
Microcontroller Raspberry Pi 2B as control system for basic types of 
motors 

 
MICHAL ŠUSTEK, MIROSLAV MARCANÍK, ZDENĚK ÚŘEDNÍČEK  

Department of Automation and Control Engineering  
Tomas Bata University in Zlín 

Nad Stráněmi 4511, 760 05 Zlín 
CZECH REPUBLIC 

sustek@fai.utb.cz, marcanik@fai.utb.cz, urednicek@fai.utb.cz  
 
 
Abstract: - Microcontroller’s technology is widely used in diverse field; including automation and issue of 
remote control of moving objects; that is caused by expanding capabilities of these devices. In this project, a 
microcontroller Raspberry Pi 2B was chosen for controlling basic types of motors (DC motors, servo-motors 
and stepper motors). This paper serves as insight into issue of programming motors on Raspberry Pi 2B by 
Python programming language and connection between microcontroller and other components on breadboard. 
This information can be used in education process or for those who want use a microcontroller Raspberry in 
their work. 
 
Key-Words: - Microcontroller, Raspberry, Python, DC motors, Servo motors, Stepper motors, Control 
system, Remote control 
 
1 Introduction 

Wi-Fi, GSM or Bluetooth controlled devices are 
very popular today. These technologies provides a 
simplification of our lives in the field of home 
automation or entertainment (mainly in form of 
radio-controlled models) [1].  At the same time, the 
performance and possibilities of microcontrollers 
have risen in many applications and areas [2]. 

Most of current control systems are based on 
specialized devices, which provide controlling of 
specific object. On the other hand, the small 
attention is given to universal devices (like 
microcontrollers). Microcontrollers are able to 
perform a wide variety of tasks in home automation, 
movement control and more [1, 2]. The remote 
control of object by microcontrollers is popular 
among researchers and “RC fans” than among 
public or industry [3]. 

Today’s microcontroller can manage a co mplex 
applications, because their performance growth in 
last years. There are also wide variety of 
manufacturers which created microcontrollers with 
diverse types of processors and performance. 
Among to best known and used microcontrollers are 
Raspberry and Arduino [4]. Both of them provide 
high performance, and they can be used in many 
challenging automation applications.  

The second generation of the Raspberry 
microcontroller provides enough performance to 
replace a s tandard PC in some audiovisual and 

automation applications [5]. With the use of the 
wireless extension, which can be achieved by a 
simple antenna, the device becomes in a complex 
control station.  

Section 1 describes a microcontroller Raspberry 
Pi and its performance. Section 2 shows a b asic 
functionality of DC motors, servo-motors and 
stepper motors. In section 3 is insight into issue of 
connection between components. In addition, 
section 4 describes basic programming in language 
Python for one component of each type (1 motor, 1 
servo-motor, 1 stepper motor). 
 
 
2 Microcontroller Raspberry  
A Raspberry Pi 2B is a small single-board device, 
which supports Linux-based operating systems, 
USB connections for mouse, keyboard, Ethernet 
adapter, and other devices. On Raspberry board are 
HDMI connector for attaching a monitor and 
general-purpose inputs and outputs [6]. A MicroSD 
card is used a storage device and Python is used for 
programming.  

In history, Raspberry Pi was created in UK as a 
low cost platform for teaching computer basics, in 
particular Python [8]. The first generation of 
Raspberry was introduced in February 2012. Since 
this time, a w ide variety of Raspberry 
microcontrollers has been created. In addition, each 

WSEAS TRANSACTIONS on POWER SYSTEMS Michal Šustek, Miroslav Marcaník, Zdeněk Úředníček

E-ISSN: 2224-350X 201 Volume 12, 2017

mailto:sustek@fai.utb.cz
mailto:marcanik@fai.utb.cz
mailto:urednicek@fai.utb.cz


of these variants have different performance and 
parameters. 

Raspberry Pi 2B was chosen for the purpose of 
this research. It contains 4-core 900 MHz processor, 
1 GB of RAM, 4 U SB 2.0 por ts, HDMI video 
output, 40-pin GPIO (General Purpose 
Input/Output) header. 
 

 

Fig. 1 Microcontroller Raspberry Pi 2B [8]. 

 
Raspberry can be used as an unpretentious and 

cheap replacement of a PC; however, it has wide use 
in home automation and remote control systems.  
This is caused by an opportunity to use GPIO pins, 
which function is programmable. 
 
 
2.1 GPIO pins 
General-Purpose Input/Output are generic pins on 
integrated circuit of Raspberry. Behavior of these 
pins is not defined and they can be programmed 
according to users’ needs. Each pin can be 
configured as input or output; it can be enabled and 
disabled; input value can be readable and output 
value can be readable or writable [8]. In some 
applications are GPIO pins used as maskable 
interrupt (IRQ). 

Ability of using the GPIO pins is provided by 
external Python module RPi.GPIO. This module 
must be imported into the main control program. 

 
 
3 DC motors and servo-motors 
DC motors and servo-motors are main actuators part 
in each robotic system. These components provide 
movement and rotation around desired axis. In 
deeper context, this component provide ability of 
movement. DC motors and servo-motors are crucial 
in all robotic projects. [12] 
 
 
3.1 DC motors 
Direct current motors are composed of three main 
parts (rotor, stator, and commutator). The stator 

circumferentially is provided with regularly spaced 
and mutually oppositely oriented main magnetic 
poles and commutation poles. The poles of the same 
polarity follow the poles of the given polarity in the 
direction of rotation of the anchor (rotor). The rotor 
has coils in the grooves and these coils are 
connected to a mechanical commutator. The 
commutator provides the supply of a correctly 
oriented current to the coils of the rotating anchor so 
that all currents of the flowing coil side form a 
torque of the same direction in the magnetic field of 
the main poles [12]. 

On magnetic neutral place between main poles of 
commutator, are placed carbon brushes. The number 
of the brushes is the same as the number of the main 
poles.  

Current, which flows through anchor windings, 
creates reactionary magnetic field that deforms and 
weakens magnetic field around main poles and has 
effect on commutator magnetic field. A 
compensating winding is used to suppress the 
reactionary magnetic field. Today a stator and a 
rotor are created from isolated dynamo-sheet of 
metal in modern motors. 
 

 

Fig. 2 Brushed DC motor [14]. 

Brushless DC motors are the second variant of 
DC motors. Brushless motors provide electrical 
commutation with permanent magnet rotor and 
stator with a sequence of coils. A permanent magnet 
rotates and current carrying conductors are fixed in 
this type of motor. Transistors or rectifiers at the 
correct rotor position switch the armature coils in 
such a way that the armature field is in space 
quadrature with the rotor fields [12]. 
 

WSEAS TRANSACTIONS on POWER SYSTEMS Michal Šustek, Miroslav Marcaník, Zdeněk Úředníček

E-ISSN: 2224-350X 202 Volume 12, 2017



 

Fig. 3 Brushless DC motor [15]. 

 
3.2 Servo-motors 
A servo-motor (servo) is a motor which uses a 
feedback to correct the output of the motor. The 
feedback is based on information from a sen sor or 
from a sensors and external circuitry. The servo 
itself is consisted from a DC motor, a potentiometer 
and a control circuit. They are small but very 
energy-efficient devices, which are controlled by 
electrical impulses. Gears for controlling a shaft 
attach the motor. The power supply of the motor is 
stopped, when the motor shaft is at the desired 
position. If it is not in desired position, then it is 
turned in the appropriate direction. The motor speed 
is proportional to the difference between desired and 
actual position [12]. 
 

 

Fig. 4 Servo-motors controlling pulses [8]. 

Signals are send as electrical pulses with variable 
width, or a Pulse Width Modulation (PWM) is used. 
A minimal and a maximal value of pulse and 
repetition rate is usually distinguished. Usually 
servos can turn 90⁰ in each direction for total 
180⁰.  
The neutral position is defined as the position, where 
the motor have amount of potential rotation equal to 
direction in both side (clockwise and counter-
clockwise). The servo expects a signal every 20 
milliseconds and the length of the electrical pulse 
determines how far the motor turns. When the servo 

moves on position, it will hold that position. If any 
external force try to push against the servo, while it 
holding a position, the servo will resist from moving 
out of the position. The maximum amount of force 
which a servo can resist is called the torque rating. 
The position will not be held forever, the position 
pulse must be repeated to instruct servo to stay in 
desired position. 
There are two types of servos [13], AC and DC. AC 
servos can work with higher current surges and are 
used in industrial applications. On the other hand, 
DC servos are not designed for high current surges 
and are better usable for smaller applications. There 
are also servos for continuous rotation. 
In real application servos are used in RC models 
(airplanes, walking robots), service robots and 
operating grippers. 
 
 
3.3 Stepper motors 
Stepper motors are DC motors, which movement is 
in discrete steps. These motors can convert a train of 
input pulses into precisely defined increment in the 
shaft position. Stepper motors have usually multiple 
toothed electromagnets, which are around central 
gear-shaped piece of iron. An external circuit or 
microcontroller energizes these electromagnets [8]. 

The principle of stepper motor is based on 
electromagnets and magnetic attraction. To one 
magnet is given power and the gear’s teeth are 
attracted to the electromagnet. In next step, the first 
electromagnet is set off and second electromagnet is 
set on. The process is then repeated. In that way can 
be the motor turned by a precise angle. 

There can be distinguished three types of stepper 
motors: 
• Permanent magnet stepper 
• Hybrid synchronous stepper 
• Variable reluctant stepper 
 

Permanent magnet stepper motor (PM) use 
permanent magnet in the rotor part and the attraction 
or repulsion is controlled by stator’s electromagnet. 
PM motors are called canstack rotor. 
Variable reluctant motors have iron rotors and they 
are based on principle that the minimum reluctante 
occurs minimum gap. So the rotor points are 
attracted toward the stator magnetic poles. 

Hybrid motors contains from permanent magnet 
similar to PM stepper motors. In addition hybrid 
motors are axially magnetized (one end is polarized 
to north; the second end is polarized to south). Stator 
and rotor assemblies in these types of motors have 
tiitg-like projections, which are align in various 
configuration during rotation [19]. 

WSEAS TRANSACTIONS on POWER SYSTEMS Michal Šustek, Miroslav Marcaník, Zdeněk Úředníček

E-ISSN: 2224-350X 203 Volume 12, 2017



Also can be used two basic winding 
arrangements for electromagnetic coils in a two-
phase stepper motor.  
• Bipolar 
• Unipolar 
 

Bipolar motors uses H-bridge circuitry to reverse 
the current flow through the phases. Energizing of 
the phases alternate the polarity. That leads to the 
fact that all the coils can be put to work turning the 
motor. 

Unipolar motors energize the phases always in 
same way. That means one lead will be always 
positive and the other will be always negative. This 
type of motors can be implemented by simple 
transistor circuit, but the disadvantage is that there is 
less available torque, because on one time can be 
energized only half of the coils [19]. 
 

 

Fig. 5 Principle of stepper motor [8]. 

The main advantages of stepper motors are [8]: 
• Low speed control 
• Speed control 
• Positioning 
 
On the other hand, the limitations are [8]: 
• No feedback 
• Limited high speed torque 
• Low efficiency 
 
 
4 Motor connection 
A small 6V DC motor PERMAX 280, a 
microcontroller Raspberry Pi 2B, and an H-bridge 
L293D were used in this project. The H-bridge is a 
simple circuit, which contains switching elements. 
These elements are usually Field-Effect Transistors 
(FET) transistors. All switches can be turned off or 
on independently. The H-bridge can be used to 
switch a direction of a motor depending on a current 
flow. Table 1. presents how switch state can effect 
the behavior of a motor. 
 

Tab. 1 H-bridge switch combination [8]. 

S-1 S-2 S-3 S-4 Motor behavior 

1 0 0 1 Clockwise turns 

0 1 1 0 Counter-clockwise turns 

0 0 0 0 Stop 

1 1 - - Short circuit 

- - 1 1 Short circuit 

1 0 1 0 Braking 

0 1 0 1 Braking 
 

Where 1 means the switch is closed, 0 means the 
switch is opened, and – means it does not matter on 
the state of a switch. 

The H-bridge L293D contains 2 H-bridges, so it 
is useful for 2 DC motors. The main advantages of 
this chip are: 
 

• Thermal protection 
• Capable with Raspberry logic (3V) 
• Voltage range of 4.5 to 36V for motors 
• Motor’s peak current of 1.2A 
• Continuous motor current of 600 mA 

 
In this work, all the components are connected 

on a breadboard as depicted in Figure 5. The main 
advantage of using L293D with Raspberry (it has 
3V logic) is that the control of pins need only a little 
current to control motors. 
 

 

Fig. 6 DC motor wiring with Raspberry Pi 2B [8]. 

 
5 Software solution 
Python has been chosen as the programming 
language in this work. Python is a higher 
programming language, which does not need to have 
strictly defined variables, unlike C++. In the deeper 
context, it is  a hybrid dynamically interpreted 

WSEAS TRANSACTIONS on POWER SYSTEMS Michal Šustek, Miroslav Marcaník, Zdeněk Úředníček

E-ISSN: 2224-350X 204 Volume 12, 2017



language from a group of scripting languages. 
Graphic User Interface (GUI) IDLE, which is well 
organized, was used to develop the software itself. A 
module called Rpi.GPIO has been used together 
with basic libraries. 
 
 
5.1 Solution for DC motor 
At the beginning, there is a need to import a module 
for controlling GPIO pins, in particular RPi.GPIO, 
which can be downloaded from www.python.org.  
 
import RPi.GPIO as GPIO 
import time 
 

Then the mode for GPIO pins must be set up. 
BOARD and BCM setup can be chosen. BOARD 
option specifies referring of the pins to the plug. 
BCM option means referring of the pins by the 
Broadcom SOC channel. 
 
GPIO.setmode(GPIO.BCM) 
 

There is also a need to select GPIO pins, which 
will be used. The H-bridge L293D is used as a 
motor driver. Therefore, pin number 18 m ust be 
enabled to control the speed of the motor. 
 
enable_pin = 18 
pin_1 = 23 
pin_2 = 2 
  

All used pins will be configured as outputs. 
These pins help to control direction of the motor. 
We also define PWM analog output, where 500 is 
PWM frequency. The initial value of duty cycle is 
set to 0% of the frequency. 
 
GPIO.setup(enable_pin, GPIO.OUT) 
GPIO.setup(pin_1, GPIO.OUT) 
GPIO.setup(pin_2, GPIO.OUT) 
pwm_motor=GPIO.PWM(enable_pin,500) 
pwm_motor.start(0) 
 

In the following block of code, the movement 
function for each direction (forward, backward) and 
stop function are defined. Pin 1 i s responsible for 
forward movement, on the other hand pin 2 is used 
for reverse movement. 
 
def forward(duty_cycle): 
    GPIO.output(pin_1, True) 
    GPIO.output(pin_2, False) 
    motor_pwm.ChangeDutyCycle(duty_cycle) 
 

def reverse(duty_cycle): 
    GPIO.output(pin_1, False) 
    GPIO.output(pin_2, True) 
    motor_pwm.ChangeDutyCycle(duty_cycle) 
 
def stop(): 
    GPIO.output(in_1_pin, False) 
    GPIO.output(in_2_pin, False) 
    motor_pwm.ChangeDutyCycle(0) 
 

The following part of the program represents the 
main loop which prompts the user for a command 
and calls direction functions and the stop function.  
 
try: 
    while True: 
        direction = raw_input('w – forward, x – 
reverse, t - stop') 
        if direction[0]=='t': 
            stop() 
            else: 
                duty_cycle= input('Duty cycle (0-100%)') 
                if direction [0]=='w': 
                    forward(duty_cycle) 
                elif direction [0]=='s': 
                     reverse(duty_cycle) 
 
finally: 
    print("Cleaning up") 
    GPIO.cleanup() 
 

This is elementary program for control DC motor 
with the microcontroller Raspberry Pi 2B. This 
program is written for one motor, which is wired to 
the microcontroller by L293D motor driver. 
 
 
5.2 Solution for servo motor 
The module RPi.GPIO must be used for GPIO 
control as in the previous case. 
 
import RPi.GPIO as GPIO 
import time 
 

The number of GPIO pin on Raspberry Pi 2B has 
to be chosen. In addition, every servo needs a 
slightly different length of pulse to maximize its 
range of angles, two constant are used to set the 
pulse duration between angles 0⁰ and 180⁰. Values 
of these variables represent duration of pulse in 
milliseconds. Frequency is set up to 50 Hz, therefore 
it is giving a pulse every 20 milliseconds. 
 
servo_pin=18 
0_deg = 0.5 

WSEAS TRANSACTIONS on POWER SYSTEMS Michal Šustek, Miroslav Marcaník, Zdeněk Úředníček

E-ISSN: 2224-350X 205 Volume 12, 2017



180_deg = 2.5 
frequency= 50.0 
 

Some calculations, which are related to the 
length of pulse, were made for easier future 
modifications.  P eriod is 1000 m illiseconds and is 
divided by frequency (50 Hz in our case) so the 
result is 20 millisecond. In addition, if there is a 
need to change a duty cycle, an interval between 0 
and 100 must be used and the constant k can be used 
to scale an angle to duty value. To convert the pulse 
for 0⁰ to a corresponding value of duty between 0 
and 100, is length of pulse multiplied by constant k. 
The value of range of duty is calculated by 
multiplying the span of pulse length by the constant 
k. 
 
period = 1000/frequency 
k = 100 / period 
0_deg_duty = 0_deg*k 
pulse_range = 180_deg-0_deg 
duty_range=pulse_range*k 
 

The part, which initialize the GPIO pin, is similar 
to the variant for DC control by Raspberry Pi 2B.  
 
GPIO.setmode(GPIO.BCM) 
GPIO.setup(servo_pin,GPIO.OUT) 
pwm=GPIO.PWM(servo_pin, frequency) 
pwm.start(0) 
 

In angle definition, we convert angle into duty 
cycle value, and then we call ChangeDutyCycle to 
set the new pulse length. 
 
def set_angle(angle): 
    duty_cycle=0_deg+(angle/180.0)*duty_range 
    pwm.ChangeDutyCycle(duty_cycle) 
 

The main loop of control program is written 
below. In the following part, a value of angle 
between 0⁰ and 180⁰ is set. It could be used for 
steering, when 90⁰ is forward direction, 0⁰ is 
turning left and 180⁰ is turning right. 
 
try: 
    while True: 
        angle = input("Angle 0⁰ to 180⁰") 
        set_angle(angle) 
 
finally: 
    print("Cleaning up") 
    GPIO.cleanup() 
 

The program serves as a b asic control software 
for servomotor by microcontroller Raspberry Pi 2B. 
Program is written for one servo-motor 
 
 
5.3 Solution for stepper motor 
As in all previous cases, it is necessary to use 
modules RPi.GPIO and time. In addition, the mode 
for GPIO pins must be set up. 
 
import RPi.GPIO as GPIO 
import time 
 
GPIO.setmode(GPIO.BCM) 
 

In this part of program are defined constans for 
four GPIO pins and set them to be outputs. These 
pins use pins number 23, 24, 25, 18. Period is set to 
0,02 second which corresponds to frequency 50 Hz. 
 
pin1_input = 23 
pin2_input = 24 
pin3_input = 25 
pin4_input = 18 
 
GPIO.setup(pin1_input,GPIO.OUT) 
GPIO.setup(pin2_input,GPIO.OUT) 
GPIO.setup(pin3_input,GPIO.OUT) 
GPIO.setup(pin4_input,GPIO.OUT) 
 
period=0.02 
 

The part which define forward and reverse steps 
for 4 c oil stepper motor. The four coil activations 
take place in the appropriate order using coil_setup 
function. This steps are repeated with a delay of 
period between each coil’s change. 
 
def forward_step (steps, period): 
 for i in range (0,steps): 
  coil_setup (1,0,0,1) 
  time.sleep(period) 
coil_setup (1,0,1,0) 
  time.sleep(period) 
  coil_setup (0,1,1,0) 
  time.sleep(period) 
coil_setup (0,1,0,1) 
  time.sleep(period) 
 
def reverse_step (steps, period): 
 for i in range (0,steps): 
  coil_setup (0,1,0,1) 
  time.sleep(period) 
coil_setup (0,1,1,0) 
  time.sleep(period) 

WSEAS TRANSACTIONS on POWER SYSTEMS Michal Šustek, Miroslav Marcaník, Zdeněk Úředníček

E-ISSN: 2224-350X 206 Volume 12, 2017



  coil_setup (1,0,1,0) 
  time.sleep(period) 
coil_setup (1,0,0,1) 
  time.sleep(period) 
 
def coil_setup (in1,in2,in3,in4): 
 GPIO.output(pin1_input,in1) 
 GPIO.output(pin2_input,in2) 
 GPIO.output(pin3_input,in3) 
 GPIO.output(pin4_input,in4) 
 

The main control loop of program reads the 
command string using raw_input. The parameter 
that follows the letter is first cut off the command 
using the syntax [1:]. That means, in Python, the 
string from position 1 to the end of the string. Then 
is the parameter converted into number by using the 
int built-in function. The last part of main control 
loop is series of three if statements, then carry out 
the appropriate action for the command.  
 
try: 

print(‘command letter followed by number’); 
print(‘p20 – set the inter-step period to 20 ms 

(control speed’); 
print(‘f100 – forward 100 steps’); 
print(‘r100 – reverse 100 steps’); 

 
while True: 

command = raw_input (‚Enter command:’) 
parameter_str = command [1:] 
parameter = int(parameter_str) 
if command [0]==’p’: 

period = parameter/1000.0 
elif command [0]==’f’: 

forward_step(parameter,period) 
elif command [0]==’r’ 

reverse_step(parameter,period) 
 
finally: 

print(‘Cleaning up’) 
GPIO.cleanup() 

 
 This is simple program for control of 
stepper motor by microcontroller Raspberry Pi 2B. 
Used stepper motor is a bipolar. 
 

The stepper motor’s rotation is not very smooth. 
For most application it is not a problem, however, in 
some specific application the smoother movement is 
needed. It can be used PWM to energize coils more 
smoothly, that leads to smoother rotation of the 
motor. This system is called microstep. In general is 
easier to use hardware, which is specifically 
designed to microstep of stepper motors (for 

instance the EasyDriver board, based on the A3967 
IC).  The following program is created for microstep 
of stepper motor on microcontroller Raspberry Pi 2 
B and EasyDrive Board. 
 
import RPi.GPIO as GPIO 
import time 
 
GPIO.setmode (GPIO.BCM) 
 
pin_step=24 
pin_direction = 25 
pin_ms1 = 23 
pin_ms2 = 18 
 
GPIO.setup(pin_step, GPIO.OUT) 
GPIO.setup(pin_direction, GPIO.OUT) 
GPIO.setup(pin_ms1, GPIO.OUT) 
GPIO.setup(pin_ms2, GPIO.OUT) 
 
period=0.02 
 

The previous part of program is very similar to 
control program for stepper motors. It must be 
imported specific Python libraries, GPIO mode must 
be set and each used pin must be defined. 
 
def step(steps, direction, period): 

GPIO.output (pin_direction, direction) 
for i in range(0, steps): 

GPIO.output(pin_step, True) 
Time.sleep(0.00002) 
GPIO.output(pin_step, False) 
Time.sleep(0.00002) 

 
Step funcion contains code for moving the motor 

on by a number of steps or microsteps[]. Used 
parameters are direction and period. Firstly the 
direction pin is set on the EasyDriver board and then 
are generated the required number of pulses on the 
step pin.The lenght of pulse is 2 microsecond.  
 
def step_mode(mode) 

GPIO.output(pin_ms1, mode & 1) 
GPIO.output(pin_ms2, mode & 2) 

 
Step mode function  sets the stepping mode pina 

to value of mode. This value can be chosen between 
0 and 3. In this syntaxe is separated 2 bits of the 
mode number and sets 2 variables using the logical 
and operator. 
  
try: 

print(‘Command leter followed by number’); 

WSEAS TRANSACTIONS on POWER SYSTEMS Michal Šustek, Miroslav Marcaník, Zdeněk Úředníček

E-ISSN: 2224-350X 207 Volume 12, 2017



print(‘p20 – set the inter-step period to 20 ms 
(control speed)’); 

print(m- set stepping mode (0 – none, 1- half, 2 – 
quarter, 3 – eight)’; 

print (‘f100 – forward 100 steps’); 
print (‘r100 – reverse 100 steps’); 

 
while True: 

command = raw_input (‘enter command:’) 
parameter_str = command [1:] 
parameter = int (parameter_str) 
if command [0]==’p’: 
 Period=parameter/1000.0 
elif command [0] == ‘m’ 
 Step_mode(parameter) 
elif command [0] == ‘f’ 
 Step(parameter, True, period) 
elif command [0] == ‘r’ 
 Step(parameter, False, period) 

finally: 
Print (‘Cleaning up’) 
GPIO.cleanup() 

 
The main control loop of the program is very 

similar to previous program for control of stepper 
motors. To original code is added m command, 
which allows set of the microsteps. 
 
6 Conclusion 
Microcontrollers can be used in wide variety of task, 
mostly thanks to increase of performance and high 
demand for universal wireless devices that lead to 
significant use of microcontrollers. The paper 
provide elementary insight into the issue of 
controlling individual types of motors by 
microcontroller (in particular a microcontroller 
Raspberry Pi 2B).  

This type of microcontroller provides enough 
performance to run control system for DC motors, 
servo-motors or stepper motors. 6V DC motor 
PERMAX 280, motor driver L293D and breadboard 
have been chosen for creation of this system. In 
second variation was used  s ervo motor Turnigy™ 
TG9e Eco Micro Servo and in third part was used 
stepper motor SX17-1005LQCEF. Connection 
between components is experimental and it is not 
used in real robotic platform yet. As a m ain 
programming language is used Python; however, 
there is also needing to use GPIO pins, so the 
module RPi.GPIO must be imported into the 
program. The submitted syntaxes in programs are 
the elementary way to control DC motors, servo-
motors and stepper motors.  

The next work will be focused on extending the 
control system on a cell phone as a control device, in 
particular, by using LTE (Long Term Evolution) 
technology. The main difference in LTE system will 
be in control software (Android, iOS application). 
An LTE modem must be added to the entire system. 
Another further work can be aimed at 
implementation of this control system into a 4-
wheeled robotic chassis. 
 
 
Acknowledgment 
This work was supported by Internal Grant Agency 
of Tomas Bata University under the project No. 
IGA/FAI/2017/004. 
 
 
References: 
[1] Names of the Authors, Title of the Paper, 

International Journal of Science and 
Technology, Vol.X, No.X, 200X, pp. XXX-
XXX. 

[2] Names of the Authors, Title of the Book, 
Publishing House, 200X. 

[3] A. A. Asadi, S. Bagheri, A. Imam, E. Jalayeri, 
W. Kinsner, and N. Sepehri. Institute of 
Electrical and Electronics Engineers Inc. (2016) 

[4] K. Chaitanya, G. Karudaiyar, C. Deepak, S. B. 
Reddy, 1st International Conference on D ata 
Engineering and Communication Technology, 
469 Springer Verlag. (2017) 

[5] I. Lobachev, E. Cretu Institute of Electrical and 
Electronics Engineers Inc. (2016) 

[6] A.C. Martinez, International Conference on 
Human Factors and System Interactions, 497 
Springer Verlag. (2016) 

[7] P. Membrey, D. Veitch, R. K. C. Chang. 
Association for Computing Machinery, (2016) 

[8] M. Šustek, M. Opluštil, Z. Úředníček, 6th  
International Masaryk Conference for Ph.D 
students and young researchers, (2015) 

[9] M. Vanitha., M. Selvalakshmi, R. Selvarasu. 
Institute of Electrical and Electronics Engineers 
Inc. (2016). 

[10] S. Monk. Make: action: Movement, light, and 
sound with Arduino and Raspberry Pi. San 
Francisco, CA: Maker Media. (2016) 

[11] H.L. Dai, L. Wang. Communications in 
Nonlinear Science and Numerical Simulation 
46: 116-125 (2016) 

[12] K. Premkumar, K. G. J. Nigel. "Smart Phone 
Based Robotic Arm Control using Raspberry 
Pi, Android and Wi-Fi."Institute of Electrical 
and Electronics Engineers Inc. (2015) 

WSEAS TRANSACTIONS on POWER SYSTEMS Michal Šustek, Miroslav Marcaník, Zdeněk Úředníček

E-ISSN: 2224-350X 208 Volume 12, 2017



[13] D. Sanchez-Benitez, J. M. de la Cruz, G. 
Pajares, D. Gu. "Visual Control of a Remote 
Vehicle." Intelligent Robotics and Applications, 
Pt Ii 7102: 579-588 (2011) 

[14] M. Ghosh, S. Ghosh, P.K. Saha, G.K. Panda, 
IEEE Transactions on Industrial Electronics, 64 
(2017) 

[15] R.S. Ashok, Y.B. Shtessel,  American Control 
Conference (ACC) (2016) 

[16] Todd H. Hubing, Clemson University [online], 
Available from: 
http://www.cvel.clemson.edu/auto/actuators/im
ages/chaudhary-DCmotor.png (2017.5.18) 

[17]  Electrical Technology, UK, Birmingham, 
Available from: 
http://www.electricaltechnology.org/2016/05/bl
dc-brushless-dc-motor-construction-working-
principle.html (2017.5.18) 

[18] M. Šustek, M. Marcaník, P. Tomášek and Z. 
Úředníček, DC Motors and Servo-motors 
Controlled by Raspberry Pi 2B, 21st 
International Conference on Circuits, Systems, 
Communications and Computers (2017) 

[19] B. Schwebber, “Stepper Motors Make the Right 
Moves with Precision, Ease and Smarter 
Drivers”, Mouser Electronics, Available from: 
http://www.mouser.com/pdfdocs/PublicRelatio
ns_TechArticle_StepperMotors_RightMoves_2
015Final.PDF?cm_mmc=PressRelease-PR-_-
MOUSER-_-
Stepper_Motors_Make_the_Right_Moves_with
_Precision,_Ease_and_Smarter_Drivers-_-
2015-02-16 

WSEAS TRANSACTIONS on POWER SYSTEMS Michal Šustek, Miroslav Marcaník, Zdeněk Úředníček

E-ISSN: 2224-350X 209 Volume 12, 2017




