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Abstract:- The classification of single and multiple power quality (PQ) disturbances is a very 
important task for the detection and monitoring of various faults and events in electrical power 
network. This paper presents an automatic classification algorithm for PQ disturbances based on 
wavelet norm entropy (WNE) features and probabilistic neural network (PNN) as an effective 
pattern classifier. The discrete wavelet transform (DWT) based multiresolution analysis (MRA) 
technique is proposed to extract the most important and constructive features of power quality 
disturbances at various resolution levels. The distinctive norm entropy features of the PQ 
disturbances are extracted and are employed as inputs to the PNN. Various other architectures 
of neural networks such as multilayer perceptron (MLP) and radial basis function (RBF) are also 
employed for comparison. The PNN is found the most suitable classification tool for the 
classification of the PQ disturbances. The simulation results obtained show that the proposed 
approach can detect and classify the disturbances effectively and can be applied successfully in 
real-time electrical power distribution networks.  
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1. Introduction 
The power quality analysis has recently 

become a serious concern for both electric power 
utilities and their customers. In electrical power 
system, the PQ disturbances are produced due to a 
number of causes such as non-linear loads, switching 
devices, lightning strokes and electromagnetic 
transients. The disturbances can cause harmful 
effects to customers’ equipment and utilities as well. 

Hence, it is important to detect and classify the 
disturbance automatically in an efficient way. The 
line faults in the transmission and distribution 
systems, increasing number of non-linear loads, 
solid-state switching devices and electronic data 
processing equipment are the major consequences of 
the PQ disturbances in electrical power network [1]. 
The PQ disturbances are the deviations in the voltage 
and current waveforms from the ideal sinusoidal 
waveform such as short and long duration 
disturbances, steady-state waveform distortions and 
transient disturbances. These disturbances can cause 
variation in utility service voltage or current, such as 
voltage sag, voltage swell, interruption, harmonics, 
flicker and transients, which can result in malfunction 

of sophisticated electronic equipment [2]. In order to 
take appropriate mitigating action against PQ 
disturbances, their sources and causes must be 
identified accurately. Since due to the lack of 
research in the fields of signal processing and 
artificial intelligence techniques, the monitoring 
systems were usually based on manual detection of 
PQ disturbances waveforms which may involve high 
cost, time consumption and manpower [3]. The 
utility engineers may not be able to inspect a huge 
data.  Hence to overcome this problem many 
researchers proposed that PQ disturbances must be 
detected and classified in automatic and systematic 
way. In the technical literature, various signal 
processing techniques such as time-frequency 
transformation are used for analyzing PQ 
disturbances. The most commonly used signal 
processing methods for feature extraction of PQ 
disturbances are discrete Fourier transform (DFT), 
short-time Fourier transform (STFT), Stockwell 
transform (ST), wavelet transform (WT), Hilbert-
Huang transform.  

Conventionally, The DFT [4] has been 
initiated the most efficient technique for steady-state 
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analysis of PQ disturbances signals and was found 
more suitable for stationary and periodic types of PQ 
signals only. However, the drawback of the DFT 
method is that, it does not provide time-domain 
information for nonstationary PQ signals. In actual 
practice most of the PQ disturbances are non-
stationary and transient which require a technique 
that would provide information of frequency contents 
as well as capture the time of occurrence of the 
disturbances simultaneously. The STFT [5] provides 
time and frequency information for a certain length 
of window. Since each type of PQ disturbances 
requires window of different length that could create 
problem in selecting the best suitable window. Thus 
the STFT is also found inappropriate for the analysis 
of non-stationary and non-periodic PQ disturbances 
due to its constant window length. The WT approach 
has overcome the fixed resolution problems for 
analyzing non-stationary PQ disturbances.  

A brief literature review related to WT is 
discussed here for further awareness of the proposed 
technique. Many researchers [6-10] applied WT as a 
powerful tool for detection, localization and 
classification of synthetic and actual PQ 
disturbances. The unique feature extraction methods 
of various types of PQ disturbances have lead to an 
automatic classification. Daubechies [6] proposed 
that WT can handle frequencies in logarithmic rather 
than linear way, and became more suitable for the 
analysis of the visual signals than the windowed 
DFT. Initially,  Santoso, et al. [7] proposed WT as a 
new tool for the  automatic classification of PQ 
events. Poisson, et al. [8] proposed continuous WT 
(CWT) for the detection and analysis of PQ 
disturbances. A time-frequency plane of these 
disturbances was developed by using a recursive 
algorithm. Gaouda, et al. [11] proposed WT based 
multiresolution analysis technique to detect and 
classify various types of PQ disturbances by using 
standard deviation as a feature extraction technique. 
Borras, et al. [12] proposed the DWT as the feature 
extraction technique and combined with learning 
vector quantization (LVQ) type of ANN. The 
difference between high-energy components of the 
disturbance signal and those of the normal signal was 
used as an input feature vector to train the LVQ 
neural network. Gaing [13] proposed a WT based 
PNN classifier for the classification of PQ 
disturbances. The energy distribution features of the 
signals at different resolution levels were extracted 
by using wavelet transform based MRA. The 
Parseval’s theorem was employed for energy features 
used as inputs to the PNN classifier for PQ 
disturbances classification automatically.  

In the previous research studies, a lot of work 
has been carried out on the automatic classification 
of single and few multiple PQ disturbances. The 
automatic classification for multiple PQ disturbances 
is still a challenging task. Most of the authors have 
considered single PQ disturbances for the 
classification and only few authors have considered 
multiple PQ disturbances. Present automatic 
classification techniques for multiple PQ 
disturbances need much improvement in terms of 
their high recognition rate, flexibility and consistency 
[14]. In [15] authors classified eleven types of PQ 
disturbances with two types of multiple disturbances 
with the help of fully informed particle swarm (FIPS) 
based feature selection from S-transform matrix and 
classified them by probabilistic neural network. In 
this paper, fourteen types of PQ disturbances are 
considered with four types of multiple PQ 
disturbances. An automatic classification algorithm 
is proposed for recognizing the single and multiple 
PQ disturbances based on norm entropy feature 
extraction by using discrete wavelet transform. The 
MRA based DWT technique has been employed for 
the analysis and feature extraction of PQ 
disturbances. The difference between the norm 
entropy of the detailed and approximation 
disturbance signal and that of the pure sinusoidal 
signals is used as a feature vector for training the 
PNN classifier. Other architectures of ANN such as 
multilayer perceptron and radial basis function neural 
networks have also been used as classifier tools for 
comparison.  

The remaining parts of the paper are 
organised as follows: Section 2 presents a proposed 
classification approach. Wavelet transform and 
multiresolution analysis are discussed in section 3. 
Feature extraction stage is discussed in section 4. In 
section 5, introduction of the artificial neural network 
is presented. Simulation results are discussed in 
section 6. Finally, conclusions are discussed in 
section 7. 

2. Proposed Classification Approach 
The automatic classification of PQ disturbances is 
divided into the following stages: data generation, 
feature extraction, classification and decision space. 
Fig 1 shows the block diagram of the proposed 
automatic classification system. In the first stage, the 
PQ disturbances are generated by using parametric 
equations of the voltage and current signals. The 
parametric equations of single and multiple PQ 
disturbances [15-20] are shown in Table I.  The 
second stage is a feature extraction in which 
significant feature vectors are extracted by using 
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multiresolution analysis property of the discrete 
wavelet transform. The extracted features are divided 
into two parts for training and testing various 

architectures of ANN. In the third stage, the training 
data of features are applied to the ANN for the 
classification. Finally, in the last stage of decision 
space, the type of PQ disturbance is identified by the 
ANN obtained in the training process. 

3. Wavelet Transform 
The Wavelet transform is an effective signal 

processing technique and is suitable for non-
stationary and non-periodic wide-band signals. It is 
used to decompose the distorted signal into different 
time-frequency scales at various resolution levels. In 
recent years, WT is mostly used in pattern 
recognition systems by extracting the most suitable 
features of PQ disturbance signals [21]. Unlike 
Fourier transform, the DWT decomposes a distorted 
time-domain signal into different scales of various 
frequencies, scaled and offset forms of limited 
duration, irregular and asymmetrical signals. The WT 
simultaneously performs time and frequency 
resolution of a distorted signal by using appropriate 
wavelet function called “mother wavelet”. The WT is 
classified as continuous WT (CWT) and discrete WT 
(DWT).  

The CWT at different scales and locations 
provides variable time–frequency information of the 
signal. The mathematical equation of a CWT for a 
given signal x(t) with respect to a mother wavelet 
𝜓(𝑡) is given by 

CWT(a, b) =
1

√a
∫ x(t)

∞

−∞

ψ (
t − b

a
) dt     a, b ϵ R,

a0         (1) 

where a and b are scaling parameter and the 
translation factor respectively. The CWT requires an 
infinite number of inputs; therefore, it is not 
convenient for computer analysis.  

The DWT, the most suitable for computer 
implementation, is applied for the proposed 
automatic classification scheme. The DWT is 
implemented by multiresolution analysis. The 
mathematical equation of the DWT of a digital signal 
x(k) is given by 

𝐷𝑊𝑇(𝑚, 𝑛)

=
1

√𝑎0
𝑚

∑ 𝑥(𝑘)

𝑘

𝜓 (
𝑛 − 𝑘𝑏0𝑎0

𝑚

𝑎0
𝑚 )            (2) 

where 𝑎0
𝑚 and 𝑘𝑏0𝑎0

𝑚, being fixed constants 
generally taken as 𝑎0 = 2 and 𝑏0 = 1, are the 
discrete scale and translation factors, respectively. 
The discrete scale factor 𝑎0

𝑚
 produces the oscillatory 

frequency and the length of the wavelet, whereas the 
translation factor 𝑘𝑏0𝑎0

𝑚 deposits its shifting 
position. The integer variables m and n represent 
frequency localisation and time localisation, 
respectively [10].   

In multiresolution analysis (MRA) the original 
signal is decomposed into several other signals at 
various levels or scales of resolution.  Therefore, the 
distorted signal can be decomposed into its many 
components with less resolution. The decomposed 
signals can be reconstructed to recover original time-
domain signals without losing any information. In the 
first stage, the original distorted signal (S) is passed 
through high-pass g(n) and low-pass h(n) filters to 
produce the detail (D1) and approximation (A1) 
coefficients respectively. The approximate 
coefficients (A1) are again passed through the same 
high-pass and low-pass filters to produce the 
coefficients D2 and A2 for level 2. Again, the 
approximate coefficients (A2) are passed through the 
same filters to produce the D3 and A3. In this way, the 
process of decomposition is carried out for further 
levels. Fig. 2 shows the DWT based MRA for a 
harmonic signal with 5 levels of resolutions. The 
approximation and detail coefficients can be 
calculated by the Eqs. (3) and (4) respectively. 

Figure 1: Block diagram of PQ disturbances 
automatic classification system 
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𝐴𝑗+1(𝑛) = ∑ ℎ(𝑘 − 2𝑛)

𝑘

𝐴𝑗(𝑘)                             (3) 

𝐷𝑗+1(𝑛) = ∑ 𝑔(𝑘 − 2𝑛)

𝑘

𝐴𝑗(𝑘)                             (4) 

 

The low-pass filter g(n) is obtained from the 
scaling function and high-pass filter is obtained from 
both the wavelet and scaling functions. The wavelet 
and scaling functions are, respectively, given as 

𝜓(𝑛) = √2 ∑ 𝑔(𝑛)𝜙(2𝑛 − 𝑘)                            (5)

𝑘

 

𝜙(𝑛) = √2 ∑ ℎ(𝑛)𝜙(2𝑛 − 𝑘)                              (6)

𝑘

 

A given signal f(n) is expanded in terms of its 
orthogonal basis of scaling and wavelet functions. It 
can be represented by one set of scaling coefficients, 
and one or more sets of wavelet coefficients, 
𝑓(𝑛) = ∑ 𝐴1(𝑘)𝜙(𝑛 − 𝑘)

𝑘

+ ∑ ∑ 𝐷𝑗(𝑛)

𝑗=1𝑘

2−
𝑗
2𝜓(2𝑗𝑛 − 𝑘)          (7) 

4. Norm Entropy Features 
The feature extraction is the key aspect in the 
classification of the PQ disturbances. The PQ 

disturbances data is much larger for training the 
classifiers. The feature extraction has a significant 
role in data reduction. Thus, the PQ signals are 
transformed into a reduced form of wavelet norm 
entropy features. The detailed and approximation 
coefficients obtained by MRA of DWT contain 
effective features of distorted signals. For 
recognizing the PQ disturbances accurately, it is 
necessary to choose the most useful features from 
those coefficients. The entropy is mostly used in 
many fields such as thermodynamics, mathematics, 
and information science. It is generally defined as a 
measure of disorderly states of imbalance and 
uncertainty. In PQ analysis studies, the entropy is 
found more suitable especially for the classification 
of non-stationary signals [22].  
Suppose a PQ disturbance signal 𝑆 = {𝑠(𝑖), 𝑖 =
1,2, … , 𝑁}   
The norm entropy (NE) of the ith point in the signal 
S is given by 

𝑁𝐸𝑖 = |𝑠(𝑖)|𝑃                                                                      (8) 

The norm entropy of the signal S is 

𝑁𝐸 = ∑ |𝑠(𝑖)|𝑃

𝑁

𝑖=1

                                                                (9) 

Figure  2: Decomposition of a signal by Wavelet Transform MRA technique 
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The NE for detail and approximation coefficients in 
each decomposition level is given by 

𝑁𝐸𝑑𝑗 =
1

𝑁
∑|𝑑𝑗[𝑛]|

𝑃
                       𝑗 = 1,2, … , 𝑙

𝑛

        (10) 

𝑁𝐸𝑎𝑙 =
1

𝑁
∑|𝑎𝑙[𝑛]|𝑃   𝑙

𝑛

= 𝑁𝑜. 𝑜𝑓 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙𝑠 (11) 

P is the power such that 1 ≤ 𝑃 ≤ 2. 

The NE for the overall decomposition is  

𝑁𝐸𝑠𝑖𝑔 = [𝑁𝐸𝑎𝑙 , 𝑁𝐸𝑑1, 𝑁𝐸𝑑2, 𝑁𝐸𝑑3, … , 𝑁𝐸𝑑𝑙]           (12) 

 

The 𝑵𝑬𝒔𝒊𝒈 is a positive real number. The equations 
(10) and (11) can be normalized as 

𝑁𝐸𝑛𝑑𝑗 = (𝑁𝐸𝑑𝑗)1/2                                                          (13) 

𝑁𝐸𝑛𝑎𝑙 = (𝑁𝐸𝑎𝑙)1/2                                                         (14) 

𝑁𝐸𝑛𝑠𝑖𝑔 = [𝑁𝐸𝑛𝑎𝑙  , 𝑁𝐸𝑛𝑑1, 𝑁𝐸𝑛𝑑2, … , 𝑁𝐸𝑛𝑑𝑙]        (15) 

The 𝑊𝑛𝑠𝑖𝑔 represents the normalized 
distorted signal feature vector. The extracted features 
must be different from each other. The NE is always 
positive value. In PQ disturbances, the NE is found 
similar in some cases. Therefore, a normal sinusoidal 
signal is considered as a reference signal to 
distinguish features from those of others. The 
features vector for pure sine wave can be extracted as  

𝑁𝐸𝑛𝑝𝑢𝑟𝑒 = [𝑁𝐸𝑛𝑎𝑙  , 𝑁𝐸𝑛𝑑1, 𝑁𝐸𝑛𝑑2, … , 𝑁𝐸𝑛𝑑𝑙]    (16) 

The resultant feature vector can be obtained by 
subtracting 

∆𝑁𝐸 =         𝑁𝐸𝑛𝑠𝑖𝑔  –  𝑁𝐸𝑛𝑝𝑢𝑟𝑒                                     (17) 

∆𝑁𝐸𝑠𝑖𝑔 = [∆𝑁𝐸𝑎𝑙 , ∆𝑁𝐸𝑑1, ∆𝑁𝐸𝑑2, … , ∆𝑁𝐸𝑑𝑙]         (18) 

The feature vector obtained by (18) is used in 
the classification stage of the PQ disturbances.  

5. Probabilistic Neural Network  
The artificial neural network is the 

combination of simple processing elements called 
neurons which are operating in parallel [23]. A neural 
network typically constructed of three layers such as 
one input layer, hidden layer and one output layer. 
Each layer consists of many neurons. The input layer 
consists of input data from the system and sends to 
network. The input data is sent to the hidden layer 
with the help of associated connection weights. The 
weighted inputs arrived at the hidden layers compute 
the outputs with the help of their transfer functions. 
Finally, the output layer produces the results which 
represent the mapping from the given input data to 
the desired output.  

The probabilistic neural network (PNN) is a 
supervised learning algorithm suitable for 
classification problems which is working on 
Bayesian classifier based probabilistic approach [24]. 
The important reasons of using PNN are due to its 
certain convergence to optimal solution provided that 
training data is enough, learning process is simple 
and fast, the initial weights of the network are set 
automatically.  In pattern recognition applications, 
the features related to each class from the  training 
data are classified according to their distribution 
values of probability density function (pdf) using 
Gaussian Kernels . The approximated pdfs are used 
in a Bayesian decision rule to perform classification 
objective. Fig. 3 illustrates the architecture of the 
PNN which consists of two layers, one is radial 
basis layer and the other is competitive layer 
[25]. A typical PNN is composed of an input 
layer, two computational layers (hidden layer 
and output layer) and one output unit. On the 
application of the input data, the first 
computational layer computes distances from the 
input vector to the training input vectors and 
gives a vector whose elements indicate the 
neighbourhood between the input and the training 
input. The second computational layer combines 
these contributions for all the inputs to produce as its 
net output a vector of probabilities. Finally, a 
compete transfer function on the output of the second 
layer picks the maximum of these probabilities, and 
provides a binary output signal (0,1)  which shows 
the most probable class membership for an applied 
input vector. 

 

Figure  3: Architecture of PNN 
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Table I PQ Disturbances Equations and their parameters variations 

Disturbances Equation Controlling Parameter 

Pure sine (C1) 𝑦(𝑡) = 𝐴𝑠𝑖𝑛(𝜔𝑡) 𝑤 = 2𝜋 x 50 

Sag (C2) 𝑦(𝑡) = 𝐴(1 − 𝛼(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2)))𝑠𝑖𝑛(𝜔𝑡) 0.1 ≤ 𝛼 ≤ 0.9; 
𝑇 ≤ 𝑡2 − 𝑡1 ≤ 9𝑇 

Swell (C3) 𝑦(𝑡) = 𝐴(1 + 𝛼(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2)))𝑠𝑖𝑛(𝜔𝑡) 0.1 ≤ 𝛼 ≤ 0.9; 
𝑇 ≤ 𝑡2 − 𝑡1 ≤ 9𝑇 

Interruption  (C4) 𝑦(𝑡) = 𝐴(1 − 𝛼(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2)))𝑠𝑖𝑛(𝜔𝑡) 
0.9 ≤ 𝛼 ≤ 1; 
𝑇 ≤ 𝑡2 − 𝑡1 ≤ 9𝑇 

Harmonics (C5) 𝑦(𝑡) = 𝐴[𝛼1 sin(𝜔𝑡) + 𝛼3 sin(3𝜔𝑡) + 𝛼5 sin(5𝜔𝑡) + 𝛼7 sin(7𝜔𝑡)] 

0.05 ≤ 𝛼3 ≤ 0.15; 
0.05 ≤ 𝛼5 ≤ 0.15; 
0.05 ≤ 𝛼7 ≤ 0.15; 

∑ 𝛼𝑖
2 = 1 

Sag and Harmonic 
(C6) 

𝑦(𝑡) = 𝐴(1 − 𝛼(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))) 
[𝛼1 sin(𝜔𝑡) + 𝛼3 sin(3𝜔𝑡) + 𝛼5 sin(5𝜔𝑡)] 

0.1 ≤ 𝛼 ≤ 0.9; 
𝑇 ≤ 𝑡2 − 𝑡1 ≤ 9𝑇 
0.05 ≤ 𝛼3 ≤ 0.15; 
0.05 ≤ 𝛼5 ≤ 0.15; 

∑ 𝛼𝑖
2 = 1 

Swell and 
Harmonic (C7) 

𝑦(𝑡) = 𝐴(1 + 𝛼(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))) 
[𝛼1 sin(𝜔𝑡) + 𝛼3 sin(3𝜔𝑡) + 𝛼5 sin(5𝜔𝑡)] 

0.1 ≤ 𝛼 ≤ 0.9; 
𝑇 ≤ 𝑡2 − 𝑡1 ≤ 9𝑇 
0.05 ≤ 𝛼3 ≤ 0.15; 
0.05 ≤ 𝛼5 ≤ 0.15; 

∑ 𝛼𝑖
2 = 1 

Interruption and 
Harmonic (C8) 

𝑦(𝑡) = 𝐴(1 − 𝛼(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))) 
[𝛼1 sin(𝜔𝑡) + 𝛼3 sin(3𝜔𝑡) + 𝛼5 sin(5𝜔𝑡)] 

0.9 ≤ 𝛼 ≤ 1; 
𝑇 ≤ 𝑡2 − 𝑡1 ≤ 9𝑇 
0.05 ≤ 𝛼3 ≤ 0.15; 
0.05 ≤ 𝛼5 ≤ 0.15; 

∑ 𝛼𝑖
2 = 1 

Flicker (C9) 𝑦(𝑡) = 𝐴(1 + 𝛼𝑓sin (𝛽𝜔𝑡))𝑠𝑖𝑛(𝜔𝑡) 0.1 ≤ 𝛼𝑓 ≤ 0.2; 
5 ≤ 𝛽 ≤ 20𝐻𝑧; 

Oscillatory 
Transient  (C10) 

𝑦(𝑡) = 𝐴[𝑠𝑖𝑛(𝜔𝑡) + 𝛼−(𝑡−𝑡1) 𝜏⁄ 𝑠𝑖𝑛𝜔𝑛(𝑡 − 𝑡1) 
(𝑢(𝑡2) − 𝑢(𝑡1)] 

0.1 ≤ 𝛼 ≤ 0.8; 
0.5𝑇 ≤ 𝑡2 − 𝑡1 ≤ 3𝑇 
8𝑚𝑠 ≤ 𝜏 ≤ 40𝑚𝑠; 
300 ≤ 𝑓𝑛 ≤ 900𝐻𝑧 

Impulsive Transient 
(C11) 𝑦(𝑡) =  𝑠𝑖𝑛(𝜔𝑡) + 𝛼−(𝑡−𝑡1) 𝜏⁄ 𝑠𝑖𝑛𝜔𝑛(𝑡 − 𝑡1)  

Periodic Notch 
(C12) 

𝑦(𝑡) = 𝑠𝑖𝑛(𝜔𝑡) − 𝑠𝑖𝑔𝑛(𝑠𝑖𝑛(𝜔𝑡)) × 

{∑ 𝐾

9

𝑛=0

× [𝑢(𝑡 − (𝑡1 − 0.02𝑛)) − 𝑢(𝑡 − (𝑡2 − 0.02𝑛))]} 

0.1 ≤ 𝐾 ≤ 0.4;  0 ≤ 𝑡1, 𝑡2 ≤ 5𝑇 
0.01𝑇 ≤ 𝑡2 − 𝑡1 ≤ 0.05𝑇 

 

Spike (C13) 

𝑦(𝑡) = 𝑠𝑖𝑛(𝜔𝑡) + 𝑠𝑖𝑔𝑛(𝑠𝑖𝑛(𝜔𝑡)) × 

{∑ 𝐾

9

𝑛=0

× [𝑢(𝑡 − (𝑡1 − 0.02𝑛)) − 𝑢(𝑡 − (𝑡2 − 0.02𝑛))]} 

0.1 ≤ 𝐾 ≤ 0.4;  0 ≤ 𝑡1, 𝑡2 ≤ 5𝑇 
0.01𝑇 ≤ 𝑡2 − 𝑡1 ≤ 0.05𝑇 

 

Flicker with 
Harmonic (C14) 

𝑦(𝑡) = 𝐴(1 + 𝛼(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))) 
[𝛼1 sin(𝜔𝑡) + 𝛼3 sin(3𝜔𝑡) + 𝛼5 sin(5𝜔𝑡)] 

0.1 ≤ 𝛼 ≤ 0.9; 𝑇 ≤ 𝑡2 − 𝑡1 ≤ 9𝑇 
0.05 ≤ 𝛼3 ≤ 0.15;  0.05 ≤ 𝛼5 ≤ 0.15; 

∑ 𝛼𝑖
2 = 1 
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6. Simulation Results 
The classification of PQ disturbances is 

divided into the three stages of data generation, 
feature extraction and classification. A number of 
distinctive features are extracted using DWT based 
MRA technique. The PQ signals are classified using 
feature vectors obtained from feature extraction 
stage. The proposed algorithm is validated with noise 
and without noise PQ disturbances. 

6.1 Data Generation 
The different types of power quality 

disturbances were generated by using parametric 
equations given in Table I. Overall 2800 samples 
were generated with 200 samples for the seven types 
of disturbance by using randomly distinctive 
disturbance magnitudes, time duration and different 
harmonics orders. The sampling frequency of the 
signals was set as 10 kHz i.e., 200 samples for each 
cycle and the normal power frequency was set as 
50Hz. For each type of disturbance, 100 signals were 
used for training the ANN classifiers and the 
remaining 100 were used for the testing. 16 cycles of 
each category consisting of disturbances are used for 
the classification. The disturbances generated in this 
way by using MATLAB software, are similar to 
actual power system disturbances which are shown in 
Fig. 4. The total time for each type of disturbances is  

 
 

taken as 0.32 seconds and the magnitude is assumed 
as 1 pu.  

6.2 Feature Extraction 
The DWT is applied to each of the disturbance 

for feature extraction. The db4 mother wavelet which 
is mostly used in power system transient analysis has 
been selected as the mother wavelet function. A 
decomposition level of 8 by MRA is applied to obtain 
a feature vector. All the coefficients of detail levels 
i.e., d1, d2, …, d8 and the last approximation level i.e., 
a8 are used for feature extraction. Then, a norm 
entropy (NE) feature in (13) is applied to the MRA 
coefficients for each class to obtain the wavelet norm 
entropy (WNE) feature vector.  

6.3 Classification 
A feature set of 9 dimensions is constructed by 

WT for training and testing the ANN classifier. The 
total size of the training and testing data set is 9 x 
2800, where 9 is size of feature set and 2800 is the 
number of PQ disturbances with 200 of each class. 
From 200 features of each disturbance, 100 features 
are used for training and 100 for testing the PNN 
classifier. The feature vector of 9 x 1400 is applied 
for training the PNN structure. The target vector of 

Figure  4 Power quality disturbances 
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the PNN classifier is selected as 14 x 1400. Thus the 
output of the classifier is obtained as 14 x 1400 
confusion matrix as shown in Table II. The PQ 
disturbances accurately classified are shown in 
diagonal elements and the misclassified are shown in 
off-diagonal elements.  

The various architectures of ANN are also 
compared for the classification of the PQ 
disturbances. Each type of ANN is trained with 100 
input data of each class and 100 disturbances of each 
type are considered for testing. The classification 
results of training and testing are shown in Table III. 
The recognition rate of the correctly classified 
disturbances is the ratio of the correctly classified 
disturbances to the total number of those 
disturbances. 
Recognition Rate

=
Correctly classified disturbances

Total number of that disturbances
  (19) 

 
The overall classification accuracy for RBF, 

MLP and PNN is 95.42%, 96% and 96.42% 
respectively as shown in Table III. The PNN has the 
better accuracy than RBF and MLP classifiers. 

Table II  Confusion Matrix for classification 

 

Table III Recognition rate for various types of ANN 

PQ Types RBF MLP PNN 

C1 100% 100% 100% 

C2 95% 93% 98% 

C3 97% 95% 99% 

C4 96% 96% 98% 

C5 96% 100% 99% 

C6 92% 97% 97% 

C7 97% 98% 98% 

C8 92% 96% 97% 

C9 96% 93% 99% 

C10 96% 95% 96% 

C11 90% 94% 97% 

C12 91% 91% 96% 

C13 98% 96% 98% 

C14 100% 100% 100% 

Overall 
Performance 

95.42% 96% 98% 

Table IV Recognition rate under noisy environment 

 20bB 30dB 40dB 50dB 
Noise- 

less 

C1 99 100 100 100 100 

C2 89 92 94 95 98 

C3 90 94 95 94 99 

C4 84 89 93 94 98 

C5 88 95 95 95 99 

C6 83 91 94 95 97 

C7 84 90 93 94 98 

C8 85 92 92 92 97 

C9 82 88 92 94 99 

C10 80 86 90 91 96 

C11 81 87 89 92 97 

C12 88 93 93 93 96 

C13 85 90 92 95 98 

C13 98 100 100 100 100 

Overall  
Performance 

86.85714 91.92857 93.71429 94.57143 98 

 

 

6.4 Performance of PNN under 

Noisy Environment 

The actual power quality disturbances are 
randomly noise-riding signals due to 
electromagnetic effects or communication lines 
passing nearby electric power transmission and 
distribution networks. Therefore, the proposed 
algorithm has been analyzed under noisy 
environment. In the research of PQ analysis, an 

additive white Gaussian noise (awgn) is widely 
considered which is uniformly distributed on 
overall the signals. The proper wavelet de-
noising technique is applied for the classification 
which gives a robust performance. The ability of 
the proposed algorithm is tested by applying 
different noise levels consisting of signal-to-
noise ratio (SNR) 20dB, 30dB, 40dB and 50dB 
to the signals for all types of the disturbances 
using parametric equations in Table I. 

 

 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 Accuracy 

C1 100              100% 

C2  98  2           98% 

C3   99      1      99% 

C4  1  98    1       98% 

C5     99     1     99% 

C6  1   1 97  1       97% 

C7   1    98  1      98% 

C8  1   1 1  97       97% 

C9         99    1  99% 

C10 3    1     96     96% 

C11 1      1   1 97    97% 

C12 4           96   96% 

C13 1        1    98  98% 

C14              100 100% 

Overall Accuracy 98% 
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Table V Comparison of Results 

 References 
PQ 

disturbances 
Ref. [22] Ref. [21] Ref. [25] Proposed 

NL N30 NL N30 NL N30 NL N30 

C1 100 100 100 91 100 94 100 100 

C2 88 81.5 87 91 95 98 98 92 

C3 96.5 93 100 91 91 92 99 94 

C4 85.55 78.5 80.5 91 99 99 98 89 

C5 100 95 100 91 96 95 99 95 

C6 100 97.5 97 91 98 98 97 91 

C7 100 97.5 100 91 98 84 98 90 

C8 --- --- --- --- --- --- 97 92 

C9 --- --- --- --- 98 82 99 88 

C10 --- --- --- --- 100 86 96 86 

C11 --- --- --- --- --- --- 97 87 

C12 --- --- --- --- 99 99 96 93 

C13 --- --- --- --- 98 99 98 90 

C14 --- --- --- --- --- --- 100 100 

Overall 95.71 91.85 94.93 91 97.4 93.2 98 91.93 

NL: Noiseless      N30= Noise 30db 

 

The value of the SNR is defined as follows: 

𝑆𝑁𝑅 = 10𝑙𝑜𝑔
𝑃𝑠

𝑃𝑁
 𝑑𝐵                                     (20) 

Where PS is the variance (power) of the signal, 
and PN is that of the noise. The different SNR 
values are added with pure signals and operated 
with WT for the feature extraction. The features 
are used for testing and training PNN for 
automatic classification of PQ disturbances. The 
classification accuracy for the different noise 
levels is shown in Table IV. The overall accuracy 
is 98% which suggests a high ability of PNN 
classifier.  Hence, the PNN is found more 
suitable for training and testing the PQ 
disturbances at different noise levels.  

7. Performance Comparison  

The effectiveness and feasibility of the proposed 
algorithm is ensured by comparing classification 
accuracies in terms of percentage between the 

recognition rate of the proposed algorithm and 
that of the different classification algorithms 
available in literature. In [21, 22, 25] authors 
have used only seven types of the disturbances 
by using the same parametric equations as used 
in this paper. Table 5 shows that the 
classification performance of the proposed 
method is better than that of the previously 
papers. The proposed technique considers the 
multiple PQ disturbances which were not 
considered in Ref. [21, 22, 25]. The classification 
accuracies for SNR value of 30dB are also 
compared. The comparison results show that the 
proposed classification system is highly immune 
to the presence of noise.      
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8. Conclusion 

In this paper, an attempt has been made for the 
automatic classification of PQ disturbances by 
using multiresolution analysis based discrete 
wavelet transform. The wavelet norm entropy 
feature extraction technique is applied for the 
pattern recognition. It has been found that the 
entropy difference patterns remain 
approximately same for each type of the 
disturbance even if the magnitude and time 
period of that disturbance is varied. The features 
are then applied as inputs to the various 
architectures of artificial neural network 
classifier. The performance of the classifiers is 
also tested by employing different magnitudes of 
adaptive white Gaussian noise values to the 
signals. Hence, the proposed wavelet norm 
entropy based classification approach is found 
immune to noise. The PNN classifier is found 
more suitable for the classification of PQ 

disturbances due to its fast speed and 
convergence. Consequently the proposed approach 
has the potential for recognition of PQ disturbances. 
For future work, there are other types of wavelet 
entropies which can be used as inputs of ANN. This 
approach justifies more research work and shows 
prospect in detecting and classifying power system 
disturbances. The proposed can be easily 
implemented on the DSP/FPGA board for developing 
the PQ disturbances classification module.    
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