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Abstract: This paper focuses on the design of a backstepping-like nonlinear coordinated controller for excitation

and static var compensator (SVC) of an electrical power system to enhance transient stability and voltage regulation

after the occurrence of a large disturbance and a small perturbation. Based on this scheme, the developed nonlinear

controller is used to not only achieve power angle stability, frequency and voltage regulation but also ensure

that the closed-loop system is transiently and asymptotically stable. Besides, the developed design technique is

rather simple but effective as compared with an immersion and invariance (I&I) control technique and a traditional
backstepping nonlinear design technique. In order to show the effectiveness of the proposed controller design,

the simulation results illustrate that in spite of the case where a large perturbation occurs on the transmission

line or there is a small perturbation to mechanical power inputs, the proposed controller can not only keep the

system transiently stable but also simultaneously accomplish good dynamic properties of the system as compared

to operation with the existing nonlinear controllers.
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1 Introduction

On account of the rapid increase of the size and com-

plexity of power systems, power system stability, in-

cluding power angle stability as well as frequency and

voltage regulation, is of great importance. In general,

the stability margins of the power system decrease as

the electrical power transmission levels increase. It is

well-known that recently the power system operation
is faced with the difficult task of maintaining stability

when small or large disturbances occur in the power

system. Therefore, more effective and efficient con-

trol methodologies for improvement of power system

stability are desired. In particular, to enhance power

system stability margins and accomplish transfer lim-

its, an advanced nonlinear controller design has at-

tracted much attention in literature for years.

Although there have been numerous studies for

power system stability enhancement, recently an ef-
fective approach to improving the stability of power

systems uses generator excitation control in combina-

tion with flexible ac transmission systems (FACTS)

devices. FACTS devices [1]-[15] are becoming in-

creasingly important for the controllability improve-

ment of power flows and voltages as well as the sta-

bility of the power systems. FACTS devices include

SVC, static synchronous compensator (STATCOM),

thyristor-controlled series compensator (TCSC), static

series synchronous compensator (SSSC), thyristor-

controlled phase angle regulator (TCPAR), unified
power flow controller (UPFC), etc., and these de-

vices are often employed in interconnected and long-

distance transmission systems to improve power flow,

voltage control, inter-area and system oscillations, re-

active power control, steady-state and dynamic stabil-

ity. In this paper, among a family of these FACTS

devices, of particular interest is the Static Var Com-

pensator (SVC) because it is the most popular type

of FACTS devices [4, 5]. This device can regulate
the system voltage and improve power system stabil-

ity. In particular it is able to provide fast-acting reac-

tive power to increase grid transfer capability through

enhanced dynamic voltage stability, provides smooth

and rapid reactive power compensation for voltage

support, and improves both damping oscillations and

transient stability [4]-[9]. In [4]–[6], the SVC damp-

ing controller design was proposed via optimization

algorithms to enhance power system stability. In [7]-
[9], with the help of robust control techniques, a coor-

dinated generator excitation and SVC controller was

presented for transient stability improvement and volt-

age regulation.

Unfortunately, there was an important disadvan-

tage in using those controllers. That is, the operating

condition can change at any time while the desired lin-
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ear and robust controllers designed around the origi-

nal steady-state operating point. This causes insuf-

ficient robustness of the power system since the de-

signed controller performance cannot be guaranteed

under the widely changing operating condition. A nat-

ural way to address such problems is to adopt a stabi-

lizing feedback control for nonlinear power systems
using nonlinear control theory.

Lately, although considerable research above has
been paid to the application of SVC mentioned pre-

viously, less attention has been devoted to the coordi-

nation of generator excitation and SVC controller for

power systems via directly the nonlinear control the-

ory. The exact linearization feedback control of SVC

system was investigated in [10]. With the help of the

feedback linearization method and control of differ-

ential and algebraic systems, a coordinated generator

excitation and SVC controller in power systems with
nonlinear loads was proposed and and it can improve

the power angle stability of generators and the volt-

age behavior [11]. A nonlinear controller design for

SVC to improve power system voltage stability us-

ing direct feedback linearization technique was stud-

ied in [12]. Based on adaptive and robust control tech-

nique, the SVC controller was capable of enhancing

power system voltage stability [13]. More recently, in

[14], based on modifying adaptive backstepping slid-
ing model control methodology an adaptive backstep-

ping sliding mode H∞ controller was proposed for

static var compensator alone. The controller not only

attenuates the influences of external disturbances on

the system output, but also has strong robustness for

system parameter variations. Recently, in [15], an im-

mersion and invariance (I&I) design technique was

proposed for the design of a nonlinear coordinated

generator excitation and SVC controller for transient
stability enhancement and voltage regulation of power

systems.

This paper continues this line of investigation but

determine a simpler nonlinear controller design pro-

cedure than the one from our previous work reported

in [15]. From our previous work, the resulting nonlin-

ear I&I controller highly relies upon selecting a target

dynamical system capturing the desired behavior of

the closed-loop system to be controlled. Besides, the

aim of the obtained control law is to ensure that the
closed-loop system behaves asymptotically the same

as the pre-specified target system. Even though the

I&I control methodology is most effective and appli-

cable to practical control design problems for various

types of systems [16]-[21], there are significant diffi-

culties once used to design the desired nonlinear con-

troller. This makes the design procedure rather further

complicated. Therefore, this paper proposes a non-

linear controller via a backstepping-like procedure as

reported in [22] in order to overcome many difficul-

ties. The proposed controller is not only considerably

simple, but also effective in comparison with the I&I

one. Based on this simple scheme, the developed con-

troller is designed to not only simultaneously achieve

power angle stability along with frequency and volt-

age regulation, but also keep the closed-loop system
transiently stable similar to the I&I one.

The paper is organized as follows. Section 2

presents the dynamic models of the synchronous gen-

erator and SVC and the control problem definition.

Section 3 present the backstepping-like controller de-

sign. Then, Simulation results are given in Section 4.

We conclude in Section 5. Finally, Appendix follows

thereafter.

2 Power System Models with SVC

The dynamic models of power systems consist of the

dynamics of a synchronous generator and SVC. A

dynamic model of the synchronous generator (SG)

can be obtained by representing the SG by a tran-

sient voltage source, E , behind a transient reactance,
X ′

d. In this paper, as shown in Figure 1, a thyristor-

controlled-reactor (TCR) fixed-capcitor type of SVC

is used and the SVC can serve as a variable suscep-

tance connected in shunt the power system [14]. For

simplicity, the dynamic model of the SVC is often

modeled as a first-order differential equation. Conse-

quently, the dynamics of synchronous generator with

excitation control and the SVC regulator in SMIB

power systems can be modeled as follows [12]:

SG

E∠δ

BC

BL

jX1 jX2

Vt∠α V∞∠0

Figure 1: Network with TCR-FC SVC [15]























δ̇ = ω − ωs,

ω̇ = 1
M (Pm − PE − D(ω − ωs)) ,

Ė = − XdΣ

X ′

dΣ
T ′

0

E +
Xd−X ′

d

X ′

dΣ
T ′

0

V∞ cos δ +
uf

T ′

0

,

ḂL = 1
Tr

(BL − BL0 + ur),

(1)

with

PE =
EV∞ sin δ

X ′

dΣ − (X ′

d + XT )XL(BL − BC)
,
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where δ is the power angle of the generator, ω denotes

the relative speed of the generator, D ≥ 0 is a damp-

ing constant, PE is the electrical power delivered by

the generator to the voltage at the infinite bus V∞, ωs

is the synchronous machine speed, ωs = 2πf , H rep-

resents the per unit inertial constant, f is the system

frequency and M = 2H/ωs. X ′

dΣ = X ′

d + XT + XL

is the reactance consisting of the direct axis transient

reactance of SG, the reactance of the transformer, and

the reactance of the transmission line XL. Similarly,

XdΣ = Xd + XT + XL is identical to X ′

dΣ ex-

cept that Xd denotes the direct axis reactance of SG.

T ′

0 is the d-axis transient short-circuit time constant.

X1 = X ′

d + XT , X2 = XL, uf is the field voltage

control input. Pm is the mechanical input power to be

assumed constant throughout this paper. BL and BC

are the susceptance of the inductor in SVC (pu) and

the equivalent capacitor (pu.), BL0 is the initial value

of the inductor in SVC (pu.), ur is the SVC control

input to be designed, and Tr is a SVC time constant.

Practically, the generator transient voltage (E) is

often physically unmeasurable and BL −BC may not

be convenient to monitor like active electrical power,

thus the active power PE can be divided into two new

variables, namely, an active electrical power of gener-
ation excitation alone Pe and a real electrical power of

the SVC device Psvc below:


























PE = Pe + Psvc,

Pe = EV∞ sin δ
X ′

dΣ

,

Psvc =
(X ′

d
+XT )XL(BL−BC)

X ′

dΣ
−(X ′

d
+XT )XL(BL−BC)

EV∞ sin δ
X ′

dΣ

,

=
(X ′

d
+XT )XL(BL−BC)

X ′

dΣ
−(X ′

d
+XT )XL(BL−BC)Pe.

(2)

Remark 1 In this paper the SMIB power system with

SVC as shown in Figure 1 is considered. However,

we can extend the proposed strategy to multi-machine

systems. This makes the developed design procedure

further complicated and will be presented in the fu-

ture.

After defining the state variables x =
[x1, x2, x3, x4]

T = [δ − δe, ω − ωs, Pe, Psvc]
T , we

have the dynamic model of power systems with SVC

that can be expressed as (3)-(4).

Further, the bus (terminal) voltage Vt as shown in

Figure 1 can be found from the following expression

Vt =

(

1 +
x4

x3

)

·
∆(x1, x3)

X ′

dΣ

∆(x1, x3) =

[(

x3X
′

dΣX2

V∞ sin(x1 + δe)

)2

+ (V∞X1)
2

+2X1X2X
′

dΣx3 cot(x1 + δe)

]1/2

Additionally, the region of operation is defined in

the set D = {x ∈ S × R × R × R| 0 < x1 < π
2 }.

The open loop operating equilibrium is denoted by

xe = [x1e, x2e, x3e, x4e]
T = [0, 0, Pm, 0]T . From

the dynamic equations (3) above, it is easy to see that
all state variables (x1, x2, x3, x4) are measurable and

such state variables can be used to find the bus voltage

Vt.

Therefore, the objective of this paper is to design

a state feedback control law that meets the following

expected performance requirements:

1. the equilibrium point xe is asymptotically stable,

2. power angle stability along with voltage and fre-

quency regulation are simultaneously achieved.

Consider the model stated above, it is easy to see

that all state variables can be measured in this sys-

tem. In (3)-(4), there is also a nonlinear controller

u = [uf/T ′

0, ur/Tr]
T to be designed. For notational

convenience, the nonlinear power system1 in (3)-(4)

can be rewritten as follows.






















ẋ1 = x2

ẋ2 = 1
M (Pm − Dx2 − x3 − x4)

ẋ3 = f3(x) + g31(x)
uf

T ′

0

ẋ4 = f4(x) + g41(x)
uf

T ′

0

+ g42(x)ur

Tr

(6)

Thus, the objective of this paper is to solve the

problem of the transient stabilization of the system

(6) to design a coordinated stabilizing (state) feedback

controller u such that the resulting closed-loop system

is asymptotically stable at the only equilibrium (xe)
and x → xe as t → ∞.

Remark 2 It is obvious that the dynamics of x2 rely

on the state variables x3 and x4. Therefore, the dy-

namic equations (6) is not of the strict-feedback form

[23] for backstepping design. However, backstepping

design, compared with the proposed design in this pa-

per, needs to be further extended for the design of non-

linear controllers, see Appendix.

3 Backstepping-Like Controller De-

sign

For the purpose of designing a nonlinear con-

troller such that limt→+∞ xi = 0, (i =
1, 2, 4), limt→+∞ x3 = Pm, let us take the fol-

lowing Lyapunov candidate as follows:

V1 =
1

2
x2

1 (7)

1It is assumed that all functions are C
∞ throughout this paper.
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ẋ = f(x) + g(x)u(x) (3)

with































































f(x) =













f1(x)

f2(x)

f3(x)

f4(x)













=













x2

1
M (Pm − Dx2 − x3 − x4)

(−a + x2 cot(x1 + δe))x3 + bV∞ sin 2(x1+δe)
X ′

dΣ

M̃(x1, x3, x4)f3(x) + Ñ(x1, x3, x4) (BL − BL0)













,

g(x) =













0 0

0 0

g31(x) 0

g41(x) g42(x)













=













0 0

0 0
V∞ sin(x1+δe)

X ′

dΣ

0

M̃(x1, x3, x4)g31(x) −Ñ (x1, x3, x4)













, u(x) =

[

uf

T ′

0

ur

Tr

]

(4)

where















M̃(x1, x3, x4) =
(

X ′

dΣ

X ′

dΣ
−(X ′

d
+XT )XL(BL−BC)

− 1
)

, BL = 1
(X ′

d
+XT )XL

(

X ′

dΣ −
x3X ′

dΣ

x3+x4

)

+ BC ,

Ñ(x1, x3, x4) = −
x3(X ′

d+XT )XLX ′

dΣ

(X ′

dΣ
−(X ′

d
+XT )XL(BL−BC))2 , a = XdΣ

X ′

dΣ
T ′

0

, b =
XdΣ−X ′

dΣ

X ′

dΣ
T ′

0

V∞.

(5)

Then the derivative of (7) becomes

V̇1 = x1x2 = −c1x
2
1 + x1(c1x1 + x2) (8)

where c1 > 0. From (8), it is easy to see that the

term x1(c1x1 + x2) is not always negative; thus, this

term should be eliminated from the aforementioned

equation. In order to do this, we choose the Lyapunov
function candidate as:

V2 =
1

2
x2

1 +
1

2
(c1x1 + x2)

2 (9)

After calculating the derivative of (9), we have

V̇2 = −c1x
2
1 + x1(c1x1 + x2)

+(c1x1 + x2)(c1ẋ1 + ẋ2)

= −c1x
2
1 + (c1x1 + x2)(x1 + c1x2 + ẋ2)

= −c1x
2
1 − (c1x1 + x2)

2 + (c1x1 + x2)

×

[

(c + 1)(x1 + x2) + ẋ2)

]

(10)

It can be observed that the last term of (10) is not al-

ways negative; thus, we should cancel this term.

To this end, we introduce the following terms into

V3 and then obtain

V3 =
1

2
x2

1 +
1

2
(c1x1 + x2)

2 +
1

2
P2 +

1

2
Q2 (11)

where
{

P = (c1 + 1)x1

2 + (c1 + 1 − D
M )x2

2 +
(Pm−x3)

M ,

Q = (c1 + 1)x1

2 + (c1 + 1− D
M )x2

2 − x4

M .

(12)

By calculating the derivative of (11) along the system
trajectory, one obtains

V̇3 = −c1x
2
1 − (c1x1 + x2)

2 + PṖ + QQ̇

−c1x
2
1 − (c1x1 + x2)

2

+P

[

c1x1 + x2 + (c1 + 1)
x2

3

+

(

c1 + 1 −
D

M

)

ẋ2

2
−

ẋ3

M

]

+Q

[

c1x1 + x2 + (c1 + 1)
x2

3

+ (c1 + 1−
D

M
)
ẋ2

2
−

ẋ4

M

]

= −c1x
2
1 − (c1x1 + x2)

2 − c2P
2 − c3Q

2

+P

[

P̃ −
ẋ3

M

]

+ Q

[

Q̃ −
ẋ4

M

]

(13)

with
{

P̃ = c2P + c1x1 + (c1 + 3)x2

2 +
(

c1 + 1− D
M

)

ẋ2

2

Q̃ = c3Q + c1x1 + (c1 + 3)x2

2 +
(

c1 + 1 − D
M

)

ẋ2

2

(14)
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where ci > 0, (i = 1, 2, 3) are positive design param-

eters.

After substituting ẋ3 and ẋ4 into (13), one has

V̇3 = −c1x
2
1 − (c1x1 + x2)

2 − c2P
2 − c3Q

2

+P

[

P̃ −
1

M

(

f3(x) + g31(x)
uf

T ′

0

)]

+Q

[

Q̃ −
1

M

(

f4(x) + g41(x)
uf

T ′

0

+ g42(x)
ur

Tr

)]

(15)

Therefore, if we choose















uf

T ′

0

= 1
g31(x)

[

− f3(x) + M P̃

]

ur

Tr
= 1

g42(x)

[

− f4(x)− g41(x)
uf

T ′

0

+ MQ̃

]

(16)

Then, under the feedback control law (16), the equa-

tion (15) turns into

V̇3 = −c1x
2
1 − (c1x1 + x2)

2 − c2P
2 − c3Q

2 ≤ 0

(17)

With the help of Lyapunov stability theory, it is
obvious that























limt→+∞ x1 = 0

limt→+∞(c1x1 + x2) = 0

limt→+∞ P = 0

limt→+∞ Q = 0

(18)

These also imply that limt→+∞ x1 = limt→+∞ x2 =
limt→+∞ x4 = 0, and limt→+∞ x3 = Pm. Accord-

ing to the aforementioned discussion, the following

theorem obvious holds.

Theorem 3 Consider the nonlinear power system

with SVC in (6). Provided that the nonlinear con-

troller is designed by (16), then the equilibrium point

of the system (3) is asymptotically stable. This implies

that limt→+∞ xi = 0, (i = 1, 2, 4), limt→+∞ x3 =
Pm.

Proof: The proof of Theorem 3 is based on the argu-

ment given above.

4 Simulation Results

In this section, in order to demonstrate the application

of the proposed scheme, the simulation results of the

coordination between generator excitation and SVC

control in a SMIB power system are shown in Figure

1. Power angle stability as well as voltage and fre-

quency regulations is used to point out the transient

stability enhancement and dynamic properties.

SG

E∠δ

j(X ′
d

+ XT )

j2XL

j2XL

BC

BL

Vt∠α

F

P

V∞∠0

Figure 2: A single line diagram of SMIB with TCR-

FC SVC [15]

Considering the single line diagram as shown

in Figure 2 where SG is connected through parallel

transmission line to an infinite-bus, such SG delivers

1.0 per unit (pu.) power while the terminal voltage Vt

is 0.9897 pu, and an infinite-bus voltage is 1.0 pu.
We assume that once there is a three-phase fault

(a large perturbation) occurring at the point, the mid-

point of one of the transmission lines, leading to rotor

acceleration, voltage sag, and large transient induced

electromechanical oscillations. Further, assuming that

a small perturbation in the mechanical input power oc-

curs on the network, resulting in the system trajecto-

ries, induced by the perturbation, confined to a lim-

ited region in a neighborhood of a nominal operating
trajectory. We are, therefore, interested in the follow-

ing two questions. One is whether, after the fault is

cleared from the network, the system will return to

a to a post-fault equilibrium state or not. The other

becomes whether, after the small perturbation disap-

pears, the system can maintain stability or not. In the

simulations, the fault of interest is a symmetrical three

phase short circuit occurring on one of the transmis-

sion lines as shown in Figure 2. The following two
cases with a temporary fault sequence and a small per-

turbation to mechanical power to synchronous gener-

ators in the system are discussed.

The physical parameters (pu.) and initial con-

ditions (δe, ωs, Pee, Psvce) for this power system

model are given as follows:

ωs = 2πf rad/s, D = 0.2, H = 5,

f = 60 Hz, T ′

0 = 4, Tr = 0.2; V∞ = 1∠0◦,

ω = ωs, Xd = 1.1, X ′

d = 0.2, XT = 0.1,

XL = 0.2, Tr = 0.02, δe = 0.4964 rad,

Pee = Pm = 1.0 pu., BL0 = BC = 0.3

The tuning parameters of the control law are set
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as c1 = c2 = c3 = 10. In this paper, two cases

with different fault sequences are investigated in the

transient stability studies.

Case 1: Temporary fault

The system is in a pre-fault steady state, a fault

occurs at t0 = 0.5 sec., the fault is isolated by opening

the breaker of the faulted line at tc = 1 sec., the trans-

mission line is recovered without the fault at tr = 1.5
sec. Afterward the system is in a post-fault state.

Case 2: The mechanical input power increase

The system is in the pre-fault state, at t = 0.5 sec.,

there is a 20% perturbation in the mechanical power

(∆Pm(t) = 0.2Pm pu.) After t = 2.5 sec. the per-

turbation disappears, then the system is eventually in

a post-fault state.

The effectiveness of the proposed strategy is

shown by transient stability enhancement of the co-

ordinated (generator excitation/SVC) nonlinear con-

trol scheme. Power angle stability, voltage, frequency,

and power regulations, are investigated and compared

with existing nonlinear controllers, e.g., the I&I con-

troller [15] and the backstepping controller [23] given
in Appendix.

For Case 1, it can be seen that Figure 3 shows

the time responses of power angle (δ), frequency
(ω − ωs), transient internal voltage (E), and suscep-

tance of SVC (BL). These responses return to the pre-

fault state values, under the I&I control, the backstep-

ping controller, and the proposed control, respectively.

Apart from this, time responses of active power (PE)

and SVC terminal voltage (Vt) are shown in Figure 4.

It is obvious that even if the developed design proce-

dure hardly becomes complicated, the proposed con-

troller and the I&I controller provide a similarly good
transient behavior over the backstepping scheme. In

comparison with the backstepping method, the con-

vergence and damping of the proposed controller are

greatly better. In particular, the proposed control pro-

vides better transient response performance in terms

of reduced overshoot and faster reduction of oscilla-

tions.

Similar to Case 1, it is evident from Case 2 that

Figures 5-6 illustrate time trajectories of power angle,

frequency, transient internal voltage, susceptance of

SVC, active power and terminal voltage, respectively.

All time trajectories settle to the pre-fault steady state
in spite of having a small perturbation of mechani-

cal input power. For this case, the mechanical power

is varied from the normal value to some constant (in

simulation Pm = 1 pu., ∆Pm = 0.2 pu.). It is clear

that the equilibrium can be recovered and the terminal

voltage can be regulated to the prescribed value when

the system is forced by the proposed control. Fur-

ther, as compared with the backstepping scheme, the

proposed controller not only effectively damps the os-

0 0.5 1 1.5 2 2.5 3
0.48

0.5

 

 

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

0 0.5 1 1.5 2 2.5 3

1

2

3

0 0.5 1 1.5 2 2.5 3
−5

0

5

I&I controller

Backstepping−like controller

Backstepping controllerδ
ω
−

ω
s

E
B

L
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(Vt)(Solid: Backstepping-like controller, Dashed: I&I
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cillations of power angle, frequency, active power and

terminal voltage, but also has superior performance in

maintaining the terminal bus voltage magnitudes close

to their reference voltage values defined for the nor-

mal operating conditions. It also provides effective

voltage regulation to the desired pre-fault steady-state
values after the occurrence of a small perturbation in

mechanical power. Besides, time histories of the pro-

posed controller are almost identical to those of the

I&I one which is an advance control design technique.

On the other hand, the proposed design procedure is

very easy as compared with the I&I one. Further it

provides better dynamic performance (improved tran-

sient responses for the closed-loop system) and is ca-

pable of achieving the expected performance require-
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ments 1)-2) mentioned above. .

As indicated in the simulation results above. It

can be, overall, concluded that the proposed control

law is effectively designed for transient stabilization

and voltage regulation following short circuit and me-

chanical input change conditions. Similar to the ad-
vanced (I&I) controller, the proposed control law can

render the closed-loop system converge quickly to a

equilibrium point; meanwhile the active power and the

terminal voltage can be quickly regulated to the refer-

ence values. Even though the developed design proce-

dure becomes considerably simple, the time responses

of the proposed scheme do slightly differ from those

of the I&I one. Also the proposed strategy obviously

outperforms the backstepping one in terms of fast con-

vergence speed and smaller overshoot magnitude.

5 Conclusion

In this paper, a backstepping-like nonlinear controller

for a single-machine infinite-bus power system with
a nonlinear generator excitation and SVC has been

proposed to improve effectively the transient stabil-

ity, power angle stability as well as frequency and

voltage regulations. In constrast with the previous

work [15] having the complicated design procedure,

in this paper the proposed controller is rather sim-

pler. Additionally, the current simulation results have

demonstrated that despite the simple design proce-

dure, power angle stability along with voltage and fre-
quency regulations are achieved following the large

(transient) disturbances on the network via nonlinear

model-based backstepping-like control design tech-

nique. In particular, in spite of the occurrence of se-

vere disturbances on the transmission line and a small

perturbation of mechanical input power, the closed-

loop system will be driven to a stable equilibrium un-

der the proposed control method. The performance of

the proposed control is compared with that of the I&I
one and the backstepping one, respectively. It can be

observed that the damping and the closed-loop sys-

tem dynamics of the proposed control do not differ

much from those of the I&I one but perform much

better than those of the backstepping one. In addition,

the presented controller simultaneously achieves tran-

sient stabilization and accomplishes a good regulation

of the SVC terminal voltage. As future works, it is

interesting to consider the extension of this strategy to
robust control design in the presence of disturbance

and unknown parameters of power systems.

6 Appendix

Backstepping Controller Design [23]

In order to design a nonlinear adaptive controller
based on backstepping scheme used to compare with

the proposed adaptive controller, let us define the

state variable by x1 = δ − δe, x2 = ω − ωs, x3 =
Pe − Pee, x4 = Psvc − Psvce, ei = x − x∗

i , (i =
1, 2, 3, 4), x∗

1 = 0, x∗

2 = −c1x1, x
∗

3 = Me1 + c2e2

2 +
Pm−Dx2, x

∗

4 = c1Mx2 + c2e2

2 . Hence, the backstep-

ping control approach is expressed in the following

Proposition.

Theorem 4 Consider the system (6), the adaptive
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backstepping control law is as follows:















































uf (x)

T ′

0

= 1
g31(x)

[

e2

M − f3(x) + (M + c1c2
2 )x2

+ ( c2
2 − D)ẋ2 − c3e3

]

ur(x)
Tr

= 1
g42(x)

[

e2

M − f4(x) − g41(x)
uf

T ′

0

+
(

c2
2 + c1M

)

ẋ2 + c1c2x2

2 − c4e4

]

(19)

where ci > 0, (i = 1, 2, 3, 4) are positive design pa-

rameters. Then, the overall closed-loop system with

the controller above is asymptotically stable. In this

work, tuning parameters are chosen as c1 = c3 =
c4 = 20, c2 = 2.

Proof: In the following, the control law is designed by

the backstepping scheme.

Step 1: For the first subsystem of the system (6),

x2 is considered as the virtual control variable. Then,

the virtual control of x2 is designed as x∗

2 = −c1x1,
where c1 > 0 is a design constant. Let us define the

error variable e2 = x2 − x∗

2 and e1 = x1 . Then, we

have

ė1 = e2 − c1e1 (20)

For the system (20), we choose the Lyapunov function

as V1 = 1
2e2

1 . The time derivative of V1 along the
system trajectory is

V̇1 = e1(e2 − c1e1) = −c1e
2
1 + e1e2. (21)

It is clear that V̇1 ≤ 0 where e2 = 0.

Step 2: Let us define the augmented Lyapunov

function of Step 1 as V2 = V1 + 1
2e2

2. Notice that

ė2 = ẋ2 − ẋ∗

2

=
1

M
(Pm − Dx2 − x3 − x4) + c1x2 (22)

Then the time derivative of V2 along the system tra-

jectory is

V̇2 = V̇1 + e2ė2 = −c1e
2
1

+e2

[

e1 +
1

M
(Pm − Dx2 − x3 − x4) + c1x2

]

(23)

From (22), x3 and x4 are taken as the virtual control

variables. Define the error variables e3 = x3 − x∗

3
and e4 = x4 − x∗

4. Then two virtual control variables

are chosen as x∗

3 = Me1 + Pm − Dx2 + c2e2

2 and

x∗

4 = c1Mx2 + c2e2

2 , respectively. Then it holds

V̇2 = −c1e
2
1 − c2e

2
2 −

e2

M
(e3 + e4) (24)

Step 3: Let us define the augmented Lyapunov

function of Step 2 by

V3 = V2 +
1

2
(e2

3 + e2
4) (25)

In addition, note that ei = xi−x∗

i , (i = 3, 4), the time

derivative of V3 along the system trajectory becomes

V̇3 = V̇2 + e3ė3 + e4ė4

= −c1e
2
1 − c2e

2
2

+e3

[

−
e2

M
+ f3(x) + g31(x)

uf

T ′

0

−(M +
c1c2

2
)x2 −

(c2

2
− D

)

ẋ2

]

+e4

[

−
e2

M
+ f4(x) + g41(x)

uf

T 0
0

+f42(x)
ur

Tr
−

(c2

2
+ c1M

)

ẋ2 −
c1c2x2

2

]

.

(26)

We can choose the feedback control law as given in

(19), thereby resulting in V̇3 = −
∑4

i=1 cie
2
i ≤ 0,

where ci > 0, (i = 1, 2, 3, 4) are positive constants.

Thus, under the feedback control law (19), the er-

ror system representation of the resulting closed-loop

adaptive system:






















ė1 = e2 − c1e1,

ė2 = −c2e2 − e3 − e4,

ė3 = −c3e3

ė4 = −c4e4

(27)

is asymptotically stable. It is easy to see from (26) that

V̇3 ≤ 0. This implies that based on Lyapunov stability

theory, limt→+∞ ei = 0, (i = 1, 2, 3, 4) and from the

definition, the system state variables xi and x∗

i also

converge to zero as t goes to infinity. This completes

the proof.
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