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Abstract: - An essential aspect of efficiency control of a three-phase induction motor is the ability to generate 
the optimal magnetic flux required for different operating modes. In this paper, we use the genetic algorithm 
(GA), the particle swarm optimization algorithm (PSO) and the simulated annealing (SA) to cope with the 
complexity of the problem and compute feasible and quasi-optimal magnetic flux needed for three-phase 
induction motors with time varying load and parameters. The characteristics of the optimal magnetic flux are 
represented in the form of a multi-objective cost function that we developed. We reduce the execution time of 
our solutions by using the “single-program, multiple-data” parallel programming paradigm and achieve real-
time performance on a multi-core CPU. 
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1 Introduction 
For the control of an electric induction motor (IM) 
variable speed, the magnetic flux must be adjusted 
to obtain the best possible efficiency. The optimal 
flux depending on the desired speed and torque is 
often calculated using deterministic methods that 
require considerable computing power. For this 
reason, the calculation of magnetic flux is usually 
done offline. This approach may not guarantee the 
optimal expected performances because the state of 
the machine changes during operation (temperature, 
saturation and other constraints). As presented in 
[1], [2] and [3], there are ways to reassess the 
characteristics or parameters of the IM. It would 
therefore be advantageous to calculate the optimal 
flux in real time to continually enhance performance 
even when the motor parameters change. To 
minimize the computing time and to allow 
embedded application, non-deterministic algorithms 
seems excellent candidates for optimal flux 
generation [4], [5], [6] and [7]. 

In this work, we develop and evaluate three non-
deterministic optimization algorithms to calculate 
the flux maximizing the effectiveness of the 
induction motor. To reduce the computation time 
and allow real time performance, we also implement 
and compare parallel versions of the three 
algorithms. The remainder of this paper is organized 
as follows. Section 2 deals with magnetic flux 

control of an induction motor and identifies the 
objective function to be optimized. Section 3 
presents the three optimization algorithms used: the 
genetic algorithm, the particle swarm optimization 
and simulated annealing. Section 4 discusses our 
parallel implementation of the three algorithms. 
Finally, a comparison of results obtained by each 
algorithm is presented in Section 5. 
 
 
2 Optimizing the magnetic flux 
of an induction motor 
Today, the induction motors are the most used 
machines in variable speed drives. For this reason, 
several researchers linger to develop control 
methods that optimize the efficiency of these 
machines. As explained in [8], one of the challenges 
in controlling induction motor whether using scalar, 
vector control or other modern nonlinear techniques 
is the generation of the optimal magnetic flux 
required for different operating conditions. The 
control modules commonly used normally maintain 
the magnetic flux close to nominal values thus 
ensuring good efficiency when the motor operates at 
a speed and torque near the nominal point. 
However, the efficiency decreases greatly when the 
speed or torque varies. To improve efficiency, it is 
important to adjust the flux when the speed or 
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torque changes. Still according to [8], two 
approaches are mainly used: the method based on 
the loss model and that based on the measurement 
of power. In this paper we use the first approach and 
show that non-deterministic optimization algorithms 
(GA, PSO and SA) can be used to calculate the 
optimal flux which minimizes the loss of the IM for 
a given speed and load torque. 
 
2.1 Loss model of induction motor 
The synchronous reference frame model of a three-
phase IM is used [8]. The block diagram of the 
control system under study is shown in Fig. 1. For 
an angular velocity and torque points, the control 
module uses an optimization algorithm that 
calculates the optimum flux  to minimize the IM 
losses equation. 

The losses in the IM are mainly composed of 
rotor copper losses ( ), copper losses in the stator 
( ), iron losses ( ) and mechanical losses ( ). 
The losses of IM are calculated as follows: 
 

 (1) 

 

 
Fig. 1. Block diagram of the three-phase IM control 
system 
 
Since the mechanical losses are not related to 
magnetic flux, they are omitted in calculation the 
optimal flux. This same equation is presented in [9] 
as follows where each term is defined in Table 1: 

 

 
(2) 

It is important to note that the synchronous angular 
velocity  can be approximated by the angular 
velocity of the motor  when the slip is negligible 
(light load conditions). Still according to [9], the 

magnetic flux  and electromagnetic torque  are 
defined as follows: 

 (3) 

 (4) 

The optimization problem of the magnetic flux as a 
function of torque and speed is to find values for  
and  that minimize equation (2) while generating 
an electromagnetic torque  greater or equal to the 
required torque . In addition,  and  must meet 
two requirements: that of the maximum current and 
maximum voltage. 

 (5) 

 (6) 

where  (7) 

 is the maximum current possible and  is 
the maximum voltage possible. It is then possible to 
represent the loss of IM, the electromagnetic torque 
and the two constraints as a cost function that we 
minimize using optimization algorithms described 
the next section. In this cost function,  and  are 
the variables to be optimized for given angular 
speed   and electromagnetic torque  given: 

 

where 

(8) 

 

 (9) 

 (10) 

 

where 

(11) 

 (12) 

We use a very large constant (here ) in 
equations(9), (10) and (11) to separate the valid 
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solutions (those that produce the necessary torque 
and respect the constraints) from the invalid ones. 
This penalty is added in proportion to the degree 
ofviolation of constraints and thus allows the 
improvement of invalid solution in order to generate 
valid ones. In this paper, all calculations are done 
using the parameters used in [8] and [10] whose 
values are reproduced in Table 1. 
 
Table 1. Parameters of the IM used in this document 

Parameter Symbols Values Units 
Power  1100 W 
Speed  157.08 rad/sec 
Voltage  220 à 380 V 
Current  3.4 A 
Rated load torque  7 N*m 
Number of pairs of poles  2  
Stator resistance  8 Ω 
Rotor resistance  3.1 Ω 
Total leakage factor 

  0.12 N/A 

Mutual inductance  0.443 H 
Stator leakage inductance  0.027 H 
Rotor leakage inductance  0.027 H 
Stator self-inductance 

  0.47 H 

Rotor self-inductance 
  0.47 H 

Inertia  0.06 SI 
Viscous friction 
coefficient f 0.00 SI 

 
 
3. Optimization algorithms 
In this section we present three optimization 
algorithms that we implemented to find the values 

 and  that minimize the cost function defined in 
equation (8). 
 
3.1 Genetic algorithm 
The GA is a non-deterministic optimization method 
based on a population and was developed by John 
Holland in the '60s and first published in 1975 [11]. 
Based on the theory of Darwinian evolution, the GA 
simulates the evolution of a population of solutions 
to optimize a problem.Like living organisms adapt 
to their environment, the solutions of the GA to 
adapt to the cost function in an iterative process that 
simulates the crossover and mutation of genes.In our 
implementation, we use a binary encoding and 
randomly generate a population of possible 
solutions  and . The GA then modifies this 
population of candidate solution for a near-optimal 
final solution. The selection mechanism used is the 
stochastic universal sampling based on the ranking 
of solutions [12]. We also use the principle of 
elitism in order to improve the convergence of the 

algorithm [12]. The flow chart of the GA and the 
genetic operators used are shown in Fig. 2 and Fig. 
3. 
 

 
 
Fig. 2. Flow chart for the genetic algorithm 
 
 
 

 
(a) 

 
 

 
(b) 

 
 

 
(c) 

Fig.3. Genetic operators used: (a) single-point 
crossover, (b) bit-flip mutation, (b) bit-swap 
mutation 
 
 
3.2 Particle swarm optimization 
The PSO is a non-deterministic optimization method 
also based on population and was developed by 
Kennedy and Eberhard in 1995 [13]. The algorithm 
simulates the motion of a swarm of particles in a 
search space of one or more dimensions to an 
optimal position. The position of each particle 
represents a candidate solution and is initialized 
randomly.At each step of the iterative procedure, the 
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particle velocity is calculated individually based on 
the previous speed (inertia), the best position ever 
occupied by the particle (personal influence) and the 
best position ever occupied by any particle of swarm 
(social influence). 

As defined in [14], the equations to update the 
velocity and position of a particle at iteration t are as 
follows: 

 (13) 

 (14) 

where variables in bold are vectors;  is the velocity 
of a particle;  is its position;  is the best position 
ever occupied by the particle;  is the best position 
ever occupied by any particle of the swarm;  and 

 are vectors of random values between 0 and 1; 
and ,  and  are the parameters of inertia, 
personal influence and social influence. Still based 
on [14], the operating diagram of the PSO is 
illustrated in Fig. 4.In our implementation, the 
particles move in a space of two dimensions and 
their position represents candidate values for  and 

. 
 
3.3 Simulated annealing 
Presented for the first time in 1983 [15], simulated 
annealing is a non-deterministic optimization 
method which simulates the annealing process in 
which atoms in a heated metal escape their local 
minimum to eventually settle in an energy level 
lower than initially. Similarly to the PSO, one 
possible solution is encoded as an atom whose state 
varies in a space of one or more dimensions. By 
cons, optimization by simulated annealing uses only 
one particle. 
 

 

Fig.4. Flow chart for the particle swarm 
optimization 
At the beginning of the process, when the 
temperature is high, the particle changes its state 
almost randomly allowing a higher cost solution to 
encourage exploration. As the process progresses 
and the temperature drops, this randomness 
decreases and the particle is directed primarily 
towards a solution that minimizes the cost function. 
As defined in [16], the probability of accepting a 
better solution is always 1, but defined as follows 
for an inferior solution: 

 (15) 

where is the cost of the current solution 
, is the cost of the candidate 

solution  and  is the temperature and is 
reduced every iteration following: 

 (16) 

where  is the initial temperature and  is a 
constant between 0 and 1. In our implementation, 
the state of the atom has two dimensions and 
represents a value of  and . We calculate the 
value of  following the method presented in [17] 
so that a worse solution is initially accepted with a 
probability of about 95%. We also calculate the 
value  so that the final temperature is equal to 

. Still according to[16], the flow char for 
the simulated annealing is shown in Fig. 5. 
 

 
Fig.5. Flow chart for the simulated annealing 
 
 
4. Parallel Implementation 
In this paper, we selected three non-deterministic 
algorithms in order to cope with the complexity of 
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flux optimization for IM and produce quasi-optimal 
solutions in a very short computation time. Since 
multicore CPUs have become moreand more 
common in personal computersand 
microcontrollers,the execution time can be reduced 
whenusing parallel implementations. In this section, 
we present our approach to parallelizing the GA, the 
PSO and the SA using the “single-program, 
multiple-data” parallel programming paradigm. Our 
implementation is done using the MATLABTM 
Parallel Computing Toolbox 6.0 
 
4.1 Parallel GA 
Different approaches have been proposed to 
parallelized the GA. They can be classified as: 
master-slave, coarse-grain, fine-grain and hybrid 
[18]. As discussed in [19], a coarse-grain approach 
simulating the evolution of independent populations 
is usually preferable for a multi-core execution. In 
our parallel implementation of the GA, we divide 
the population by the number of processes and each 
process simulates an independent swarmbased on 
the flow chart in Fig. 2. Our implementation allows 
communication between the populations by a 
process of migration where the best solutions from 
process i are transmitted to process i + 1 where they 
will replace the worse solutions. This migration 
takes place between steps 6 and 7 in Fig. 2 and 
occurs every fifth iteration. As explained in [20], 
allowing few generations between migrations slows 
down convergence, improves exploration and 
reduces the inter-process communication. Our 
implementation results in a very good speedup due 
to the parallelization of all stages of the algorithm 
and the minimization of communication. 
 
4.2 Parallel PSO 
Our parallel implementation of the PSO follows the 
parallel broadcast method discussed in [21] and is 
very similar to our parallel implementation of the 
GA. We divide the swarm between the processes 
and each process simulates the movement of an 
independent swarm. Every fifth iteration, we 
compare the best particle of each swarm in order 
find the global best particle. This global best particle 
is then broadcasted to all swarms. As for the GA, 
this implementation parallelizes every step of the 
algorithm and minimizes communication resulting 
in a superior speedup. 
 
4.3 Parallel SA 
Unlike the GA and the PSO, the SA is not a 
population based algorithm and is limited to the 
simulation of a single solution. In order to maintain 
the essence of the algorithm, our parallel 

implementation of the SA also uses a single atom or 
solution per process with no communication 
between the processes. At the end of program, the 
costs of the solutions produced by the different 
processes are compared the best solution is returned. 
Due to the sequential nature of the SA algorithm, 
our parallel implementation does not reduce the 
computation speed, but improves the quality of the 
final solution. 
 
 
5.0 Results 
We present in this section, the results obtained by 
our sequential and parallel version of the three 
algorithms discussed above. We compare those 
results to a brute force search that sequentially 
checks all possible values of  and  within the 
search space. When testing  and from 0.5 A to 
3.5 A using an increment of 0.01 A, the brute force 
algorithm evaluates 90 000 candidate solutions 
before returning the best one. To verify the accuracy 
of the GA, the PSO, the SA and the brute force 
search, we compare the results to a reference. This 
reference is generated using a brute force approach 
with a step of 0.0001 A resulting in an execution 
time of more than 2 hours. The configuration 
parameters used for each algorithm are shown in 
Table 2. All test are performed on a computer 
equipped with aquad-core Intel Xeon E3 1230 at 3.2 
GHz and 4 GB DDR3 1333 MHz RAM. 
 
Table 2. Configuration parameters for the different 
optimization algorithms implemented 
Algorithms Configuration parameters Values 

GA Chromosome bit width 
Population size 
Number of generation 
Mutation rate 
Elitism rate 
Generations between 
migrations 
Number of chromosomes 
migrating 

10 
32 
100 
5 % 
5 % 
5 
1 

PSO Swarm size 
Number of iterations 

 
 
 

Iterations between global best 
particle broadcast 

32 
100 
0.7298 
1.4960 
1.4960 
5 

SA Initial probability of accepting 
an inferior solution 
Final temperature 
Number of iteration 

95% 
 
0.01 * 
Tinitial 
2000 

Brute-force Increment when searching for 0.01 A 
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search optimal  and  
 

Before we present our results, it is interesting to 
visualize an example of the losses for different 
magnetic flux. Fig. 6 shows the operating losses 
versus  and  for an angular speed of 150 rad/s 
and a required torque of 5 N*m. It is important to 
note that the surface is limited by the constraints 
presented at equations (9), (10) and (11) and only 
shows the losses associated with values of  and  
that generate the required electromagnetic torque 
without exceeding the maximum current and voltage 
of the IM. 

 

 
Fig.6. Losses versus id and iq for ωr = 150 rad/s and 
Te = 5 N*m 
 

We then use the GA, the PSO, the SA and the 
brute force search to find the optimal values  and 

 that minimize the equation (8). The calculated 
values of , and associated losses for different 
speeds and loads are listed in Table 3(average of 
1000 trials). We also present in this table the 
differences between the results obtained by our 
optimization algorithms and the reference. The best 
results are printed in bolds and show that the PSO 
generally produced solutions that are closer to the 
reference and that yield smaller losses than the other 
three algorithms. We also note that the PSO took 
0.05 s to execute which is 20x faster than for the 
GA, 1.8x faster than the SA and 17xfaster than for 
the brute force search. 

Next, we repeat this test using our parallel 
versions of the GA, the PSO and the SA. In order to 
provide a fair comparison of the execution time, we 
also parallelized the brute force search. Our 
implementation divides the search space by the 
number of processes and each process performs a 
search on its subspace. Once completed, the results 
produced by each process are compared and the best 
solution is returned. Although not limited to 4 
processes, all algorithms are run using 4 processes 
in order to maximize the efficiency on ourquad-core 
Intel Xeon E3 1230 CPU. The calculated values of 

, and associated losses for different speeds and 

loads are listed in Table 4(average of 1000 trials). 
The best results are printed in bolds andstill show 
that the PSO generally produced solutions that are 
closer to the reference and that yield smaller losses 
than the other three algorithms. We also measure a 
speedup of 3.35x for the PGA, 2.51x for the PPSO 
and 3.57x for the brute force search. As discussed 
earlier, the PSA is not expected to provide any 
speedup. The PPSO remains the preferable approach 
producing the best solution in the shortest execution 
time. In a real time application, the PPSO would 
have the ability to generate the optimal magnetic 
flux required for different operating modes at a 
frequency of 52.6 Hz which would not be possible 
with any the other approaches discussed here. This 
makes the PPSO the best solution for real-time flux 
optimization on multi-core CPU. 

Finally, we use the PPSO to calculate the optimal 
values  and (Fig. 7 and Fig. 8) and associated 
losses (Fig. 9) for speeds ranging from 0 to 300 
rad/s and varying loads from 1 to 7 N*m (157 rad/s 
and 7 N*m are the nominal values). As we saw in 
Table 4, the PGA, the PSA and the parallel brute 
force search produce results very close to the PPSO 
and the generated surfaces are almost identical to 
those of Fig. 7 and Fig. 9. 
 
Table 3. Flux with associated losses as computed by 
the Sequential GA, the Sequential PSO, the 
Sequential SA and the Sequential brute force search 
for different speeds and torques (Average of 1000 
trials) 
Variables Torque, 

speed 
(N*m, 
rad/s) 

Optimization Algorithms 

GA PSO SA Brute-
force 

search 

Reference 

Id (A) 4, 100 1.645 1.660 1.661 1.690 1.6598 
4, 150 1.498 1.486 1.488 1.500 1.4863 
6, 100 2.031 2.033 2.036 2.030 2.0328 
6, 150 1.902 1.821 1.824 1.850 1.8203 

Iq (A) 4, 100 1.961 1.924 1.927 1.890 1.9238 
4, 150 2.147 2.148 2.151 2.130 2.1485 
6, 100 2.366 2.356 2.357 2.360 2.3562 
6, 150 2.538 2.630 2.631 2.590 2.6313 

Losses 
(W) 

4, 100 80.966 79.767 79.996 79.836 79.7635 
4, 150 100.689 99.728 100.007 99.794 99.7228 
6, 100 120.192 119.651 119.903 119.670 119.6452 
6, 150 151.799 149.591 149.902 149.713 149.5841 

|Id
ref - Id| 

(A) 
4, 100 0.015 0.000 0.002 0.030 N/A 
4, 150 0.011 0.000 0.002 0.014 N/A 
6, 100 0.002 0.000 0.003 0.003 N/A 
6, 150 0.082 0.001 0.003 0.030 N/A 

|Iq
ref – Iq| 

(A) 
4, 100 0.037 0.000 0.003 0.034 N/A 
4, 150 0.002 0.000 0.003 0.018 N/A 
6, 100 0.010 0.000 0.000 0.004 N/A 
6, 150 0.094 0.001 0.000 0.041 N/A 

Execution 
time (s) 

4, 100 1.008 0.049 0.087 0.840 8 762.4 
4, 150 1.001 0.048 0.086 0.832 8 643.5 
6, 100 1.001 0.049 0.086 0.834 8 635.2 
6, 150 1.003 0.049 0.086 0.835 8 659.7 
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Table 4. Flux with associated losses as computed by 
the Parallel GA, the Parallel PSO, the Parallel SA 
and the Parallel brute force search for different 
speeds and torques (Average of 1000 trials) 
Variables Torque, 

speed 
(N*m, 
rad/s) 

Optimization Algorithms 

PGA PPSO PSA P 
Brute-
force 

search 

Reference 

Id (A) 4, 100 1.644 1.660 1.660 1.690 1.6598 
4, 150 1.501 1.486 1.486 1.500 1.4863 
6, 100 2.020 2.032 2.034 2.030 2.0328 
6, 150 1.859 1.822 1.821 1.850 1.8203 

Iq (A) 4, 100 1.956 1.923 1.925 1.890 1.9238 
4, 150 2.137 2.149 2.151 2.130 2.1485 
6, 100 2.375 2.357 2.356 2.360 2.3562 
6, 150 2.587 2.630 2.632 2.590 2.6313 

Losses 
(W) 

4, 100 80.598 79.767 79.854 79.836 79.7635 
4, 150 100.445 99.728 99.831 99.794 99.7228 
6, 100 119.975 119.650 119.747 119.670 119.6452 
6, 150 150.890 149.591 149.706 149.713 149.5841 

|Id
ref - Id| 

(A) 
4, 100 0.016 0.000 0.000 0.030 N/A 
4, 150 0.014 0.000 0.000 0.014 N/A 
6, 100 0.013 0.000 0.001 0.003 N/A 
6, 150 0.039 0.001 0.001 0.030 N/A 

|Iq
ref – Iq| 

(A) 
4, 100 0.032 0.000 0.001 0.034 N/A 
4, 150 0.011 0.000 0.002 0.018 N/A 
6, 100 0.018 0.001 0.001 0.004 N/A 
6, 150 0.044 0.002 0.001 0.041 N/A 

Execution 
time (s) 

4, 100 0.288 0.020 0.088 0.229 8 762.4 
4, 150 0.293 0.019 0.090 0.231 8 643.5 
6, 100 0.307 0.019 0.088 0.260 8 635.2 
6, 150 0.307 0.019 0.088 0.214 8 659.7 

 

 
Fig.7. Optimal id for different speed and torque as 
computed by the PPSO 
 

 
Fig.8. Optimal iq for different speed and torque as 
computed by the PPSO 
 

 
Fig.9. Losses associated with the optimal id and iq 
for different speed and torque as computed by the 
PPSO 
 
 
9. Conclusion 
In this paper we have shown how the GA, the PSO 
and the SA can be used to calculate the value of the 
magnetic flux in induction motor for optimal 
efficiency. We have also shown how the execution 
time of the GA and PSO can be significantly 
reduced using a parallel implementation on a multi-
core CPU. The PPSO is the most efficient algorithm 
that calculates the reference magnetic flux in 0.02 s 
with accuracy better than ±0.002A. With the 
obtained computation time, it is no longer necessary 
to use off line look-up tables for magnetic flux 
generation, even when the induction motor 
parameters changes. 
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