, weak classifier, and calculates the error
value for each classifier. After that the algorithm
chooses the classifier with lowest error, updates the
weights, and then normalizes the weights after each
update. The feature that was chosen in the classifier
is saved, and then the round is iterated. Finally, the
final classifier contains all the features that were
saved. At the end of the algorithm, there will be a
single strong classifier. The accuracy of this
classifier depends on the training samples and the
weak classifier. After several strong classifiers are
trained, they are combined together to build the
detector.

3.2.2 The Strong Classifier
After using the Adaboost algorithm to reduce the
number of features, by selecting the best features
and building a strong classifier from combining the
weak classifiers, and according to Viola et.al, the
detection performance of a single classifier with a
limited number of features is very poor for a face
detection system. They suggest the concept of a
cascade, instead of evaluating one large strong
classifier on a detection window. It is simply a
sequence of strong classifiers which all have a high
correct detection rate.

The key idea is using a multi-stage classifier as
shown in Fig.10. The system needs another
algorithm to help reduce significantly high
computation time for the face detection system, and
achieves better detection performance. It is an
efficient algorithm, because it depends on the

principle of rejecting the negative subwindow
quickly in the earlier stages of the cascade, which
uses a small number of features to increase the
computation process. If the subwidow is positive, it
will pass it to the next stage which is more complex
from the previous stage, and so on, until it reaches
the last stage. The last stage is more complex, and
has a large number of features compared the other
stages. The cascade structure uses a degenerate
decision tree. In the cascade classifier, the
subwindow which is used to input the classifier has
two probabilities. The first probability is to reject in
one of the stages, which is classified as a negative
sample (nonface), or pass all the stages, then it will
be classified as a (positive) face.

The training cascade structures the number features
on each stage, and the number of stages depend on
the two constraints, which are the face detection
rate and the false positive rate.

The cascade structure has three main parameters
that need to be determined: The total number of
classifiers, the number of features in each stage,
and the threshold of each stage.

nonFace nonFace nonFace

Face Face Face
Stage 1 Stage 2 Stage 3

Subwindow

image

Fig.10 The Cascade Classifier structure.

3.3 Evaluating the Classifier and Discarding
Correctly Detected Non-Faces
To obtain better results for the next strong
classifier, evaluate the training images for all of the
non-face images, and correctly discard all of the
non-face images. The training set is then decreased,
and used to build a New Training Set Evaluated
By New Classifier. Since the data training is not
too big, it might cause a problem in the training
with the Adaboost, and cause errors in computing.
Therefore we need to add data training in the step
with 50 images in each Adaboost train. About 100
images will be added to the original image test to
enhance the training part.

3.3.1 The Detector and the Detection
The detector is considered as a second part for this
system in other papers. It is used after applying the
previous steps. The detector’s structure is based on
the Adaboost algorithm. For each strong classifier
that the Adaboost generates, the threshold of the

WSEAS TRANSACTIONS on SIGNAL PROCESSING Nidal F. Shilbayeh, Khadija M. Al-Noori, Asim Alshiekh

E-ISSN: 2224-3488 669 Volume 10, 2014

stage will be computed and saved to be compared
later, this threshold is different than the threshold
used in the training stage. It will be decided if the
input image is a face or not as shown in fig.11.

Sub image

Strong classifier

Sum>=threshold
of stage

Classifier 3

Next stage

reject

Classifier 2

Classifier 1 Threshold
of stage

yes

no⊕

Fig.11 The detection procedure

Another thing that must be known in this principle
is the size of the image that was scanned and the
detector scale. The detector that was generated
from the training has a specific 24×24 size. To scan
images bigger than this size, the detector will have
to scan the entire image to find whether a face
exists or not, also there might be other things that
interfere with the detector to find whether a face
exists or not. Therefore two solutions to solve this
issue could be used. First, resize the detector make
the detector bigger (feature values), or resize the
image to make the image smaller. Each time the
detector will scan the image to find whether a face
exists or not. To make the image that the system
can scan, a function is needed to convert the image
if it is bigger than 384 ×288 to an image in this
size.

In the proposed system, the idea of resizing the
image was used, which is shown in fig.12. There
are 12 layers for any image size 384 ×288 to pass,
and in each one the detector will scan all the
images trying to find any face. First layer, the
original images is divided into subwindows, each
window size will be 24×24. The subwindows will
be inputted in the detector to decide if the sub
image is a face or nonface. If the image was
nonface, it would be discarded, otherwise the image
is saved. This operation is repeated on the 11 sizes
of the image until the image size becomes 24×24 or
smaller, and then plot the result on the original
image.

Fig.12 The used block diagram of the face detector

4 Experimental Results
The face detection systems presented in this paper
was trained and tested using MATLAB 7.0 on Intel
core (TM) i3 2.13 GHz 4GB of RAM and windows
Vista TM Ultimate operating system.

The 12 systems were built similarly, but they differ
in what features they have and the method used to
compute the threshold. The systems will be
grouped into six groups based on the number of
features, and two groups based on the threshold’s
calculation method.

5.1 Training
The database used in training is built by hand for
the purpose of obtaining a database that has
everything in terms of face details like glasses,
scarf on the head, beards, Mustaches, face color,
Illumination, and anything that may help build a
strong database. Even though it may have different
type of images, the number of the images in this
database not too big like in other databases. In this
database 250 images were used. An examples of
the images that were used in the training database is
shown in fig.13. All of the images were scaled to
the size of the subwindow, which is used in the
systems (24×24).

………
(a) faces

……….
(b) nonfaces

Fig.13 Examples of images that were used in the
training database

WSEAS TRANSACTIONS on SIGNAL PROCESSING Nidal F. Shilbayeh, Khadija M. Al-Noori, Asim Alshiekh

E-ISSN: 2224-3488 670 Volume 10, 2014

All of the training data was labeled as face and
non-face images manually. The dataset has 2 inputs
to the system for training, the first input is the
image and the second input is a label for image
groups as 1 for face and -1 for nonfaces.

In parallel with processing the dataset images there
are feature generation process. In this process, the
features will be generated for each type, in every
scale and location, and for each system. The
number of features in each system is explained in
table 1. After that the training process will apply
every feature of these features on the training
images, and extract features to prepare them to
compute the threshold, and generate the weak
classifier and then continue the other process. The
time needed to apply the features on the images,
increases as the number of features increase.

After computing the threshold values, using the two
methods, the weak classifiers for each system
before and after the training using the Adaboost
will give the rates for every system as shown in the
tables 2 and 3 where FP is False positive. An
image is called false positive if the image is not a
face, but the detector labels it as positive, TP is a
True positive image where an image of a face that
the detector correctly labeled positive. False
negative FN is a face image, but the detector labels
it as negative, which means it does not find that
face. TN is True negative which a negative image
is correctly labeled as negative.

Table 2. Systems results before and after training
based on Threshold 1 (Average of Means)

Rate 1 Training Tp Fn Tn Fp
System

1
before 0.582 0.419 0.564 0.436
after 0.727 0.273 1 0

System
2

before 0.558 0.442 0.548 0.452
after 0.72 0.28 1 0

System
3

before 0.571 0.429 0.554 0.446
after 0.72 0.28 1 0

System
4

before 0.568 0.432 0.359 0.641
after 0.947 0.053 0.905 0.095

System
5

before 0.562 0.438 0.549 0.451
after 0.653 0.347 1 0

System
6

before 0.563 0.437 0.550 0.450
after 0.707 0.293 1 0

Table 3. Systems results before and after training

based on Threshold 2 (Optimal Threshold)
Rate 1 Training Tp Fn Tn Fp
System

1
before 0.890 0.109 0.327 0.672
after 0.813 0.187 1 0

System
2

before 0.907 0.093 0.283 0.716
after 0.78 0.22 1 0

System
3

before 0.897 0.101 0.302 0.698
after 0.78 0.22 1 0

System
4

before 0.864 0.136 0.169 0.831
after 0.987 0.013 1 0

System
5

before 0.905 0.095 0.282 0.718
after 0.713 0.287 1 0

System
6

before 0.904 0.096 0.285 0.716
after 0.787 0.213 1 0

5.3 Testing
In the testing, all systems have been tested on the
CMU+MIT database and compare between them.
One image from this database is shown in Fig.14.
The image consists of 25 faces. The result of each
detection is shown on it.

Table 4 will display the detection window, false
positive and true negative. The left side of the table
represents the result of the group that is based on
the average of mean, to compute the threshold, and
the right side contains the results of the other
method.

Fig.14 Sample of testing classifiers

Table 4. The result of detector on the test image
Systems Detected TP FP Systems Detected TP FP

4a-1 17 5 12 4a-2 115 8 107

4b-1 15 4 11 4b-2 62 8 54

5-1 18 5 13 5-2 75 8 67

6-1 52 0 52 6-2 6 1 5

7-1 18 7 11 7-2 16 3 13

8-1 13 6 7 8-2 47 5 42

As a result of these systems, the first group
generates faster, but is less accurate than the second
group. Furthermore , the second group generates
more rectangles than the first, so the FP images in
the second group is higher than the FP in the first
systems.

5 Discussion
The detector that was used in this paper was a
simple detector; it was used to gather statistical
data when comparing between features and the two

WSEAS TRANSACTIONS on SIGNAL PROCESSING Nidal F. Shilbayeh, Khadija M. Al-Noori, Asim Alshiekh

E-ISSN: 2224-3488 671 Volume 10, 2014

methods to compute the threshold. As seen in the
tables 2 and 3, the results confirm that the
Adaboost algorithm increases the efficiency of the
system for all of the systems. As for the feature
types, the results have shown that when using eq.2
to calculate the threshold, the results were better if
Viola & Jones system, that included, feature 5 was
used. On the other hand, if eq.3 was used, the 4
feature (not basic), 8 features system is better. Also
it was noted that the systems that used the diagonal
features showed that the detection rate was
decreased, except when it was used for the Viola &
Jones system. This shows why researchers don’t
use this feature in their research, and why it was not
used by Intel in open CV.

The number of features is directly proportional to
the detector’s accuracy, it was mentioned in
different papers that the number of features in a
single classifier should be at least 15 to give good
results. But in the 3 stages in this paper is the
highest number was 10.
According to the table 4, the threshold values were
better for systems that used eq.3 in the training
stages. On the other hand during the testing stages
that were done on the CMU+MIT databases, and
according to table 4, the data show that the results
varied between the systems, but in general it
slightly better for systems used eq.3. The difference
between the two is the time required to calculate
the threshold. The time required to calculate a
single value using eq.3 is approximately 0.32ms,
while the time required for eq.2 is approximately
0.02ms.

The number of the databases greatly affects the
detector’s efficiency, and since the data is not big
compared to the other systems, it will affect the
threshold’s calculation. That’s why adding 50 non-
face images to the data is used after discarding
some images.

Since the detector has low accuracy, the number of
faces detected will be low. Another problem that
this might cause is the high number of false
positives (FP), furthermore we haven’t mentioned
the overlap that might happen which caused an
increased number of FP.

6 Conclusion
In this paper 12 systems were implemented based
on the Haar features and Adaboost algorithm.
There are 8 different types of Haar features, on the
other hand there are two methods that were used to
compare the threshold. Based on the above

configurations, the systems were divided into 6
groups based on the features, and 2 groups based
on the threshold calculation methods. These
features were divided to create 6 groups based on
them; each group containing 4 simple, 4, 5, 6, 7, or
8 of these Haar features. On the other hand, the 2
groups based on the threshold were based on the
average of means and the optimal threshold
methods.

Based on these results, we could solve the problem
of the overlap to get better detection rates, do more
comparisons with more threshold methods (single
or multi threshold), add multi-face detection and
building a face detection system that’s more
accurate and faster.

As a recommendation for the designed systems to
be more efficient and achieve higher detection rate,
we could enhance the stages by adding more
features or by adding more stages (strong
classifier).
Acknowledgment
The authors would like to acknowledge financial
support for this work from the Deanship of
Scientific Research (DSR), University of Tabuk,
Tabuk, Saudi Arabia, under grant no. 0188/1436/S

References:

[1] Viola P. & Jones M., "Robust Real-Time

Object Detection", in Second International
Workshop on Statistical Learning and
Computational Theories of Vision Modeling,
Learning, Computing and Sampling, July 2001.

[2] Viola P. and Jones M., "Rapid Object
Detection Using A Boosted Cascade Of Simple
Features." In IEEE CVPR 2001, 2001.

[3] Freund, Y. , Iyer, R., Schapire, R. and Singer,
Y. An efficient boosting algorithm for
combining preferences. In Machine Learning:
Proceedings of the Fifteenth
InternationalConference, 1998.

[4] Zhou Z.-H. and Yu. Y." Adaboost". In X. Wu
and V. Kumar, editors, The Top Ten
Algorithms in Data Mining. Chapman & Hall,
Boca Raton, FL, 2009.

[5] Mita, T., Kaneko, T. and Hori, O.: Joint Haar-
like features for face detection. In Proc of
ICCV ,2005.

[6] R. Lienhart and J. Maydt, "An extended set of
haar-like features for rapid object detection,"
IEEE ICIP, vol. 1, pp. 900-903, Sep. 2002.

WSEAS TRANSACTIONS on SIGNAL PROCESSING Nidal F. Shilbayeh, Khadija M. Al-Noori, Asim Alshiekh

E-ISSN: 2224-3488 672 Volume 10, 2014

[7] J. Meynet and V. Popovici and JP. Thiran,
“Mixtures of Boosted Classifiers for Frontal
Face Detection,” Signal Image and Video
Processing, 2007.

[8] Kim J.B. , Kee S.C. And Kim J.Y. " Fast
Detection Of Multi-View Face And Eye Based
On Cascaded Classifier " Mva2005 Iapr
Conference On Machine Vision Applications,
May 16-18, 2005 Tsukuba Science City, Japan.

[9] Pham T. V., Smeulders A. W. M. and Ruis S. "
Adaboost Learning Of Shape And Color
Features For Object Recognition, " In ICML
2005 Workshop on Machine Learning
Techniques for Processing Multimedia
Content, Bonn, Germany.

[10] S Zhang, X Zhao, and B Lei, Facial
Expression Recognition Based on Local Binary
Patterns and Local Fisher Discriminant
Analysis,WSEAS TRANSACTIONS on Signal
Processing,Vol. 8, No. 1, 2012, pp. 21-31.

[11] S Zhang, X Zhao, and B Lei, Facial
Expression Recognition Using Sparse
Representation. Wseas Transactions On
Systems, Vol.11, No.8, 2012, pp.: 440-452.

[12] Hazem M. El-Bakry, Nikos Mastorakis, Fast
Image Matching on Web Pages, WSEAS
Transactions on Signal Processing, Vol.4, No.
5, 2009, pp.157-166.

WSEAS TRANSACTIONS on SIGNAL PROCESSING Nidal F. Shilbayeh, Khadija M. Al-Noori, Asim Alshiekh

E-ISSN: 2224-3488 673 Volume 10, 2014

	5.3 Testing
	6 Conclusion

