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Abstract: - The network equations of electric power system are formed in which the node voltages and branch 
currents are as s tate variables by π  equivalent circuit simulation of power components. The explicit 
expressions of power system voltage equilibrium solution curves are obtained by solving the equations above, 
and then get the characteristic equation of the saddle-node bifurcation point, define the full-dimensional saddle-
node bifurcation point. The full-dimensional saddle-node bifurcation point is the closest stability margin of the 
system after comparing the one-dimensional and full-dimensional saddle-node bifurcation point. In order to 
solve the system stability margin the dimensionality reduction algorithm of saddle-node bifurcation point is 
proposed. IEEE-14 nodes system simulation shows that the concepts and methods presented in this paper are 
correct. 
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1 Introduction 

Now, the Bifurcation theory which studies the 
nonlinear problem has gained greater development 
and application in the study of voltage stability in 
[1-6]. A typical case that the power system loses its 
voltage stability is that the stable equilibrium point 
and the unstable equilibrium point overlap as the 
parameters change. The saddle-node bifurcation 
point (SNBP) appears because the Jacobian matrix 
of power network equations is singular. 

Many methods are available to determine the 
SNBP. One of them is PU curve. The solutions of 
load voltages are often presented as a PU curve. But 
the PU curve can not be obtained near the SNBP 
because the Jacobian matrix tends to be singular, 
and the conventional power flow algorithm is 
failure. Therefore, the calculation of the SNBP often 
combines with morbid flow algorithm. Continuous 
power flow methods [7-12] track the trend of balanced 
solution by forecasting or correcting the power flow 
equations to improve the pathological phenomena 
and convergence. This method fails to give the 
accurate result if the step length is more. Though 
Interior Point method is efficient to solve the 
maximum loading problem[13-14], this method has the 
limitation of starting and terminating conditions [15]. 
The Sequential Quadratic Programming algorithm 

includes the differentiation of the constraints, and 
convert critical point conditions to optimized load, 
and solve it with Kuhn - Tucker optimality 
conditions[16]. This method is very slow as it 
involves many matrices during the iteration process. 
Fuzzy logic has been used to find the loadability 
limit in [17], this algorithm does not give the global 
optimal solution. Evolutionary algorithms have been 
applied to solve this problem. Particle swarm 
optimization is a computational intelligence-based 
technique that is not affected largely by the size and 
nonlinearity of the problem and can converge to the 
optimal solution in many problems [18-20]. 

As noted above, the current study of SNBP 
mainly focuses on the changes of single parameter 
(or two-dimensional parameter [21-22]) and the 
directions of node injection power are fixed. 
However, when the power injection changes in 
different directions the SNBP is likely to reach, 
which means that the SNBPs are different from each 
other. If the number and the location of zero 
eigenvalue appear different the SNBP should be 
different. The mechanism of SNBP has not been 
deeply identified. 

The equilibrium solution curve intuitively 
reflects the bifurcation mechanism. It is crucial for 
localized states of bifurcation point as well as the 
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global state if the exact equilibrium solution curve 
expression can be gotten. But, the explicit 
expression is often difficult to obtain due to the 
complexity of the non-linear problem, so commonly 
take the route of numerical calculation or simulation 
studies. Dimension is the basic properties of the 
bifurcation point. When the bifurcation occurs, if 
there are two smooth solution curve through the 
bifurcation point is called a simple bifurcation point, 
also known as one-dimensional saddle-node 
bifurcation point (ODSNBP), if there are more than 
two smooth solution curve through the bifurcation 
point is multi-dimensional saddle-node bifurcation 
point (MDSNBP). Compared to the one-
dimensional, multi-dimensional bifurcation point 
needs more stringent generation conditions, but also 
contains deeper meanings, especially when all nodes 
are SNBPs (also called full-dimensional saddle-
node bifurcation point, FDSNBP), MDSNBP is also 
more practical significance. 

Saddle-node bifurcation problems in power 
system are also facing the same difficulties. 
Traditional power system analysis is based on node 
voltage equation, and the node voltage and power 
injection are as variables. This method is widely 
used because of its simple, practical, and intuitive 
physical meaning. But because of the 
interconnectedness among the nodes voltage the 
explicit expression of equilibrium solution curve is 
difficult to obtain, and numerical calculation or 
simulation can also not comprehensively and 
profoundly show the characteristics of the SNBP. 
Because of the problems as d escribed above the 
number of dimension, multi-dimensional, as well as 
FDSNBP are all not to carry out in-depth study, and 
can not further reveal the nature of the SNBP. 

In this context, we proceed from the state 
variables of power network equation represented by 
the branch-current and node-voltage, form the 
explicit expression of equilibrium solution curves, 
and then describe the characteristics of SNBP. On 
this basis, define the one-dimensional, multi-
dimensional and full-dimensional bifurcation point, 
analyze the feature of SNBP, and propose 
dimensionality reduction algorithm of SNBP. 

 
 

2 The Explicit Expression of 
Equilibrium Solution Curve in Power 
System 

The line (or transformer) of electric power 
system can be simulated by the π  equivalent circuit 

model, as shown in Figure 1, called loop. Per loop is 
composed of three branches, an impedance branch 
and two grounded branch.  

Rl+jXl

jBi jBj

i j

Si Sj
Iij

 
 

Fig.1 The π  Equivalent Circuit 
Wherein: i  j  are two nodes on both sides of 

branch l , iii jqps +=
⋅

、 jjj jqps +=
⋅

 are node 
power injections of i  and j , node voltages are as 

follows: iii jfeu +=
⋅

, jjj jfeu +=
⋅

, branch l  

current is r
l

a
ll jiii +=

⋅

, ll jXR +  is the impedance 

of branch l , ijB  and jjB  are the grounded 
susceptance of node i  and j . The grounded 
conductivity is ignored for simple calculation in this 
paper. Figure 2 shows the grounded branch, node i  
is as an example.  

jBi

Iij

+
-

 
Fig. 2 Diagram of Grounded Branch 

For a grounded branch, the current trend is in 
two ways including grounded capacitor branch and 
load branch. The current flows in the load branch 
are not only the current of the circuit itself but also 
the adjacent loop current. The analytical method of 
load branch is the same principle with node voltage. 
Node i , for example, the voltage of equivalent 
voltage source of the load branch is:  

∑ ∑
∈ ∈

∗

−
−

=

il il
lili

ii
i Bjui

jqp
u                         (1) 

Wherein: Ll ,,2,1 =  is branch collection, 
Nji ,,2,1, =  is node collection, ii jqp −  is the 

load of node i , ∑
∈il

lii  is the sum of the injection 

current of node i , ∑
∈il

lB  is the sum of the grounded 

susceptance of node i , ∑
∈il

li Bju  is the sum of the 
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susceptance current of node i , ∑ ∑
∈ ∈

−
il il

lili Bjui  

represents the load branch current of node i . 
Derive from equation (1): 
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At the same time in the Cartesian coordinate 
system, the electric power network can be described 
as a mixed equation of branch currents and node 
voltage: 

jiijijl uujXRi 

 −=+ )(                        (3) 
Derived from equation (3):  
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Node j  has the equation like equation (4). 
Derived from equation (4): 
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Wherein: ijij BG ,  is the admittance of branch l . 
Bring them into equation (2) can obtain the 
traditional node voltage equation: 
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The difference is that the grounded branch 
susceptance do not contain in the node self-
susceptance iiB . That is the nature of the equation 
has not been changed after the branch current 
introduced into the power network equation as state 
variables. 

Suppose ∑
∈

=
il

a
lii ix , ∑

∈

=
il

r
lii iy  denote node 

injection current real part and imaginary part 

(excluding the grounded branch currents), and 

∑
∈

=
il

li BB 0 . Derived from equation (2): 
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  (7) 
Obtain the explicit expressions of node voltage 

in which the branch current is as parameter. From 
equation (7): 

04)(4)( 22
0

22
0

222 ≥−+−+ iiiiiiii pByxqByx    (8)         
Derived: 

[ ] 22
0

22
0

2
0

22 442)( iiiiiiii pBqBqByx +≥−+    (9)         

Only if meet ‘≥ ' in the equation (9) the power 
network equation has solutions exist. The physical 
meaning of equation (9) is that the power network 
equation has solutions exist if the amplitude square 
of the node injection current distributes out of the 
circle of which the ii qB 02  is center and 

22
02 iii pqB +  is radius. If it distributes on t his 

circle (only '=' meet) two solutions coincide, the 
system is in the critical state of the SNBP. The 
conditions of solution exist has been found. 

In the equation (7) ‘±( )’ symbol indicates that 
the electricity network equations exist two solution 
curves in per node, one is high voltage solution, the 
other is low.  

When 00 =iB  the node is called degraded node. 
If there is a degraded node the equation (2) becomes 
the following form: 
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And: 
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In this case, the node voltage does not have two 
solutions, but only a single solution, so there is no 
issue of saddle-node bifurcation. 

In addition, the generator node is typically a PU 
node, in the equation (2) reactive equation is 
replaced by the following: 

222
iii Ufe =+                             (12) 

Wherein: iU  is node voltage amplitude. The node 
voltage analytical expression of PU is: 
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       (13) 

PU node solution existing conditions: 
0)( 2222 ≥−+ iiii pUyx                       (14) 

Its physical meaning is the electricity network 
solutions exist if the amplitude square of the node 
injection current distributes out of the circle of 
which the 0 is center and ii Up /  is radius. 
 
 
3 The SNBP Characteristic Equation 
and the Definition of FDSNBP 

If the equality of equation (9) or (14) is met the 
two solutions curves intersect, that is, a saddle-node 
bifurcation. Suppose the quantity of PQ node is LN
, PU node number is GN , balance node number is 

SN , then SGL NNNN −=+ , N  is the sum of 
node. SNBP generating condition can be derived as: 

Liiii NiByx ∈=+ γ0
22 2)(                     (15) 

Or: 

G
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i
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2
22 )(                       (16) 

Suppose: 22
iiii qpq ++=γ . The node 

voltage changes to: 
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G
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=
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                   (18) 

The equations (15) and (16) are called node 
characteristic equations of the SNBP. So can deduce 
that the establishment of equation (15) or (16) on 
any node will cause saddle-node bifurcation, that is 
the occurrence of SNBP is corresponding to the 
critical conditions of the power network equation 
solution existing.  

If the characteristic equation (15) or (16) of 
saddle-node bifurcation only meets on one  node, 
and only one pair solution curve intersects, the 
SNBP is called ODSNBP, it is called the MDSNBP 
if the characteristic equation (15) or (16) meets on 
multiple nodes, and FDSNBP if meets on all nodes. 
The dimension of SNBP equals to the number of 
node on which the equation (15) and (16) hold. 

 
 

4 The SNBP Dimensionality 
Reduction Solution 

 
 

4.1 Dimensionality reduction algorithm for 
ODSNBP 

The power flow calculation based on Newton's 
method can not converge just because the Jacobian 
matrix is singular at SNBP. From the above 
analysis, the main reason that the eigenvalue of 
Jacobian matrix is zero is node voltage 
characteristic equation (15) or (16) holds. So the 
node voltage characteristic equation (15) or (16) can 
be used to replace the corresponding node voltage 
equation in (19) if calculate the ODSNBP, but the 
dimension of Jacobian matrix reduces one. The 
meaning is that the power network equations can be 
solved by the dimensionality reduction Jacobian 
matrix  
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Wherein: )( LG NNk +∈  and mk ≠ , m  is the 

node at which characteristic equation (15) or (16) 
holds. To node m :  
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Wherein: the equation (19) is the power network 
equation, (20) is the characteristic equation of 
SNBP. The voltage of ODSNBP can obtain if solve 
the two equations simultaneously. In the calculating 
process substitute equation (20) into the branch 
current formula of equation (19). 

 
4.2 Dimensionality reduction algorithm for 
FDSNBP 

Similarly, in all nodes, if the characteristic 
equation (15) and (16) are founded due to node 
injection power ii PS , , the power network equation 
has unique solution, it is the FDSNBP. The 
following shows: 
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While substitute (22) (23) into (21) there is only 
one solution because the formative equation is 
linear. But the calculation of FDSNBP needs the 

parameter conditions ii PS ,  , the following 
characteristic equations should be considered:  
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The FDSNBP can be calculated while solve 
equations (24), (21), (22) and (23) simultaneously. 
In the calculating process replace the voltages of all 
nodes in (21) with the voltage expression which 
meet the FDSNBP in (22) or (23). 

 
 

5 The Closest Power System Static 
Voltage Stability Margin  

SNBP represents the power system static voltage 
stability margin. From ODSNBP, MDSNBP to 
FDSNBP, different dimensional SNBPs represent 
static voltage stability margin are also different. 
ONSNBP is the power system static voltage 
stability margin of single node, MDSNBP is the 
margin of m nodes (area). Because ODSNBP and 
MDSNBP achieve the stability critical conditions on 
just part of nodes, so the SNBPs can not represent 
the static voltage stability margin of the whole 
system, and only FDSNBP represents the whole 
system static voltage stability margin. 

Assume that the PQ node i , for example, in the 
same generator power increasing scheme, the node 
power injection are )1(

iS  and )( LN
iS  while 

calculating the ODSNBP and FDSNBP respectively. 
It must be: 

)1()(
i

N
i SS L ≤                                  (25) 

The PU node is also similarly. In conclusion: if 
regard the space distance of node injection power as 
a measure, the static voltage stability margin of 
FDSNBP is the most adjacent in the whole system, 
the ODSNBP is the farthest, and MDSNBP is 
between them. 

Get ii p,γ  according to the calculation above, 
then: 

ii
i

i
i pPorS =

+
=

1sinφ
γ

                   (26) 

Wherein: 22
iii qpS += , iii Sq /sin =φ , iφ  is 

power factor Angle, then iS  or iP  represents the 
establishing conditions of SNBP, and also is the 
static voltage stability margin of node i . 
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6 Case Study 
In this paper, take IEEE-14 node system for an 

example to carry on the calculation. The number of 
node 1 and node 14 exchanges, node 14 is balance 
node, power factor is 0.9. Calculate the SNBPs in 
two cases: 1) ODSNBP calculation (calculate node 
each to each); 2) FDSNBP calculation (assume all 
nodes achieve SNBP at the same time). In the 
process of computation, suppose that the reactive 
power adjustment ability of PU nodes is limited, and 
all of them reach the limit value before arriving at 
the SNBP. Table 1 shows the calculation results by 
use of the method proposed. 

Define: 

lP : Load active power; 

lQ : Load reactive power; 

sU : Voltage amplitude initial value; 

gU : ODSNBP voltage amplitude calculated 
value. That is when a node is a SNBP, calculate the 
node voltage amplitude; 

gU∆ : ODSNBP voltage amplitude variation 

rate. It is the rate of gU  divided by sU ; 

aU ： FDSNBP voltage amplitude calculated 
value. That is when a node is a FDSNBP, calculate 
the node voltage amplitude; 

aθ : FDSNBP voltage phase Angle calculated 
value. That is when a node is a FDSNBP, calculate 
the node voltage phase Angle; 

 

aU∆ : FDSNBP voltage amplitude variation 

rate. It is the rate of aU  divided by sU ; 

sP : Node load active power initial value; 

gP : ODSNBP node load active power 
calculation value. When a node is SNBP, calculate 
the node load active power; 

gP∆ : ODSNBP node load active power critical 

closer degree. It is the degree of  sP  divided by gP , 
it can represent the stability redundance; 

aP : FDSNBP node load active power calculation 
value. When a node is FDSNBP, calculate the node 
load active power; 

aP∆ : FDSNBP node load active power critical 

closer degree. It is the degree of  sP  divided by aP ; 
 

Table 1 Calculation results of FDSNBP 
N

o. 
aU  aθ  lP  lQ  

1 0.7072 -34.464 0.2373 0.1103 
2 0.8200 -17.836 0.5834 0.2718 
3 0.7703 -21.196 1.1104 0.5174 
4 0.7881 -17.607 0.6093 0.2835 
5 0.8191 -14.647 0.2212 0.1031 
6 0.7921 -28.920 0.1884 0.0877 
7 0.7762 -28.389 0.1254 0.0582 
8 0.8014 -30.378 0.1211 0.0571 
9 0.8244 -31.748 0.4012 0.1864 

10 0.7551 -32.034 0.1184 0.0551 
11 0.7664 -30.835 0.0511 0.0237 
12 0.7623 -30.315 0.0887 0.0411 
13 0.7511 -31.074 0.1574 0.0732 

 
Table 2 The comparison of voltage amplitude 

variation rate between ODSNBP and FDSNBP 
No. 

sU  gU  gU∆
(%) 

aU  aU∆
(%) 

1 1.03 0.6403 37.83 0.7072 31.34 
2 1.04 0.7133 31.41 0.8200 21.15 
3 1.01 0.6891 31.77 0.7703 23.73 
4 1.01 0.7374 26.99 0.7881 21.97 
5 1.02 0.7222 29.20 0.8191 19.70 
6 1.07 0.6931 35.22 0.7921 25.97 
7 1.06 0.6833 35.54 0.7762 26.77 
8 1.05 0.6652 36.64 0.8014 23.68 
9 1.05 0.7627 27.36 0.8244 21.48 

10 1.05 0.7187 31.55 0.7551 28.09 
11 1.05 0.6532 37.79 0.7664 27.01 
12 1.05 0.6651 36.66 0.7623 27.40 
13 1.05 0.6881 34.47 0.7511 28.47 

 
Table 2 s hows the comparison of voltage 

amplitude variation rate between ODSNBP and 
FDSNBP. Voltage amplitude of ODSNBP is lower 
than that of FDSNBP from table 2. This is because 
when one node arrives at ODSNBP the other nodes 
are still in a normal load level, the system can be 
maintained at a lower voltage level and does not 
collapse. But when the FDSNBP happens all nodes 
are in high load level, the system voltage collapses 
before ODSNBP. In all nodes, the voltage reduction 
of nodes 1 is the greatest, especially in FDSNBP, 
this condition is the same with the fact that node 1 is 
far away from the power supply in IEEE-14 system. 
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Table 3 The comparison of node load active 
power critical closer degree between ODSNBP 

and FDSNBP 
No. 

sP  gP  gP∆
(%) 

aP  aP∆  
(%) 

1 0.1490 1.1881 87.46 0.2373 37.21 
2 0.2170 4.1172 94.73 0.5834 62.80 
3 0.9240 1.9021 51.42 1.1104 16.79 
4 0.4780 1.9984 76.08 0.6093 21.55 
5 0.0760 2.1133 96.40 0.2212 65.64 
6 0.1120 1.0427 89.26 0.1884 40.55 
7 0 1.0626 100 0.1254 100 
8 0 0.7732 100 0.1211 100 
9 0.2950 1.1850 75.11 0.4012 26.47 
10 0.0900 0.8425 89.32 0.1184 23.99 
11 0.0350 0.7553 95.37 0.0511 31.51 
12 0.0610 0.6552 90.69 0.0887 31.23 
13 0.1350 0.7877 82.86 0.1574 14.23 

 
In table 3 gP∆ , aP∆  represent the distance 

between the node load active power initial value and 
ODSNBP, FDSNBP respectively, illustrate the 
stability margin size of each node. The initial load 
active power of node 7 and 8 a re zero, so the load 
power margin is 100%. 

From the table 3, the power critical closer degree 
of ODSNBP is much larger than that of FDSNBP, 
also proves that FDSNBP is the closest stability 
margin. This is mainly because the load of 
ODSNBP has larger growth, other nodes load are 
constant, but all nodes load are increasing at 
FDSNBP, so each node load stability margin 
becomes low. 

It is shown that the voltage amplitude drop and 
load stability margin is not directly proportional by 
contrasting them. The voltage amplitude drop of 
node 1 is the greatest, but its load stability margin is 
not the least. This is because the load stability 
margin major decision factor is the difference value 
between current node load level and the SNBP 
power. The higher the node current load level is, the 
lower the difference value is, and its stability margin 
is smaller. It also explains the reason from another 
aspect that the heavy load nodes have the possibility 
of voltage collapse. 

The FDSNBP can observe the stability margin of 
each node from the global point of view, and can 
analyze the stability of all nodes comparatively in 
the same level. The ODSNBP can represent the 
local situation, but sometimes can not truly reflect 
the whole stability of the system. For example, the 

stability margin of node 13 i s the smallest in 
FDSNBP, but not in ODSNBP. If adjust the node 
power to improve the system stability, should be 
based on the calculation results of FDSNBP. In this 
system, for example, should first adjust the node 
like 3 and 13. 

 
 

7 Conclusion  
In this paper, power system network equations 

have been established by introducing branch current 
as a v ariable based on the traditional node voltage 
equations. The existing conditions of solution have 
been found by the analysis of voltage high and low 
solution curve, and propose the characteristic 
equations of SNBP. Define the ODSNBP, 
MDSNBP and FDSNBP, and prove FDSNBP is the 
closest stable margin to the system. The conclusions 
of simulation are:  

1) The method proposed can be applied to 
calculate SNBP and analyze static voltage stability; 

 2) Comparison of ODSNBP, MDSNBP and 
FDSNBP, the FDSNBP calculating results reflect 
the system stability information more rich, and can 
embody more approaching to the reality;  

3) The calculation results of FDSNBP can obtain 
system closest stability margin, observe system 
stability overall, and provide the basis for the stable 
adjustment. 
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