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Abstract: - This paper proposes a new reduced complexity Volterra model called S-PARAFAC-Volterra. The 
proposed model is yielded by using the symmetry property of the Volterra kernels and their tensor 
decomposition using the PARAFAC technique. It takes advantage from previous results where an algorithm for 
the estimation of the memory and the order of the Volterra model has been presented. The proposed model has 
been tested to yield a suitable modeling for the nonlinear thermal process Trainer PT326 and the validation 
results are satisfactory. 
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1 Introduction 
The identification of nonlinear dynamical systems 

from a given input/output data set is of fundamental 
importance for practical applications since many 
physical systems exhibit nonlinear characteristics. 
The Volterra model can be used to represent a broad 
class of nonlinearities. The use of Volterra models 
for the analysis of nonlinear systems was, for the 
first time, conducted by N. Wiener [1] in order to 
characterize the response of a n onlinear system. 
Several other studies in this research (Billings [2] 
and Schetzen [5]) have followed. The study of 
discrete nonlinear systems using Volterra series 
began with the work of Alper [6]. 

The main problem with the Volterra models is the 
determination of its kernels which provide an 
adequate representation of the system to be 
modeled. A very nice property of the Volterra 
model is its linearity with respect to its parameters, 
so standard parameter estimation techniques like 
Least Squares (LS) can be applied. However, the 
large number of parameters associated with the 
Volterra models limits their practical use to 
problems involving only small values for the 
memory and the truncation order. This limitation 
arises since the estimation of a large number of 
parameters is problematic, but also design 
procedures based upon such models may be 
cumbersome. 

To eliminate this drawback, two ways were 
followed: By expanding the kernels on a n 
orthonormal basis such as the Laguerre or Kautz 
functions basis ([7-10]) or Generalized Orthonormal 
Bases (GOB) ([11-13]) or by considering Volterra 
kernels as high order tensors and proceeding to 
tensor decomposition (PARAFAC, TUCKER, 
PARATUCK...) to arrange the kernels coefficients 
in decomposition matrices [14-16]. 

The purpose of this paper is to propose a n ew 
reduced complexity Volterra model to represent a 
thermal process: Trainer PT326. Our motivation is 
emphasized by the fact that the complexity of a 
Volterra model can be further reduced and 
especially with estimated structure parameters. 

The proposed model is based on t he PARAFAC 
tensor decomposition of the Volterra kernels which 
pride with a symmetry property. In fact, each k-
order kernel is represented by k matrices which can 
be equal using the symmetry property [17]. The 
scalar representation of the kernel decomposition 
was introduced to write the input/output relation of 
the reduced complexity Volterra model [15-16-17].  
The new Model is then defined and called S-
PARAFAC Volterra model. The Trainer PT326 was 
represented in [18] using a classical Volterra model 
and its structural parameters (order and memory) 
were estimated using the non-singularity property of 
correlation matrices between the inputs and the 
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outputs of the nonlinear process. The Trainer PT326 
structural parameters estimated in latter work were 
used to construct the S-PARAFAC Volterra model. 

This paper is organized as follows. In section 2, 
we present the new 4th order reduced complexity 
Volterra model called S-PARAFAC Volterra model. 
In section 3, we present the thermal process: Trainer 
PT 326 and we represent it using a 4th order S-
PARAFAC Volterra model highlighting the 
complexity reduction achieved. Finally the fourth 
section is devoted to practical simulations where the 
memory and the order are set and the coefficients of 
the S-PARAFAC Volterra model are estimated 
using input/output observations collected from the 
Process Trainer PT 326. The resulting model 
behavior is compared to that of the PT 326 for other 
input/output measurements. 

2 New Reduced Complexity 
PARAFAC Volterra Model  

2.1 Volterra model  
In practice, the input/output relation of a discrete-

time, time invariant, truncated Volterra model is 
given by:  

    
1

1

1
1 1 1 1

ˆ( ) ( , , ) ( )
m

m

MM mL

m m j
m n n j

y n h n n u n n
= = = =

= −∑∑ ∑ ∏ 

    (1) 

where u, y and hm are the input signal, the output 
signal and the parameters of the mth-order kernel, 
respectively, { } 1

L
m m

M
=

 are the memories of the 
Volterra kernels and L is the model order. This 
model constitutes a nonlinear generalization of the 
impulse response.  

2.2 PARAFAC Decomposition 
The PARAFAC (PARAllel FACtor) 

decomposition also called CANDECOMP 
(CANonical DECOMPosition) was introduced by 
Harshman [19] and by Caroll and Chang [20] in 
order to reduce the complexity of an Nth order 
tensor. This decomposition entirely preserves the 
information contained in the original tensor. 

The PARAFAC decomposition of a kth-order 
1( ,..., )KN N  tensor Hk is written using k matrices of 

respective dimensions ( , )i kN R . Its scalar 
representation is written as: 
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where 
1,..., kn nh  is the 1( ,..., )kn n  element of the tensor 

Hk, ( )
,i

i
n rv  constitutes the ( , )in r element of the matrix 

( )iV  of dimensions ( , )i kN R  and Rk is the number of 
the PARAFAC model factors and the rank of the 
tensor  Hk defined by Kruskal [21]. For example, the 
scalar representation of the PARAFAC 
decomposition of a 3rd-order 1 2 3( , , )N N N  tensor H3 
is written as: 
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2.3 Fourth-order PARAFAC Volterra model 
The input/output relation of a discrete-time, time 

invariant 4th-order Volterra model is written as: 
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where ( )u n  and ˆ( )y n  are the model input and 

output respectively. { }1( ,..., )k kh n n  ; 1,...,4k =  are 
the Volterra kernels, respectively described by an 
M-dimensional tensor kH .  

By using the scalar representation (2) of 
PARAFAC, equation (4) becomes: 
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ˆ( )y n can also be written as : 
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where  

• 1h  represents  the linear Volterra kernel, 

• 
1

(1)
n ra  and 

2

(2)
n ra  represent respectively the 

elements 1( , )n r  and 2( , )n r of the 2( , )M R -
dimensional matrices (1)A  and (2)A components 
of the PARAFAC decomposition of quadratic 
kernel H2. 

• 
1

(1)
n rb ,

2

(2)
n rb  and 

3

(3)
n rb  represent respectively the 

elements 1( , )n r , 2( , )n r  and 3( , )n r  of the 

3( , )M R -dimensional matrices (1)B , (2)B  and 
(3)B , components of the PARAFAC 

decomposition of the cubic kernel 3H . 
• 

1

(1)
n rc , 

2

(2)
n rc , 

3

(3)
n rc  and 

3

(4)
n rc  represent the elements 

1( , )n r , 2( , )n r , 3( , )n r  and 4( , )n r  of the 

4( , )M R -dimensional matrices (1)C , (2)C , (3)C  
and (4)C component of the PARAFAC 
decomposition of the 4th order kernel 4H . 

2.4  Fourth-order S-PARAFAC Volterra  
model 

In the Volterra kernel, there always exists an 
associated symmetrized kernels { }

1...4k k
H

=
 [22] 

computed according to: 

   ( )1 (1) ( )( ,..., ) ,..., ; 1,...,4
!k k k kh n n h n n k

k π π
π
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∈
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    (7) 

where ! stands for the factorial notation and P is the 
permutation set respectively of cardinal !k α   with 

1! !rn nα =   and r is the number of distinct values 

respectively in the set 1{ ,..., }kn n .  

With this symmetry property, it is proved that for 
each kth order symmetric Volterra kernel 

kH ( )1, ,4k =  , the PARAFAC decomposition 

matrices ( )
1,...,4{ }k

kV = are all identical and equal to 

V  according to the following theorem.  

Theorem [17] : Any symmetric kth-order tensor Hk 
can always be decomposed as the sum of symmetric 
outer products of vectors: 
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       (8)  

or, in scalar form: 
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             (9) 

where ( )sR  is the number of symmetric outer 
products needed to generate Hk using (8) or (9)     ▄ 

Unlike (2), such symmetric decomposition called 
a symmetric PARAFAC model needs a unique 

( )( , )sM R  matrix factor V . The symmetric rank of 
Hk, is defined by: 

                   ( )( ) min( )s
s krank H R=                   (10) 

It is also defined using the following inequality 
between its rank and its symmetric rank [17]: 

                 ( ) ( )k s krank H rank H≤                  (11) 

So the output of the 4th-order S-PARAFAC 
Volterra model described in (6) can be written as: 
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The Volterra kernels { } 1...4k k
H

=
 can be viewed as 

a kth-order ( ,..., )M M  tensors with a p arameter 
complexity ; 1,...,4kM k =  in terms of its 
coefficients number. So, the complexity of a 
standard 4th order Volterra model is 4

1
k

k
C M

=
=∑ . 

The kth -order S-PARAFAC kernel complexity is 
. kM R . So, the complexity of the new 4th order S-

PARAFAC Volterra model is 4
1

.S kk
C M R

=
= ∑  

with 1 1R =  for the linear Volterra kernel. 

The Ratio of Complexity Reduction (RCR) with 
respect to the standard 4th-order Volterra model is: 
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When kR M<< , a significant complexity reduction 
can be achieved. 

2.5 Model parameter estimation 

The input/output relation (12) can be 
implemented using a parallel-cascade structure, as 
shown in Fig.1, where:  

• [ ]( ) ( 1) ( ) TU n u n u n M= − −

,  

• 1h  is the vector containing the coefficients of 
the linear kernel.  

• .iA  represents the thi  column of the matrix A  
related to the quadratic Volterra kernel and the 
boxes of stage r correspond to the convolution 
operation .( )T

rU n A .  

• . jB  represents the thj  column of the matrix B  
related to the cubic Volterra kernel and the 
boxes of stage r correspond to the convolution 
operation .( )T

rU n B .  

• .kC  represents the thk  column of the matrix C  
related to the fourth-order Volterra kernel and 
the boxes of stage r correspond to the 
convolution operation .( )T

rU n C . 

 
Fig.1. Parallel-cascade realization of the 4th-order S-

PARAFAC Volterra model 

The output writing of the 4th order S-PARAFAC 
Volterra model given by (12)  c an be written in a 
linear regression way. Let us define: 
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Equation (12) can be written as: 
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          . ( )T n= Θ Λ                                                  (19) 

where .( )
TT

ivec X x =    and .ix  is the thi  column of 
a given matrix X,  

    
21 2( ) ( ) ( ) ( )

TA A A
A Rn n n nφ φ φ Φ =            (20) 

    
31 2( ) ( ) ( ) ( )

TB B B
B Rn n n nφ φ φ Φ =            (21) 

    
41 2( ) ( ) ( ) ( )

TC C C
C Rn n n nφ φ φ Φ =           (22) 

and ⊗  denotes the Kronecker product. 

Therefore, the estimation of vector Θ  implies the 
estimation of the components of the vector h1 and 
the matrices A , B  and C characterizing the 
proposed model. To do, we apply the Recursive 
Least Square algorithm that updates from the model 
outputs (18-19-20), the linear kernel h1, the matrices 
A , B  and C  by minimizing the following least 

squares cost function ( )Lη . 

                ( )2
1

ˆ( ) ( ) ( )L
n

L y n y nη
=

= −∑                  (23) 

                        ( )2

1
( ) ( )L T

n
y n n

=
= −Θ Λ∑             (24) 

where y  denotes the output of the system to be 
modeled, ŷ  denotes the output of the proposed 
model given by (18-19-20) and L the length of the 
input sequence. The estimation is achieved by the 
four following algorithm. 
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a. Initialization 
• (0)Θ  
• 
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b. Update of the S-PARAFAC Volterra model 
components. 
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c. Reconstruction of the Volterra model kernels 
 
• Linear kernel : 1h  

• Quadratic kernel : 
2
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• Cubic kernel : 
3
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• 4th order kernel :  
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r
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=
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d. Go to step (b) till convergence 
 

3 Modeling and identification of a 
nonlinear thermal process PT326 

3.1  Process description 
The application involves the identification of a 

bench-scale hot air-flow device, the PT 326 Process 
Trainer as shown in Fig.2, from Feedback Ltd. This 
laboratory thermal process exhibits many linear 
range, output drift and inherent process noise. It has 
been used many times to illustrate the performances 
of other identification methods, as in [23]. Fig.3 
shows a schematic description of the heat transfer 
process. Air is pulled by a fan into a 30cm length 
tube through a valve and heated by a mesh of 
resistor wires at the inlet. 

 
Fig.2. Process Trainer PT 326 

 
Fig.3. Schematic description of the heat transfer 

process 

The process input nu  is the voltage over of 
resistor wires to heat the incoming air and the output 

ny  is air temperature measured by a thermocouple 
at the outlet. The process perturbation can be 
realized by adding the ambient air the quantity of 
which is tuned by the angle α . 

3.2 Process modeling 
The algorithm proposed by Chouchane et al [18], 

estimates, from input/output observations, the 
minimal values of the nonlinearity degree (order) K 
and the system memory M to represent the Process 
Trainer PT326. The results found give a V olterra 
model memory 4M =  and an order 4K = . Let us 
rewrite the output of the 4th order S-PARAFAC 
Volterra model previously defined in equation (12) 
adapted to the heat transfer process. 
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(25) 

3.3 Complexity reduction 
Tab.1 presents the Ratio of Complexity Reduction 

(RCR) given by (13) for different values of the 
Symmetric rank ( )srank H  defined in (11). We note 
that  ( )srank H M≤  
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Tab.1. RCR for different symmetric rank of the 
Volterra kernels with memory M=4. 

( )sR  1 2 3 4 
RCR 95,29 % 90,59 % 85,88 % 81,18 % 

 

4 Numerical Simulation 
A set of 1000 input/output observations were 
collected from the process at a s ampling time of 
0.08s. The process input was chosen to be a binary 
random signal shifting between 3.41V and 6.41V as 
in Fig.4 plots. 
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Fig.4. Input and output sequences of the thermal 

process 

The simulation results were obtained using the 
Monte Carlo method with 20 di fferent additive 
Gaussian white noise sequences and with a signal to 
Noise Ratio 20SNR dB= .  
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1000 1000
2 2

1 1
10log ( ) ( )dB
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SNR y n y nγ γ

= =
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∑ ∑

  

(25)     

 
y and γ  are the mean values of the system output 

and the disturbance respectively. 

The accuracy of the proposed model and the 
estimation algorithm is evaluated by means of the 
Normalized Mean square Error (NMSE) given by: 

   

( )1000 10002 2
1 1

ˆ ˆ( ) ( ) ( )
n n

NMSE y n y n y n
= =

= −∑ ∑     (26) 

where y  and ŷ  are the outputs of the thermal 
process and the estimated model respectively. These 
outputs are simultaneously plotted in Fig.5.  

Tab.2 presents the estimated components of the 
linear Volterra kernel 1h  and the matrices A, B and 
C of the S-PARAFAC Volterra model. To highlight 

the efficiency of the estimated model, Fig.6 shows 
the convergence of some of its components. 

Tab.2. Estimated components of the linear Volterra 
kernel h1 and the matrices A, B and C of the S-

PARAFAC Volterra model 

1h  0.0219 0.1394 0.0805 0.1412 

A -0.0169 0.0871 -0.0476 -0.0278 

B 0.0516 0.1295 -0.0339 -0.0007 

C -0.0019 0.1424 -0.0801 0.0379 
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    Fig.5. Outputs of the thermal process and the S-

PARAFAC Volterra model 
 

0 100 200 300 400 500 600 700 800 900 1000
-0.2

0

0.2

0.4

0.6

0.8

1

Time steps

M
od

el
 p

ar
am

et
er

s

 

 

h1(1)

a1,1
a2,1
b2,1
c2,1

 
Fig.6. Convergence of some parameters of the 

estimated S-PARAFAC Volterra model 

 

The Normalized Mean square Error is plotted in 
Fig.7 for different SNR values. For SNR=20dB and 
after 1000 time steps, it reaches 34,9.10− . 
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Fig.7. NMSE between the thermal process and the 
estimated model outputs for different SNR values 

5 Conclusion 
In this paper, we have proposed a new approach 

to design a reduced Volterra model using tensorial 
decompositions and the symmetry property of the 
Volterra kernels so that the parameter number of the 
resulting model is significantly reduced.  

To illustrate the efficiency of the proposed S-
PARAFAC Volterra model, it was tested to describe 
the behaviour of a n onlinear thermal process; the 
PT326. It resorts that the proposed model handles 
the process perfectly despite its reduced parameter 
number.  
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