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Abstract: - DC microgrids (MG) involve the integration of power electronic loads, which might behave as 
constant power loads (CPL). CPLs often degrade system stability due to their negative impedance 
characteristics. To maintain the voltage stability and safe operation of DC MGs, eliminating the undesired 
behavior of CPLs is a necessity. This aim requires the instantaneous power value of the time-varying uncertain 
CPLs. Since the integration of current sensors in DC MGs is costly and inefficient, estimation methods should 
be used to obtain the spontaneous power of CPLs.  In this paper, a 3rd degree cubature Kalman filter (CKF) is 
developed to estimate the power of the CPLs alongside estimation of CPLs’ and source’s currents in a DC MG. 
By considering the CPLs powers as artificial states and augmenting them into the system states, not only the 
DC MG states but also the unknown values of the CPLs powers may be estimated. The proposed estimator is 
tested on a DC MG that feeds one CPL. The experimental results show that the proposed CKF is able to 
estimate instantaneous power consumption of the CPL as well as source and load currents. 
 
Key-Words: - Estimation, Cubature Kalman filter, DC microgrid, Non-ideal Constant power load 
 
Nomenclature 
ACRONYMS 

CPL Constant Power Load 
MG Microgrid 
CKF Cubature Kalman Filter 
EKF Extended Kalman Filter 
ESS Energy Storage System 

DC MG PARAMETERS 
𝒊𝒊𝑳𝑳𝑳𝑳 Current of the inductor in the 𝑗𝑗-th CPL 
𝒗𝒗𝑪𝑪𝑳𝑳 Voltage of the capacitor in the 𝑗𝑗-th CPL 
𝑷𝑷𝑳𝑳 The power of the 𝑗𝑗-th CPL 
𝒓𝒓𝑳𝑳 Resistance of the 𝑗𝑗-th filter connected to 

the 𝑗𝑗-th CPL 
𝑳𝑳𝑳𝑳 Inductance of the 𝑗𝑗-th filter connected to 

the 𝑗𝑗-th CPL 
𝑪𝑪𝑳𝑳 Capacitance of the 𝑗𝑗-th filter connected 

to the 𝑗𝑗-th CPL 
𝒓𝒓𝒔𝒔 Resistance of the filter connected to the 

DC source 
𝑳𝑳𝒔𝒔 Inductance of the filter connected to the 

DC source 
𝑪𝑪𝒔𝒔 Capacitance of the filter connected to the 

DC source 
𝑽𝑽𝒅𝒅𝒅𝒅 Voltage of the DC source 
𝒊𝒊𝒆𝒆𝒔𝒔 Injecting current of the ESS 

CKF PARAMETERS 
𝓟𝓟𝒌𝒌|𝑳𝑳  Covariance of the states at sampling 

instant 𝑘𝑘 based on the information up to 

the sampling instant 𝑗𝑗 
𝑿𝑿𝒊𝒊,𝒌𝒌−𝟏𝟏|𝒌𝒌−𝟏𝟏  𝑖𝑖-th cubature point at sampling instant 

𝑘𝑘 − 1 based on the information up to the 
sampling instant 𝑘𝑘 − 1 

𝑿𝑿𝒊𝒊,𝒌𝒌|𝒌𝒌−𝟏𝟏
∗  𝑖𝑖-th propagated cubature point by the 

system model at sampling instant 𝑘𝑘 
based on the information up to the 
sampling instant 𝑘𝑘 − 1 

𝒙𝒙�𝒌𝒌|𝑳𝑳 Estimated states at sampling instant 𝑘𝑘 
based on the information up to the 
sampling instant 𝑗𝑗 

𝒀𝒀𝒊𝒊,𝒌𝒌| 𝒌𝒌−𝟏𝟏
  𝑖𝑖-th propagated cubature point by the 

measurement model at sampling instant 
𝑘𝑘 based on the information up to the 
sampling instant 𝑘𝑘 − 1 

𝒚𝒚�𝒌𝒌| 𝒌𝒌−𝟏𝟏 Estimated measurements at sampling 
instant 𝑘𝑘 based on the information up to 
the sampling instant 𝑘𝑘 − 1 

𝓟𝓟𝒙𝒙𝒚𝒚,𝒌𝒌|𝒌𝒌−𝟏𝟏 Estimated cross-covariance matrix at 
sampling instant 𝑘𝑘 based on the 
information up to the sampling instant 
𝑘𝑘 − 1 

𝑲𝑲𝒌𝒌 Kalman gain at sampling instant 𝑘𝑘 
 
 
1 Introduction 

The growing use of renewable energy sources 
such as fuel cells [1], wind turbines [2], and 
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photovoltaic systems [3] in power electronic 
systems has reinforced a trend toward microgrids 
(MG). Microgrids enable electric power distribution 
from renewable energy sources. The two types of 
MGs are alternating-current (AC) and direct-current 
(DC) MGs [4]. Because of the AC MGs interfacing 
with utility grids, AC MGs have been studied since 
2000s [4]. However, many renewable energy 
sources and recent loads have DC interface and due 
to the advantages of DC MGs over AC MGs there is 
a tendency toward using DC MGs [5]. Some of 
these advantages are natural interface with 
renewable energy sources [6], power loss reduction 
in AC/DC power conversion [7], removing 
frequency control problems, improving power 
quality, decreasing the space and weight of 
transformers [5], and improving fault 
reconfigurability. Therefore, DC MGs are 
increasingly used in different applications such as 
electric vehicles [8], aircraft [9], ships [10], etc. A 
DC MG has several challenging stability and 
performance issues. These challenges primarily 
arise due to the vast interactions of power electronic 
converters, which might create constant power loads 
(CPLs). CPLs are generated by strict controlling of 
power electric converter loads. The incremental 
negative impedance of CPLs, can result in severe 
stability issues for the DC MG or even destabilize 
the overall system. Thus, minimizing the undesired 
effect of the CPLs is a necessity to have a successful 
control of the DC MGs.  

Several strategies are proposed to mitigate the 
destructive effects of CPLs in DC/DC power 
electronic converters. Two basic strategies are 
passive damping and active damping approaches 
[11]. Passive damping includes adding damping 
resistors to the filters. Even though this approach is 
simple and effective, it causes a lot of dissipation. 
Active damping involves modifying the control 
loop, which acts like a virtual resistor [11]. Active 
damping approaches are commensurate with 
injecting power to the CPLs to stabilize the system, 
which comprises the load performance [12]. In 
addition, these active damping approaches, which 
are based on small-signal models, can ensure system 
stability only close to the operating point. Therefore, 
these linear control methods are not useful in the 
case of occurrence of large variations in the system 
[12]. Several nonlinear control approaches have 
been investigated in order to address the stability 
problems with the DC MGs containing CPLs [13] 
and mitigating the undesired behavior of CPLs in 
such systems [14], [15], [12]. Nonetheless, the 
common assumption in the aforementioned methods 
is that the CPLs are assumed to be ideal. An ideal 

CPL is assumed to consume a constant power 
regardless of the supply voltage value. Yet, in 
practice, the MGs feed uncertain and/or time-
varying CPLs, known as non-ideal CPLs. A few 
papers have studied the effect of non-ideal CPLs on 
the system stability [16]–[18]. Even though the 
proposed approaches in [16]–[18] provide stability 
analysis and robust controller design, their common 
assumption is the boundedness of power uncertainty 
by a pre-known limit. To overcome the considered 
limit on CPLs powers uncertainty, the instantaneous 
power value of the time-varying uncertain CPLs is 
necessary. The CPLs powers can be obtained by 
employing current and voltage sensors. The current 
sensor must be installed in series with the CPLs, 
which not only increases the output impedance but 
also degrades ripple filtering effect [12]. In addition, 
installing extra sensors increases system complexity, 
and increases buying, installing and repairing costs. 
Therefore, current sensors installation should be 
replaced with the estimation methods to estimate the 
CPLs currents and powers. 

 Two basic approaches for unknown parameter 
estimation are deterministic observers and stochastic 
estimators. In deterministic observers, the unknown 
parameters are treated as disturbances. The 
equivalent disturbance is then estimated by 
modifying the difference between the estimated 
output and the output of the nominal response model 
[19]. However, measurement noises may degrade 
the deterministic observers’ performance [20]. 
Kalman filters have been proved to be optimal 
against noise effects [21]. The extended Kalman 
filter (EKF) applies the Kalman filter to nonlinear 
systems by linearizing the system model. The EKF 
exhibits a poor performance for highly nonlinear 
dynamic systems [22]. Bayesian sampling methods 
are alternatives to the EKF. These methods are 
divided into random sampling and deterministic 
sampling [23]. Random sampling methods involve 
in high computational burden, which makes them 
inappropriate for practical applications. Among 
deterministic sampling methods, cubature Kalman 
filters (CKF) possess various advantages, such as 
accuracy, lower computational effort, and more 
numerical stability [23] and have therefore attracted 
interest in the research community of late. 

In this paper, to eliminate the undesired effects 
of CPLs in DC MG operation, a cost-effective 3rd 
degree CKF algorithm is developed to employ a 
joint estimation problem to estimate not only DC 
MG’s states but also CPLs powers. The main 
contribution of this paper is employing the 
developed CKF to estimate the CPLs instantaneous 
powers and currents, and the current of the source. 
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To achieve this goal, the CPLs powers are 
augmented into the state vector of the system as 
virtual states. Since the CKF is robust against the 
system uncertainties, unmodeled dynamics, and 
noisy measurements, the proposed technique is 
reliable and economical in practice. The developed 
CKF is then applied to a DC MG, which is 
connected to an uncertain time-varying CPL. The 
efficacy of our proposed method is verified by 
laboratory experiments.  

The outline of this paper is as follows. The 
modeling of the DC MG is provided in section II. In 
section III, the developed CKF algorithm for 
unknown power estimation is presented. To 
investigate the performance of the proposed 
estimator, illustrative experimental results are 
presented in sections IV. Finally, Section V 
concludes the paper. 
 
 
2 DC Microgrid Dynamic 

A typical DC MG, which comprises several 
CPLs, is shown in Fig. 1, and its circuit diagram is 
shown in Fig. 2. The system shown in Fig. 2 consists 
of 𝑄𝑄 CPLs and 1 energy storage system (ESS). By 
employing the Kirchhoff’s current and voltage laws, 
the dynamic model of the 𝑗𝑗-th CPL is obtained as 

�
�̇�𝑥𝑗𝑗 = 𝐴𝐴𝑗𝑗 𝑥𝑥𝑗𝑗 + 𝑑𝑑𝑗𝑗𝑃𝑃𝑗𝑗 + 𝐴𝐴𝑗𝑗𝑗𝑗 𝑥𝑥𝑗𝑗
𝑦𝑦𝑗𝑗 = ℎ𝑗𝑗 𝑥𝑥𝑗𝑗                             

� (1) 

where 𝑃𝑃𝑗𝑗  is the load power, 𝑥𝑥𝑗𝑗 = �𝑖𝑖𝐿𝐿𝑗𝑗   𝑣𝑣𝐶𝐶𝑗𝑗 �
𝑇𝑇   is the 𝑗𝑗-

th CPL’s state vector, and 

𝐴𝐴𝑗𝑗 =

⎣
⎢
⎢
⎢
⎡−

𝑟𝑟𝐿𝐿𝑗𝑗
𝐿𝐿𝑗𝑗

−
1
𝐿𝐿𝑗𝑗

1
𝐶𝐶𝑗𝑗

0
⎦
⎥
⎥
⎥
⎤

,𝑑𝑑𝑗𝑗 = �
0
−1
𝐶𝐶𝑗𝑗𝑣𝑣𝑐𝑐𝑗𝑗

� ,𝐴𝐴𝑗𝑗𝑗𝑗 = �0
1
𝐿𝐿𝑗𝑗

0 0
�, 

 ℎ𝑗𝑗 = [0 1] 

(2) 

 
Fig. 1. Illustration of a DC MG. 

As for CPLs, the dynamic model of the ESS is 
obtained as 

��̇�𝑥𝑗𝑗 = 𝐴𝐴𝑗𝑗𝑥𝑥𝑗𝑗 + 𝑏𝑏𝑗𝑗𝑉𝑉𝑑𝑑𝑐𝑐 + 𝑏𝑏𝑒𝑒𝑗𝑗 𝑖𝑖𝑒𝑒𝑗𝑗 + Σ𝑗𝑗=1
𝑄𝑄 𝐴𝐴𝑐𝑐𝑐𝑐𝑥𝑥𝑗𝑗

𝑦𝑦𝑗𝑗 = ℎ𝑗𝑗𝑥𝑥𝑗𝑗                                                        
� (3) 

where 𝑖𝑖𝑒𝑒𝑗𝑗  is the ESS injection current, 𝑥𝑥𝑗𝑗 =
[𝑖𝑖𝐿𝐿𝑗𝑗   𝑣𝑣𝐶𝐶𝑗𝑗]𝑇𝑇  is the ESS state vector, and 

𝐴𝐴𝑗𝑗 = �
− 𝑟𝑟𝑗𝑗

𝐿𝐿𝑗𝑗
− 1

𝐿𝐿𝑗𝑗
1
𝐶𝐶𝑗𝑗

0
� , 𝑏𝑏𝑗𝑗 = �

1
𝐿𝐿𝑗𝑗
0
� ,   ℎ𝑗𝑗 = [0 1], 

 𝐴𝐴𝑐𝑐𝑐𝑐 = �
0 0
−1
𝐶𝐶𝑗𝑗

0� , 𝑏𝑏𝑒𝑒𝑗𝑗 = �
0

−
1
𝐶𝐶𝑗𝑗
� 

(4) 

By augmenting the CPLs and the source state 
vectors, the overall dynamic model of the DC MG is 
obtained as [24] 

��̇�𝑋 = 𝐴𝐴𝑋𝑋 + 𝐷𝐷𝑃𝑃 + 𝐵𝐵𝑒𝑒𝑗𝑗 𝑖𝑖𝑒𝑒𝑗𝑗 + 𝐵𝐵𝑗𝑗𝑉𝑉𝑑𝑑𝑐𝑐
𝑌𝑌 = 𝐻𝐻𝑋𝑋                                            

� (5) 

where 𝑋𝑋 = �𝑥𝑥1
𝑇𝑇    𝑥𝑥2

𝑇𝑇   …   𝑥𝑥𝑄𝑄𝑇𝑇    𝑥𝑥𝑗𝑗𝑇𝑇�
𝑇𝑇, 𝑃𝑃 = �𝑃𝑃1, … ,𝑃𝑃𝑄𝑄�

𝑇𝑇, 
and 

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡
𝐴𝐴1 0 … 0 𝐴𝐴1𝑗𝑗
0 𝐴𝐴2 ⋯ 0 𝐴𝐴2𝑗𝑗
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 𝐴𝐴𝑄𝑄 𝐴𝐴𝑄𝑄𝑗𝑗
𝐴𝐴𝑐𝑐𝑐𝑐 𝐴𝐴𝑐𝑐𝑐𝑐 ⋯ 𝐴𝐴𝑐𝑐𝑐𝑐 𝐴𝐴𝑗𝑗 ⎦

⎥
⎥
⎥
⎤

,𝐵𝐵𝑒𝑒𝑗𝑗 = �

0
⋮
0
𝑏𝑏𝑒𝑒𝑗𝑗

�, 

𝐵𝐵𝑗𝑗 = �

0
⋮
0
𝑏𝑏𝑗𝑗

� ,𝐷𝐷 =

⎣
⎢
⎢
⎢
⎡
𝑑𝑑1 0 … 0
0 𝑑𝑑2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑑𝑑𝑄𝑄
0 0 ⋯ 0 ⎦

⎥
⎥
⎥
⎤

, 

  𝐻𝐻 = �

0 1 0 0 … 0
0 0 0 1 … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 … 1

� 

(6) 

 

 
Fig. 2. A simplified illustration of the DC MG 
shown in Fig. 1 with Q CPLs, where 𝑖𝑖𝐶𝐶𝑃𝑃𝐿𝐿𝑗𝑗 = 𝑃𝑃𝑗𝑗

𝑉𝑉𝐶𝐶𝑗𝑗
. 
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In the following, the goal is to estimate the 
powers of the CPLs and the inductor currents 
alongside noise mitigation. 
 
 
3 CPL Power Estimatiom by 
Cubature Kalman Filter 

This section presents the design procedure of the 
developed 3rd degree CKF to estimate the unknown 
power of CPLs alongside estimation of the source 
and CPL currents. To this aim, the system state 
vector is augmented by the unknown CPL power 
vector [4]. Thereby, the augmented state vector is 
defined as 

�̇�𝑧 = ��̇�𝑋
�̇�𝑃
� (7) 

Since the 𝑃𝑃 dynamic is unknown, it is considered 
as �̇�𝑃𝑗𝑗 = 0 for 𝑗𝑗 = 1, … ,𝑄𝑄. Then, the augmented 
state-space model for the system is 

�̇�𝑥 = �𝐴𝐴𝑋𝑋 + 𝐷𝐷𝑃𝑃 + 𝐵𝐵𝑒𝑒𝑗𝑗 𝑖𝑖𝑒𝑒𝑗𝑗 + 𝐵𝐵𝑗𝑗𝑉𝑉𝑑𝑑𝑐𝑐
𝟎𝟎

� = 𝑓𝑓(𝑥𝑥, 𝑖𝑖𝑒𝑒𝑗𝑗) (8) 

Considering (9), the system measurements are 
described as 

𝑦𝑦 = [𝐻𝐻|𝟎𝟎�] �
𝑋𝑋
𝑃𝑃𝑗𝑗
� (9) 

Putting (11), (12) together and considering 
system and measurement noises, 𝑤𝑤 and 𝑣𝑣, 
respectively, yields 

��̇�𝑥 = 𝑓𝑓(𝑥𝑥, 𝑖𝑖𝑒𝑒𝑗𝑗) + 𝑤𝑤
𝑦𝑦 = 𝐻𝐻𝑥𝑥 + 𝑣𝑣          

� (10) 

where 𝑤𝑤 and 𝑣𝑣 are assumed white and Gaussian with 
covariance matrices 𝑄𝑄 and 𝑅𝑅, respectively. The 
obtained state-space model can be discretized using 
the forward Euler method as 

�𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝑇𝑇𝑗𝑗𝑓𝑓(𝑥𝑥𝑘𝑘 , 𝑖𝑖𝑒𝑒𝑗𝑗𝑘𝑘 ) + 𝑤𝑤𝑘𝑘
𝑦𝑦𝑘𝑘 = 𝐻𝐻𝑥𝑥𝑘𝑘 + 𝑣𝑣𝑘𝑘                               

� (11) 

The 3rd degree CKF algorithm is done by 
recursively performing time update and 
measurement update. After convergence of the CPL, 
the last element of  𝑥𝑥�𝑘𝑘|𝑘𝑘  is the estimated power of the 
CPL. The CKF steps are as follows [25]: 

• Time Update 

1. Factorizing 𝒫𝒫𝑘𝑘−1|𝑘𝑘−1 by Cholesky 
decomposition 

𝒫𝒫𝑘𝑘−1|𝑘𝑘−1 = 𝑆𝑆𝑘𝑘−1|𝑘𝑘−1𝑆𝑆𝑘𝑘−1|𝑘𝑘−1
𝑇𝑇  (12) 

2. Calculating cubature points for 𝑖𝑖 = 1, … 2𝑐𝑐 

𝑋𝑋𝑖𝑖 ,𝑘𝑘−1|𝑘𝑘−1 = 𝑆𝑆𝑘𝑘−1|𝑘𝑘−1𝜁𝜁𝑖𝑖 + 𝑥𝑥�𝑘𝑘−1|𝑘𝑘−1  (13) 

3. Propagating cubature points by the nonlinear 
model 

𝑋𝑋𝑖𝑖 ,𝑘𝑘|𝑘𝑘−1
∗ = 𝐹𝐹(𝑋𝑋𝑖𝑖 ,𝑘𝑘−1|𝑘𝑘−1, 𝑖𝑖𝑒𝑒𝑗𝑗 ,𝑘𝑘−1) (14) 

4. Estimating the predicted states 

𝑥𝑥�𝑘𝑘 | 𝑘𝑘−1 =
1

2𝑐𝑐
Σ𝑖𝑖=1

2𝑐𝑐 𝑋𝑋𝑖𝑖 ,𝑘𝑘| 𝑘𝑘−1
∗  (15) 

5. Estimating the predicted covariance of the states 

𝒫𝒫𝑘𝑘 |𝑘𝑘−1 =
1

2𝑐𝑐
Σ𝑖𝑖=1

2𝑐𝑐 �𝑋𝑋𝑖𝑖 ,𝑘𝑘|𝑘𝑘−1
∗ − 𝑥𝑥�𝑘𝑘|𝑘𝑘−1� 

�𝑋𝑋𝑖𝑖 ,𝑘𝑘|𝑘𝑘−1
∗ − 𝑥𝑥�𝑘𝑘 |𝑘𝑘−1�

𝑇𝑇 + 𝑄𝑄𝑘𝑘−1 

(16) 

• Measurement Update 

1. Factorizing 𝒫𝒫𝑘𝑘|𝑘𝑘−1 by Cholesky decomposition 

𝒫𝒫𝑘𝑘 |𝑘𝑘−1 = 𝑆𝑆𝑘𝑘 |𝑘𝑘−1𝑆𝑆𝑘𝑘|𝑘𝑘−1
𝑇𝑇  (17) 

2. Calculating cubature points for 𝑖𝑖 = 1, … 2𝑐𝑐 

𝑋𝑋𝑖𝑖 ,𝑘𝑘−1|𝑘𝑘−1 = 𝑆𝑆𝑘𝑘 |𝑘𝑘−1𝜁𝜁𝑖𝑖 + 𝑥𝑥�𝑘𝑘 |𝑘𝑘−1   𝑓𝑓𝑓𝑓𝑟𝑟   𝑖𝑖 = 1, … 2𝑐𝑐 (18) 

3. Propagating cubature points by the 
measurement model 

𝑌𝑌𝑖𝑖 ,𝑘𝑘| 𝑘𝑘−1
 = ℎ(𝑋𝑋𝑖𝑖 ,𝑘𝑘|𝑘𝑘−1, 𝑖𝑖𝑒𝑒𝑗𝑗 ,𝑘𝑘) (19) 

4. Estimating the predicted measurements 

𝑦𝑦�𝑘𝑘| 𝑘𝑘−1 =
1

2𝑐𝑐
Σ𝑖𝑖=1

2𝑐𝑐 𝑌𝑌𝑖𝑖 ,𝑘𝑘| 𝑘𝑘−1
  (20) 

5. Estimating the auto covariance matrix 

𝒫𝒫𝑦𝑦𝑦𝑦 ,𝑘𝑘|𝑘𝑘−1 =
1

2𝑐𝑐
𝛴𝛴𝑖𝑖=1

2𝑐𝑐 �𝑌𝑌𝑖𝑖 ,𝑘𝑘| 𝑘𝑘−1
 − 𝑦𝑦�𝑘𝑘|𝑘𝑘−1� 

�𝑌𝑌𝑖𝑖 ,𝑘𝑘|𝑘𝑘−1
 − 𝑦𝑦�𝑘𝑘|𝑘𝑘−1�

𝑇𝑇 + 𝑅𝑅𝑘𝑘  

(21) 

6. Estimating the cross-covariance matrix  
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𝒫𝒫𝑥𝑥𝑦𝑦 ,𝑘𝑘|𝑘𝑘−1 =
1

2𝑐𝑐
𝛴𝛴𝑖𝑖=1

2𝑐𝑐 �𝑋𝑋𝑖𝑖 ,𝑘𝑘| 𝑘𝑘−1
 − 𝑥𝑥�𝑘𝑘|𝑘𝑘−1� 

�𝑌𝑌𝑖𝑖 ,𝑘𝑘|𝑘𝑘−1
 − 𝑦𝑦�𝑘𝑘|𝑘𝑘−1�

𝑇𝑇 + 𝑅𝑅𝑘𝑘  
(22) 

7. Estimating the Kalman gain 

𝐾𝐾𝑘𝑘 = 𝒫𝒫𝑥𝑥𝑦𝑦 ,𝑘𝑘|𝑘𝑘  𝒫𝒫𝑦𝑦𝑦𝑦 ,𝑘𝑘| 𝑘𝑘−1
−1  (23) 

8. Estimate the updated states 

𝑥𝑥�𝑘𝑘|𝑘𝑘 = 𝑥𝑥�𝑘𝑘|𝑘𝑘−1 + 𝐾𝐾𝑘𝑘�𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘|𝑘𝑘� (24) 

9. Estimating the covariance of the states 

𝒫𝒫𝑘𝑘 |𝑘𝑘 = 𝒫𝒫𝑘𝑘 |𝑘𝑘−1 + 𝐾𝐾𝑘𝑘𝒫𝒫𝑦𝑦𝑦𝑦 ,𝑘𝑘|𝑘𝑘𝐾𝐾𝑘𝑘𝑇𝑇 (25) 

where 𝑅𝑅𝑘𝑘 , 𝑄𝑄𝑘𝑘−1 are the measurement covariance 
matrix and the process noise covariance matrix, 
respectively. By the means of the CKF and having 
𝑣𝑣𝐶𝐶,𝑗𝑗 , 𝑣𝑣𝐶𝐶,𝑗𝑗 measurements, the estimations of 𝑃𝑃𝑗𝑗  for 
𝑗𝑗 = 1, … ,𝑄𝑄 are achieved by being extracted from the 
state vector 𝑥𝑥. 
 
 
4 Experimental Results 

To verify the effectiveness of the proposed 
nonlinear observer, experimental results are provided 
in this section. The experimental testbed is shown in 
Fig. 3. 

It is assumed that all voltages and currents are 
real. The MG parameters used in the simulations are 
listed in Table І. 

Table 1. Parameters For the DC MG with One CPL. 

𝑟𝑟1 = 1.1 Ω 𝑣𝑣𝐶𝐶0,1 = 196.64 𝐶𝐶𝑗𝑗 = 500 𝜇𝜇𝐹𝐹 

𝐿𝐿1 = 39.5 𝑚𝑚𝐻𝐻 𝑉𝑉𝑑𝑑𝑐𝑐 = 200 𝑉𝑉 𝑃𝑃1 = 300 𝑊𝑊 

𝐶𝐶1 = 500 𝜇𝜇𝐹𝐹 𝑟𝑟𝑗𝑗 = 1.1 Ω 𝐿𝐿𝑗𝑗 = 39.5 𝑚𝑚𝐻𝐻 

The simulation is done by choosing the initial 
condition of 𝑋𝑋 = [1   210    1   200   350 ]𝑇𝑇. The values 
for measurement covariance matrix and the process 
noise covariance matrix are as: 

𝑅𝑅 = 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(10−3, 10−3)            
𝑄𝑄 = 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(10−2, 10−5, 10−2, 10−5, 10−2)

 (26) 

 
Fig. 3. (a). The experimental setup. (b). The 
simplified implementation configuration. 

The initial value of the states’ error covariance 
matrix is chosen as: 

𝑝𝑝0 = 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(1,1,1,1, 102) (27) 

To show the effectiveness of the proposed 
nonlinear filter, two scenarios are provided. In both 
scenarios, the value of the CPL power should vary 
within a specific interval to assure the stability of the 
DC MG. In the first scenario, step decreases and 
increases in the CPL power, 𝑃𝑃1, is considered. These 
prompt changes can occur in practice when the 
characteristics of the connected loads to the 
inverters, which behave as CPLs, changes promptly. 
In the second scenario, the CPL power varies slowly. 
In practice, the slow variation of 𝑃𝑃 occurrs because 
the efficiency of converters is not constant in 
practice and the controller of the converters has a 
limited bandwidth. In the following, the 
experimental results for both scenarios is presented. 
The time scale in all figures is 0.6 𝑗𝑗𝑒𝑒𝑐𝑐. 

Scenario 1 (Stepwise varying 𝑷𝑷𝟏𝟏): In this 
scenario, the CPL power increases and decreases 
promptly at some moments. By applying the 
developed CKF, the currents and voltages of the 
CPL filters and the DC source filter, as well as the 
CPL power are estimated. Fig. 4 shows the actual 
values of the system states alongside their 
estimations by employing the CKF.  
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As can be seen in Figs. 4, the proposed filter can 
estimate the CPL power fast and accurately. In 
addition, it can be seen that in the moments of 
occurring the prompt changes in the CPL power, an 
error is produced in its estimation. Meanwhile, the 
CKF is able to treat these sudden changes effectively 
and retrieve the CPL power estimation to its actual 
value. A short time after the fats changes in the CPL 
power, since the power is constant, the estimation 
error of the states becomes zero.  

Scenario 2 (periodic slowly varying 𝑷𝑷𝟏𝟏): In this 
scenario, the CPL power changes slowly. For the 
simulation, the CPL power value changes as 
𝑃𝑃1 = 200(1 + sin(5𝑡𝑡) + 0.5 cos(7𝑡𝑡)). Fig. 5 shows 
the actual values of the system states alongside their 
estimations by employing the CKF.  
 
As can be seen in Figs. 5, the suggested observer can 
estimate the value of the CPL power effectively. 
Comparing to the Scenario 1, In the case of 
continuously varying power, the proposed CKF can 
capture the varying behavior of the DC MG more 
precise and results in a smaller estimation error.  
 

 
Fig. 4. Augmented states of the system and their 
estimation for Scenario 1. 

 
Fig. 5. Augmented states of the system and their 
estimation for Scenario 2. 
 
 
5 Conclusion 

This paper aimed to rapidly estimate values of the 
CPL power to be used later on for stability control 
and safe operation of the DC MGs. To do this, first, 
the CPL powers are augmented in the system state 
vector, and then a cubature Kalman filter is 
developed to estimate the CPLs powers alongside the 
estimation of the system’s currents. To illustrate the 
effectiveness of the proposed power estimation, the 
real-time implementation is performed on a DC MG 
that feeds one CPL. Then, two scenarios including 
fast changes and slow changes in the CPL power are 
considered. The real-time experimental results 
showed the ability of the proposed observer in 
estimating the instantaneous power of the CPLs used 
in the DC MGs for both scenarios of sudden and 
continuous changes of the CPL power. Future work 
could be using other types of stochastic and 
deterministic observers and comparing the 
estimation results with the estimations using the 
CKF. The other possible future work could be tuning 
the CKF parameters using optimization techniques. 
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