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Abstract: -  Two filtering algorithms for removal of DC offset and subsynchronous resonance terms in the 

current/voltage signals in a transmission line under fault condition are presented. One of the algorithms utilizes 

the samples of the signal over a time interval slightly greater than one cycle time of the fundamental component 

and is computationally less demanding than the existing Fourier filters. The second algorithm is based on 

sampling the signal at arbitrary locations and hence, the signal samples can be acquired during a time interval 

much less than the full-cycle period of the fundamental component. This results in the calculation of the 

fundamental component in a time less than the full-cycle time of the signal, and hence is more attractive. It is 

shown that the Fourier filters used for the removal of DC offset etc. can also be interpreted as the weighted 

moving-average filters. Moreover, the Fourier filters, although having similarity with the discrete Fourier 

transform (DFT) computation of a signal, do not precisely involve the computation of the DFT coefficients of 

the sliding windowed sampled signal. Lastly, simulation results are presented to validate the approach of both 

the proposed algorithms under noiseless as well as noisy conditions.  

  

 

Key-Words: -Discrete Fourier transform, Power system protection, Power system transients, Power 

transmission lines  

 

1 Introduction 
 The current and voltage signals in a power 

transmission line under fault conditions is 

essentially a non-periodic non-sinusoidal signal, 

which contain DC offset, subsynchronous resonance 

and several harmonic terms of the fundamental 

frequency [1]-[5]. Filtering of the DC offset, 

subsynchronous resonance term and the harmonic 

terms form the current and voltage signals under 

fault conditions and estimating the fundamental 

frequency component is of prime importance in the 

operation of digital distance relays used for the 

protection of the power transmission lines [1]-[5].  

 

The accuracy and time required for the estimation of 

the fundamental frequency component are also very 

critical parameters for the proper functioning of 

various protective devices (such as digital distance 

relays) and consequent protection of several power 

system components. For instance, the power 

companies around the world demand that the time 

elapsed between the occurrence of a fault and the 

operation of the digital distance relays should not 

exceed the time corresponding to one-and-a-half 

cycle of the power line fundamental frequency [1].  

 

Many elegant algorithms have been proposed in the 

literature for filtering the DC offset, subsynchronous 

resonance term and harmonics of the fundamental 

frequency from the total current and voltage signals 

under fault conditions [1]-[2].  

 

These algorithms, popularly termed as Fourier 

filters, are based on full-cycle or half-cycle discrete 

Fourier transform (DFT) of the current and voltage 

signals and require the sampling of the signals in a 
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time interval exceeding one complete cycle period 

of the fundamental component. Excellent 

comparison of performance of the Fourier and 

Walsh filters has also been done in [3].  

 

In this paper two novel filtering algorithms for 

filtering the DC offset and harmonics of the 

fundamental frequency from the total current and 

voltage signals are proposed.  

 

One of the proposed algorithms utilizes the samples 

of the signal over a time interval slightly greater 

than one complete cycle of the fundamental 

component but is computationally less demanding 

than the existing Fourier filters and hence, can be 

more useful in digital distance relaying applications. 

 

 The second algorithm is based on sampling the 

signal at arbitrary locations and hence the samples 

can be acquired during a time interval much less 

than the full cycle period of the fundamental 

component. The calculation of the fundamental 

component in the second method can therefore be 

done quickly even before the completion of one full 

cycle period of the signal, and hence is more 

suitable in practical applications keeping in mind 

the fact that the time elapsed between the 

occurrence of a fault and the operation of the digital 

distance relays should not exceed the time 

corresponding to one and a half cycle of the power 

line fundamental frequency [1]-[2].  

 

It is also shown that the Fourier filters existing in 

the literature [1]-[5] for the removal of DC offset in 

current and voltage signals can also be interpreted as 

the weighted moving-average filters. These Fourier 

filters, although having similarity with the discrete 

Fourier transform (DFT) computation of a signal, do 

not precisely involve the computation of the DFT 

coefficients of the sliding windowed discrete-time 

sampled signal. Lastly, we present the simulation 

results to validate the proposed algorithms both 

under noisy and noiseless conditions. 

 

The rest of the paper is organized as follows. In 

section II, we present an algorithm which requires 

sampling of the current and voltage signals in a time 

interval slightly exceeding one complete cycle 

period of the fundamental component 0T . In section 

III, we describe the second algorithm based on 

sampling the signal at arbitrary locations in a time 

interval much less than the full-cycle period of the 

fundamental component. Discussion related to the 

Fourier filters is presented in section IV. Simulation 

results are presented in section V. The paper is 

concluded in section VI. 

 

2 A novel algorithm  for DC offset 

removal under fault conditions  

 The current/voltage signals under fault conditions 

contain DC offset, subsynchronous resonance term 

and many harmonic and transient terms. The fault 

current /voltage signals have been analyzed by 

considering the presence of different types of 

transient signals in them [1]-[2].  

 

To be consistent with the notations existing in the 

literature, the continuous-time current/voltage signal 

under fault conditions, denoted as ( )az t , is assumed 

to contain 0( 2)N N    harmonics of the 

fundamental frequency 0 0 02 2 /f T     ( 0f  is 

generally 50 or 60 Hz in most of the countries of the 

world) along with an exponentially decaying factor. 

Hence, it can be expressed as [1, Eqn. 10] 

                                                  
0 2

/

0 0

1

( ) cos( )
N

t

a n n

n

z t A A n t Ae 






     ,      (1) 

where 0A denotes the DC offset term and nA and 

0, 1,2,..., 2 n n N   denote the amplitude and 

phase of the n th harmonic frequency component 

respectively,   represents the time-constant of the 

circuit. This signal ( )az t is uniformly sampled with 

time interval 0 /T T N  . Therefore the total 

number of samples in one cycle period 0T  will 

be N .  It may be noted here that in general, 

0N N  although, in a special case N  can be taken 

equal to 0N . 

 The sampled signal ( )z k can, therefore, be 

expressed as  

                                    

0 2
/

0

1

( ) ( )

cos( / ) ,

a

N
k T

n n

n

z k z k T

A A nk M Ae k 


 



 

     

,                                                                              (2) 

where / 2M N . Using the fact that 

cos( / ) cos( ( 1) / )n M n N M   , it can be 

easily shown that 
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 / /( 1) (1) 1N T Tz N z A e e       , and 

                                       

 / 2 /( 2) (2) 1N T Tz N z A e e        .            (3) 

From (3), we obtain the relation 

                                                        

/ ( 2) (2)

( 1) (1)

T z N z
e U

z N z

  
 

 
.                            (4) 

Substituting the value of 
/Te 

 from (4) in (3), one 

can obtain the value of A  as given by  

                                                       

2

( 1) (1) ( 2) (2)

( 1) ( 1)N N

z N z z N z
A

U U U U

   
 

 
.              (5) 

We also observe that 

  
1

0

cos( / ) 0
N

n

k

nk M 




   for 01,2,..., 2n N  .                                                      

                                                                                    

                                                                          (6) 

Therefore the value of the 0A can be obtained by 

finding the sum of the signal samples ( )z k in (2) 

over N samples as given by 

                                                      
1

/ /

0

0

( ) (1 ) /(1 )
N

N T T

k

z k NA A e e 


  



    .      (7) 

Hence for 2k N  , we can obtain a signal ( )x k  

expressed as 
/

0( ) ( ) k Tx k z k A Ae     , which is 

free from the DC offset and exponential terms.  

 

It can be noted that (4), (5) and (7) do not involve 

the multiplication of signal samples with the cosine 

or sine terms and hence, are computationally less 

demanding as compared to the corresponding 

expressions of the Fourier filters [1]-[2] existing in 

the literature. However, this algorithm also utilizes 

the samples of the signal over a time interval that is 

slightly greater than one complete cycle of the 

fundamental component similar to the algorithms 

presented in [1] and [2].  

It may also be mentioned here that there is no direct 

relation between the total number of harmonics 

present in the signal and the total number of samples 

taken in one complete cycle time 0T  of the signal as 

is generally assumed in the literature [1]-[5]. In 

other words, 0N N  in general, although, in a 

special case N  can be taken equal to 0N . 

 

The amplitude of the fundamental component of the 

signal 1A  in (1) can then be obtained (by recognizing 

that other harmonic term will not contribute to 

summation over a period of N ) as follows: 

                                                            

1 1

1

1
cos ( )cos( / )

N

r

A x r r M
M

 


  , and                                                  

                                                       

1 1

1

1
sin ( )sin( / )

N

r

A x r r M
M

 



  .                     (8) 

 

 

The above algorithm can be easily extended for the 

cases where fault current or voltage signals contain 

multiple transient terms or subsynchronous 

resonance terms as discussed here. For such cases 

the fault current and voltage signals can be modeled 

using the expression [1]                               

0

0

2
/

0

1

( )

cos( ) cos( )

a

N
t

n n

n

z t A

A n t Ae t 








     
,         

                                                                         (9) 

which implies that the sampled signal can be 

expressed as 

               
0

0

2

1

/

( ) ( )

cos( / )

cos( ),

a

N

n n

n

k T

z k z k T A

A nk M

Ae k T k

 







 

  

 

     

 .           

                                                                       (10) 

Using (10) and the fact that 

cos( / ) cos( ( 1) / )n M n N M   , it can be 

easily shown that 

            

    / /

1

( 1) (1)

cos ( 1) cosN T T

z N z

A e N e

r

      

  

   



,                                                                          (11)  

               

    / 2 /

2

( 2) (2)

cos ( 2) cos 2N T T

z N z

A e N e

r

       

 

    



  ,                                                                    (12)                                 
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    / 3 /

3

( 3) (3)

cos ( 3) cos 3N T T

z N z

A e N e

r

       

 

    



,                                                                    (13) 

             

    / 4 /

4

( 4) (4)

cos ( 4) cos 4N T T

z N z

A e N e

r

       

 

    



,                                                                    (14) 

where   T  . 

 

It can be observed that (11) to (14) are similar to 

(20) to (23) of [1] but these do not involve the 

multiplication of signal samples with the cosine or 

sine terms and hence are computationally less 

demanding as compared to the Fourier filters [1] 

existing in the literature. The procedure for finding 

the values of 
/Te 

,   from (11) to (14) is similar 

to that followed in [1]. Specifically, 

                                                               

2
/ 3 2 4

2

2 1 3

( )

( )

T r r r
e X

r r r

 
 


,                           (15) 

                                                             

1 4 2 3

/ 2

2 1 3

cos
2 ( )T

r r r r

e r r r




 
 
     

,                 (16) 

From (11), we can also write, 

                                                              

2

(2) (1) cos(2 ) cos( )

(3) (1) cos(2 ) cos( )

z z X

z z X

   


   

   


   
 

                                                               
2

2

cos 1 cos 2
tan( )

sin sin 2

X X

X X

   
 

  

  
 


 

                                                                     

    /

1 / cos ( 1) cosN TA r Xe N X         

 

 

Hence for 4k N  , we can obtain a signal ( )x k  

as given by 
/

0( ) ( ) cos( )k Tx k z k A Ae k T        , 

which is free from the DC offset and 

subsynchronous resonance terms. The value of the 

fundamental component of the signal in (9) can then 

be obtained using (8). 

3 Algorithm based on sampling at 

arbitrary locations 

The algorithm presented in this section is based on 

sampling the signal at arbitrary locations and hence, 

the signal samples can be acquired during a time 

interval much less than the full-cycle period of the 

fundamental component. The calculation of the 

fundamental component can, therefore, be done 

quickly even before the completion of one full-cycle 

period of the signal, and hence is more suitable in 

practical applications keeping in mind the stringent 

requirements related to the time elapsed between the 

occurrence of a fault and the operation of the digital 

distance relays as discussed in the introduction here.  

 

 

Here, the signal ( )az t  expressed in (1) is sampled at 

a set of known time instants 0, 1 1,...,  Jt t t   (not 

necessarily uniformly spaced) allowing us to form a 

set of simultaneous linear equations, which can be 

solved for all the unknown quantities including the 

fundamental component of the signal ( )az t . The 

system of simultaneous linear equations obtained by 

sampling the signal ( )az t can be compactly written 

as a matrix product 

                               Z R P ,                                (17) 

where 

 0 1 1( ) ( ) ( ) ( )              
T

a a a J a JZ z t z t z t z t   

 

with superscript T  standing for transposition of the 

matrix, 

 
0

1

/

0 0 0 0 0 0 0 0 0 0 0 0

/

0 1 0 1 0 1 0 1 0 1 0 1

0 2 0 2

1 cos sin cos 2 sin 2 cos sin

1 cos sin cos 2 sin 2 cos sin

1 cos sin

                              

                                

         

t

t

t t t t N t N t e

t t t t N t N t e

t t
R









      

      

 


2 /

0 2 0 2 0 2 0 2

0 1 0 1 0 1 0 1 0

cos 2 sin 2 cos sin

1 cos sin cos 2 sin 2 cos

                     

                                                                           

           

t

J J J J J

t t N t N t e

t t t t N t



   

    

     1 /

1 0 1

/

0 0 0 0 0 0

sin

1 cos sin cos 2 sin 2 cos sin

    

                             

J

J

t

J

t

J J J J J J

N t e

t t t t N t N t e







 



 
 
 
 
 
 
 

 
         

 ,                                                                          (18) 

 0 1 1 1 1 2 2 2 2cos sin cos sin cos sin
T

N N N NP A A A A A A A A              -     -      -    

,                                                                            (19) 

and 0 2N N    with 02 3J N  .  Therefore, the 

matrix P  can be written as 1P R Z . 

 

 It must be emphasized that the matrix 
1R
 can be 

computed in advance and the multiplication of its 

second and third rows with the observation vector 

Z  will give us the unknown quantity of interest, 
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i.e., 1 cosA   and 1 1sinA  . Given the maximum 

frequency of samplers available today in MHz or 

even higher range, the time required for taking 

sufficient number of samples and the multiplication 

of rows with the observation vector described above 

will not exceed half-cycle time of 50 /60 Hz signal.  

 

 

4   Discussion on the Fourier filters 

  
In this section we point out that the Fourier filters 

existing in the literature for removal of DC offset in 

current and voltage signals can also be interpreted as 

the weighted moving-average (WMA) filters.  

 

The Fourier filters, although having similarity with 

the discrete Fourier transform (DFT) computation of 

a signal, do not precisely involve the computation of 

the DFT coefficients of the sliding windowed 

sampled signal, as discussed below.  

 

Moreover, there is no direct relation between the 

highest order of the harmonic term present in the 

signal given in (1), i.e., 0( 2)N   and the total point 

N  in the full-cycle or half-cycle DFT computation, 

as is generally assumed in the literature [1]-[4]. Let 

us consider the real and imaginary parts of the DFT 

as defined in [1]-[4]: 

                                                            

( )

1

1
( )cos( / )

k

real k

r k N

Z z r r M
M


  

  ,             (20) 

and                                                     

                                                             

( )

1

1
( )sin( / )

k

imag k

r k N

Z z r r M
M


  


  ,               (21) 

where (0) ( 1) ( 2) ... ( 1) 0z z z z N         .   

 

 

On the other hand, an M -point moving-average 

filter operating on a signal ( )z k  produces the 

output ( )y k  as defined by [7] 

                                                                    
1

0 1

1 1
( ) ( ) ( )

M k

r r k M

y k z k r z r
M M



   

    ,        (22) 

 

 It is clear from (20) to (22) that the sequences 

( )real kZ  and ( )imag kZ  can also be interpreted as twice 

the output of a N -point moving-average filter with 

input signals ( )cos( / )z k k M  and 

( )sin( / )z k k M  respectively. Hence, the filtering 

operation as defined in (20) and (21) can be 

interpreted as the weighted moving-average filtering 

[7] of the signal ( )z k . 

 

Now we consider the standard definition of the real 

and imaginary part of the N -point DFT as given by 

[6]-[7] 

                                                   
1

0

( ) ( )cos( / ), 0,1,2,..., 1
N

real

r

Z k z r r k M k N




  

, and 

                                                    
1

0

( ) ( )sin( / ), 0,1,2,..., 1
N

imag

r

Z k z r r k M k N




   

.                                                                            (23) 

It may be noted from (20) to (23) that 

( ) ( )real k realZ Z k and ( ) ( )imag k imagZ Z k for 

0,1,2,..., 2k N  . But for 1k N  , we can 

write the relations ( ) ( ) /real k realZ Z k M and 

( ) ( ) /imag k imagZ Z k M . Similarly, using (20) for 

k N , we obtain 

                                                               

( )

1

1
( )cos( / )

N

real N

r

Z z r r M
M




  ,                    (24) 

which is equal to the real part of the N -point DFT, 

as defined in (23),  of the signal 

 ( ), (1), (2),...., ( 1)z N z z z N  (within a constant 

1/ M ) and not the N -point DFT of the signal 

 (0), (1), (2),...., ( 1)z z z z N  .  

 

Similarly, 
1

( 1)

2

1
( )cos( / )

N

real N

r

Z z r r M
M








   is 

the real part of the N -point DFT of the signal 

 ( ), ( 1), (2),...., ( 1)z N z N z z N  .   

 

 

It is clear from this discussion that for k N , the 

formulae 
2 2

1 ( ) ( )real k imag kA Z Z  and 

1 ( ) ( )tan /imag k real kZ Z   as given in  (5) and (6) of  

[1] and (8) in [2] are not precisely the amplitude and 

phase terms corresponding to the fundamental 

component of the signal given in (1). 

 

 In the light of above, it may be noted in passing that 
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(13), (14) and (15) of [1] need correction although 

(16) and (17) are correct. The correct versions of 

(13) to (15) of [1] are as given by 

                                             

( )

1

1
( )cos( / )

N

real N

r

Z z r r M
M




  , 

                      
1

( 1)

2

1
( )cos( / )

N

real N

r

Z z r r M
M








 

 ( )

1
( 1) (1) cos( / )real NZ z N z M

M
    , 

                                                     
2

( 2)

3

1
( )cos( / )

N

real N

r

Z z r r M
M








  ,               (25) 

 

 

where we have used the fact that 

cos( / ) cos( ( 1) / )M N M   . Substituting the 

value of ( 1)z N  and (1)z  from (2) in (23) and 

simplifying we obtain (16) to (17) of [1]. Similar 

remark will hold for Type II and Type III signals 

discussed in [1]. It may lastly be noted from (1) that 

(0) 0az   as required in (7) of [1]. 

 

In summary, we can treat the Fourier filters as 

WMA filters and we should take cautions while 

interpreting the output of the Fourier filters for 

k N  as amplitude and phase of the fundamental 

component term of the fault current /voltage signals. 

 

 

5 Simulation results 

 
The simulations of the proposed algorithms are 

carried out in MATLAB using the analog signal as 

given by 

                                        
0 2

/

0 0

1

( ) cos( )
N

t

a n n

n

z t A A n t Ae 






     ,    (26) 

with   signal parameters  0 100A  , 0 12N  , 

200A  , 0 100  , 300 /nA n and 

5 /180n n  .  It is sampled at a rate of twelve 

samples per cycle time of 50 Hz signal. The 

sampled signal can be written as 

                         

0 2
/80

1

( ) 100

300
cos( / 6 5 /180) 200

N
k

n

z k

nk n e
n

 








  
, 

                                       

  k                                                        (27) 

The signal in (27) is plotted in Fig. 1. 

 

 

 
 

Fig. 1. Signal ( )z k  

A comment regarding the choice of sampling rate is 

in order here. The sampling frequency must be at 

least twice the highest frequency present in the input 

signal, if we want to reconstruct the signal back 

from the sampled signal. Here our goal is to 

estimate the amplitude and phase of the fundamental 

frequency component of the signal and eliminate the 

harmonics of it and hence the sampling frequency 

can be safely chosen to satisfy the condition 

 

                           0

2
2s

T


   


,                    (28) 

 

where we have neglected the frequency spectrum of 

the term 
/k TAe  

  in (26) beyond 02  , which is  

reasonably a good assumption.  

 

Using the samples of the signal in (27), the 

simulations are performed for the algorithm 

presented in section II and it is observed that the 

estimated values of the DC term 0A , amplitude of 

the exponentially decaying term A and the 

amplitude of the fundamental component of the 

signal 1A  using the proposed technique are exactly 

equal to their respective true values for 0 12N   
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under noise free case.  

 

The simulation results for 0 12N   are also 

presented in Fig. 2. It can be noted from it that the 

estimated values of the signal parameters are very 

close to their true values even up to 0 100N   in 

(27). 

 
 

 

Fig. 2. Estimated parameters of the signal 

( )z k using proposed algorithm as a function of the 

order of the harmonics 0N . 

 

 

The simulation results for 0 4N  using the solution 

of simultaneous linear equation presented in (17) 

also give true estimate of the signal parameters that 

are exactly equal to their respective values under 

noise free case. To study the effect of robustness of 

the algorithms, a white Gaussian noise signal was 

added in (27) for different values of signal-to-noise 

ratio (SNR).  

 

 

 

The results of simulations performed under additive-

white Gaussian Noise (AWGN) condition for both 

the algorithms are shown in Fig. 3. It can be seen 

from it that the performance of both the algorithms 

is almost same under large SNR condition but for 

SNR below 20dB, the performance of the 

simultaneous linear equation method is inferior to 

that of the first method. However, it is common for 

the power transmission systems to have an SNR 

much greater than 20dB and hence both the 

approaches are useful. 

 

 
 

Fig. 3. Estimated amplitude of the fundamental 

component of the signal ( )z k  using the proposed 

algorithm in section II and simultaneous equation 

solution method as a function of SNR in dB for 

0 4N  . 

 

 

The simulations are also performed for the proposed 

algorithm presented in section III using the signal                                  

0

1 0

2
/

0

1

( )

cos( ) cos( )

a

N
t

n n

n

z t A

A n t Ae t 








     
,       

                                                                          (29) 

with   signal parameters  0 100A  , 200A  ,  

0 100  , 300 /nA n and 5 /180n n  , 

500   rad/sec, 0  , 33.33   ms for 

various values of  0N  in (21) using a fixed  matrix 

R  (computed for 2N   ). The signal in (29) is 

sampled at a rate of twelve samples per cycle time 

of 50 Hz signal. The sampled signal thus obtained 

can be written as 

  

0 2

1

/300

300
( ) 100 cos( / 6 5 /180)

200 cos(5 / 6),

N

n

k

z k nk n
n

e k k

 









  

  


.    

                                                                      (30) 

 

The results of the simulations are presented below in 

Table 1. 
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Table 1 

Estimated amplitude of the DC and harmonic 

component of the signal ( )z k  using the proposed 

algorithm II using matrix R   having a fixed  

value of 2N  . 

 

     0N  
3 4 5 6 

Amplitude 
of the first 

Harmonic 

300 300 393.4605 393.4605 

Amplitude 
of the 

second 

Harmonic  

4.4939e-
014 

150 147.9695 119.0349 

DC term 100 100 -4.7103e04 -4.7103e04 

 

 

It is clear from the results presented in Table 1 that 

the estimated values of the signal parameters are 

equal to their true values for the case upto 0 4N  , 

but for larger values of 0N the results are not close 

to their true values. This is because the entries of the 

matrix in (10) are dependent on the order of the 

harmonic and the estimated results are poor if the 

true value of the order of the harmonics present in 

the signal exceeds the order assumed in the entries 

of the matrix in (10). 

A comment regarding the computational cost of 

each algorithm is in order here. The method 

presented in section 2 involving (5) and (7) requires 

of the order of N  number of additions and 

multiplications for computing the value of 

( )x k from ( )z k . The method discussed in section 3 

requires of the order of
2N   number of additions and 

multiplications for computing the value of 

( )x k from ( )z k . 

 

6 Conclusions 
Two novel filtering algorithms for the removal of 

DC offset, subsynchronous resonance terms in the 

current and voltage signals under fault condition are 

presented. Both the algorithms are computationally 

less demanding than the existing Fourier filters but 

the second algorithm based on sampling the signal 

at arbitrary locations is faster than the other 

algorithms and hence is more attractive. It is also 

shown that the Fourier filters existing in the 

literature for the removal of DC offset in current and 

voltage signals are essentially weighted moving-

average filters. Moreover, the Fourier filters 

although looking similar to the discrete Fourier 

transform (DFT) computation of a signal, do not 

precisely involve the computation of the DFT 

coefficients of the sliding windowed sampled signal. 

Lastly, it is clear from the simulation results that the 

performance of the proposed algorithms is almost 

identical under noiseless as well as noisy conditions 

having SNR greater than 20dB. 
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