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Abstract: - Electric power quality is an aspect of power engineering that has been with us since the inception of 

power systems. To investigate this issue, engineers have proposed various schemes to deal with the power 

disturbance waveforms. Among these approaches, wavelet transform is one of the most frequently used 

algorithms to analyze the power signal. This paper presents a new design of discrete wavelet transform suitable 

for DSP-based implementation. This approach has the advantages of low cost, real-time calculation, and 

possible hand-held device implementation. In addition, the experimental results demonstrate accurate 

disturbance time localization and clear decomposition of power disturbance signals. 
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1. Introduction 

In modern electrical power systems, the regularity 

of power voltage and current is greatly affected by the 

increasing numbers of nonlinear loads connected in 

the power grid. Especially, power electronic-based 

systems such as inverters for driving motors, 

electronic ballasts, and capacitor switching are the 

sources causing power quality issues. Power 

disturbances encountered commonly include power 

interrupt, sag, swell, transient oscillation, flicker, and 

harmonic distortion. Capturing and analyzing these 

power disturbances are essential tasks of monitoring 

power quality.   

In general, power disturbances can be categorized 

as stationary or non-stationary signals according to 

their periodicity. The stationary signals, e.g. 

harmonics and voltage flicker, are typically analyzed 

by Fourier transform or FFT algorithm. Practical 

measurements using FFT algorithm assume infinite  

 

periodicity of the signal to be transformed. 

Furthermore, the time-domain information in the 

signal would be spread out on the whole frequency 

axis and become unobservable following the 

transformation. Therefore, this manner alone is not 

suitable for analyzing non-stationary signals [1]. A 

modification to the Fourier transform, called 

short-time Fourier transform (STFT), uses a 

time-frequency window to localize transients. If the 

STFT uses a wide time window, then the transient 

frequencies can be well distinguished by the high 

resolution of the spectrum domain while the transient 

locations are not resolvable. As the time window gets 

smaller, the transient locations become clear while the 

frequency resolution progressively worsens. Therefore, 

to localize the transient precisely, we must compute 

the STFT every time we change the window size, 

leading to a serious issue of computation load [2].  

Wavelet transform has advantages over FFT and 

STFT for the analysis of signals with transients. 

Wavelet transform is based on the decomposition of 

signals according to a set of adaptable scaled and 

shifted wavelets. This manner of analysis is generally 
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termed ‘multiresolution analysis’. The wavelet 

transform expands signals not in terms of sine or 

cosine functions but by wavelets, generated using the 

translation and dilation of a mother wavelet [3,4]. 

 Over the last years numerous approaches to power 

quality automatic detection and classification have 

been suggested [5-9]. However, due to the difficulty in 

realizing the wavelet transform on a microchip with 

low-level coding language, most of the studies 

regarding the wavelet transform are implemented on a 

PC-based hardware structure with commercial 

application software, such as MATLAB. Fortunately, 

Huang et al. [10] successfully accomplished the FPGA 

realization of wavelet transform for power disturbance 

detection. Furthermore, Sarkar and Sengupta [11] 

employed a digital signal processor (DSP) to 

implement wavelet transform for power factor 

measurement.  

  

 

 

 

 

 

 

 

 

 

 

 

This paper provides a new design and deep discussion 

of discrete wavelet transform (DWT) applied to 

analyzing power quality events. Moreover, in order to 

reduce the implementation cost, achieve real-time 

calculation, and enhance the potential implementation 

of a hand-held device for this work, the DWT is 

implemented with Texas Instruments (TI) 32-bit 

TMS320C6711 DSP along with the TLC320AD535 

16-bit analog to digital converter. The experimental 

results show that the DSP-based implementation of 

the DWT can accurately detect power transients. 

 

 

2. Wavelet Theory 

A main feature of wavelets is the oscillating and 

rapid decay to zero. Generally, smooth wavelets 

indicate higher frequency resolution than wavelets 

with sharp steps such as the Haar wavelet; the 

opposite applies to time resolution. Another important 

consideration is the fast computation of the dilated 

daughter wavelets. From this point of view, the 

orthogonal wavelets calculated recursively have more 

efficient computation than non-orthogonal wavelets. 

Table1 gives an overview and comparison of 

commonly used wavelets. Among these wavelets, one 

of the most widely used mother wavelets suitable for 

power quality analysis is Daubechies wavelet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

This wavelet is particularly suitable for detecting 

low amplitude, short duration,fast decaying and 

oscillating type of signals,encountered frequently in 

power systems [12,13]. 

 

 

2.1. Multiresolution Analysis of the DWT 

Multiresolution analysis is the most important 

concept for constructing scaling functions and 

wavelets. A signal, in the Multiresolution analysis, is 

Table 1 Comparison of common used wavelets 

 Haar Daubechies-N Symmlets Coiflets Meyer Gaussian Mexican hat Morlet 

DWT yes yes yes yes yes (IIR) no no no 

CWT yes yes yes yes yes yes yes yes 

ψ Compact supported yes yes yes yes no no no no 

Support width 1 2N-1 2N-1 6N-1 ∞ ∞ ∞ ∞ 

Filter length 2 2N 2N 6N IIR IIR IIR IIR 

Orthogonal yes yes yes yes yes no no no 

Scaling function φ exist exist exist exist exist N/A N/A N/A 

Reconstruction yes yes yes yes no no no no 

Fast algorithm yes yes yes yes no no no no 
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viewed at various levels of resolutions [14,15]. By the 

multiresolution analysis, this signal is first divided 

into slowly varying and rapidly varying segments 

through the discretization of the signal using a step 

size of two. Then, the slowly varying segment is 

discretized again to form next-level segments. After 

performing several discretizations, the signal can be 

decomposed into a series of detail segments and one 

approximation segment. These discretizations are also 

termed the decomposition of a signal. Figure 1 

i l lustrates  the one-level  decomposit ion and 

r econst r uct i on of  a  s igna l .  To unders tand 

multiresolution analysis deeply, two-scale relations 

must be introduced, which relate the scaling function 

φ(t) and the wavelet function ψ(t) at a given scale with 

the scaling function at the next-higher scale. In other 

words, φ(t) and ψ(t) can be expressed in terms of a 

series of time-shiftedφ(2t). The two-scale relations can 

be written as 

    (1) 

 

                              

                                   (2) 

 

where LR(k) and HR(k) are two sequences, which are 

the coefficients of lowpass and highpass filters for 

reconstructing the decomposed signal respectively. To 

determine LR(k), Daubechies [16,17] considered the 

z-transform of LR(k) as the following equation. 

                

                                     (3) 

where )(zLR
 is the z-transform of the sequence LR(k) 

and m is the order of Daubechies scaling function. To 

find )(zs  is the main task in solving equation (3). 

Since )(zLR
 must satisfy the orthogonality property, 

there exists the following 

relation.                                                       
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By applying Riesz’s lemma to (7), )(zs is determined 

and given as: 

    

(9) 

 

 

where {rg} are the nonzero real roots, {zh} are the 

complex roots of 
2

1 )(zszm −  inside a unit circle, {zh
*
} 

are the conjugate of {zh}, and Q is a constant such that 

1)1( =s  [2, 18]. Once )(zs  is determined, the 

sequence of LR(k) can be determined by substituting 

)(zs  into (3), expanding the substitution result, then 

extracting the coefficients from the expanded 

polynomial equation. Finally, the other three filters, i.e. 

HR(k), LD(k), and HD(k), can be found easily by just 

changing the order and sign of the sequence of LR(k). 

v(k) HD(k) 

LD(k) 

↓2 

↓2 

cD 

cA 

↑2 

↑2 

(k) 

LR(k) 

v'(k) 

Decomposition Reconstruction 
Fig. 1 The structure of signal decomposition and reconstruction 
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An example of numerical calculation for m=3 is 

shown in the following section. 

 

2.2. Calculation of the Filter Coefficients 

A numerical calculation of the filter coefficients for 

Daubechies wavelet with order 3 (Daub3) is 

demonstrated in this section. By considering (7) with 

m = 3, the values of [a0, a1, a2] can be determined, i.e. 

[a0, a1, a2]=[19/2, -9/2, 3/4], which gives  

      

 

                                        (10) 

 

Substituting  

      

(11) 

into (10) and multiplying z
2
 on both sides would 

obtain 

      

(12) 

 

The roots of (12) show no real roots but four complex 

roots, whichare [0.2873-0.1529i, 0.2873-1.4439i, 

2.7127+1.4439i, 2.7127+0.1529i]. However, only the 

first complex root is inside the unit circle. Thus, we 

can simplify (9) as 

))(()(
*

11 zzzzQzs −−=     (13) 

where z1 = 0.2873-0.1529i, z1
*
 = 0.2873+0.1529i, and 

Q = 1.8822. Plugging (13) to (3), we get 

 

2 3

4 5

( ) 0.0249 0.0604 0.0955 0.3252

0.5706 0.2353

RL z z z z

z z

= − − +

+ +

 (14) 

The coefficients of (14) are the sequence of LR(k)|k=0-5. 

By repeating these steps described above, the 

two-scale sequence LR(k) for Daub2, Daub3, and 

Daub4 scaling functions are given in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As mentioned previously, the sequence LR(k) are 

coefficients of the low pass filter for reconstruction of 

the decomposed signal. If we reverse the order of this 

sequence, and then multiply every even element by -1, 

we obtain the high pass filter coefficients, i.e. HR(k), 

for reconstruction. Furthermore, the low pass and high 

pass filter coefficients for decomposition, i.e. LD(k) 

and HD(k), could be determined by reversing the order 

of the sequences of LR(k) and HR(k) respectively. 

 

 

3. Design of the DWT Filter Banks 

The DWT can be realized using a multi-stage filter 

with the mother wavelet function as the low pass filter 

LD(k) and the scaling function as the high pass filter 

HD(k). The high pass and low pass filters are not 

independent of each other, but are related by  

 

)()1()1( kLkKH D

k

D −=−−    (15) 

 

where K is the filter length or the number of filter 

coefficients. Filters satisfying this condition are 

commonly applied to signal processing and termed 

“quadrature mirror filters”[12]. 

The output of the high pass filter gives the detailed 

Table 2. Sequence of LR(k) for Daubechies 

scaling function 

 Daub2 

m=2 

Daub3 

m=3 

Daub4 

m=4 

k LR(k)|k=0-3 LR(k)|k=0-5 LR(k)|k=0-7 

0 -0.0915 0.0249 -0.0075 

1 0.1585 -0.0604 0.0233 

2 0.5915 -0.0955 0.0218 

3 0.3415 0.3252 -0.1322 

4  0.5706 -0.0198 

5  0.2353 0.4461 

6   0.5055 

7   0.1629 
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version of the high-frequency component of the signal. 

In contrast, the low pass filter provides the 

approximate version of the low-frequency component, 

which is then further split to go through other high 

pass and low pass filters to obtain the next level of the 

detail and approximation versions. By conducting this 

process, the DWT can be implemented.  

If the original signal is sampled at fs Hz, then the 

highest frequency that the sampled signal could 

faithfully represent is fs/2 Hz. Therefore, the first 

detail version would cover the band of frequencies 

between fs/2 and fs/4 Hz. Thus, the first approximation 

version would include the rest of bandwidth [0, fs/4] 

Hz. In the next level, the second detail would capture 

the band of frequencies between fs/4 and fs/8 Hz, and 

the third detail would cover the band of frequencies 

between fs/8 and fs/16 Hz as shown in figure 2. 

Namely, the bandwidth of the detail version in the 

ith-level can be expressed as [fs/(2
i+1

), fs/(2
i
)]. In the 

experiment, fs is set at 8000Hz, thus decomposing it 

three-times would divide the band into [0, 500, 1000, 

2000, 4000] Hz. The maximum level that an N-point 

signal can be decomposed relies on the number of 

signal points and the order of Daubechies wavelets 

used for DWT. This relationship is expressed as 

 

  mNL 2loglog 22max −=        (16) 

 

where m is the order of used Daubechies wavelets. 

Since the process of down-sampling by two follows 

the convolution in each decomposition level, log2N 

represents the times that an N-point signal can be 

decimated by two.  

However, the length of decimated signal must be 

longer than the length of filter coefficients to ensure a 

meaningful convolution. Therefore, the length of filter 

coefficients,i.e.2m,must be considered in this equation. 

 

4. Implementation of the Decomposition 

Algorithm 

In the first-level decomposition, the sequences LD(k) 

and HD(k) are utilized to convolve with the original 

signal v(k) to realize the low/high pass filtering 

process. The convolution result is then followed by 

decimation by a factor of two. The convolution and 

decimation can be combined and expressed 

mathematically as  

                

(17) 
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k
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where cA1(k)/cD1(k) are the approximation/detail 

coefficients of discrete wavelet transformation results 

of the 1
st
-level decomposition. Since the decimation 

would disregard every even point of the convolved 

sequence, the calculation of convolution is conducted 

by shifting the coefficients of filters with step size of 

two for each inner product such that the calculation 

load can be cut in half. Such a modification can 

remove the redundant calculation, thus saving time for 

other processes. 

For the DSP implementation purpose, the code 

programming for this modified convolution is given as 

the following matrix multiplication. 

For the 2nd-level decomposition, the approximation 

coefficients cA1(k)|k=1-512 are convolved again with the 

low/high pass filter coefficients. Consequently, the 

2
nd

-level approximation and detail coefficients (i.e. 

cA2(k)|k=1-256 and cD2(k)|k=1-256) are obtained. 

 
cD1 cA1 

cD2 cA2 

cD3 cA3 

0    fs/16  fs/8     fs/4  fs/2  

Fig. 2. Bandwidth division of the DWT 

Level 3 

Level 2 

Level 1 
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5. Experimental Setup 

Numerical works of power quality analysis by 

wavelet transform were implemented on a PC so that 

the complex calculation of wavelet transform could be 

realized easily.  

However, the product of this implementation is not 

portable and the cost is considerable. In this study, a 

high-performance, low-cost, and floating-point DSP 

chip TMS320C6711 mounted on the TMS320C6711 

DSK board is utilized as the core of the hardware 

implementation. It features eight 32-bit instructions 

per cycle, 150 MHz clock rates, and 900 MFLOPS, 

and is very suitable for realization of the instrument.  

 

5.1. Hardware structure 

The power voltage signal prior to the 

analog-to-digital conversion (ADC) must be lowered 

to an acceptable level for ADC by a potential 

transform (PT), and the current is also converted to an 

appropriate voltage signal by a current transform (CT). 

In order to produce the controllable power 

disturbances, an arbitrary function generator is utilized 

in this study to directly generate the power 

disturbances, such as voltage sag, swell, and interrupt. 

A number of real power disturbance waveforms 

captured from a power plant are coded on a PC and 

then sent to the arbitrary function generator through a 

GPIB interface to output the simulated power quality 

events. The experimental setup is shown in figure 3. 

 

 

                                (19) 

 

 

 

 

                           

                          (20) 

 

 

5.2. Software structure  

The algorithm presented as a flow chart for the 

power disturbance analysis using DWT is shown in 

figure 4. The power signal is first converted to a 

digital format and then put through the power quality 

event detection. The detection is conducted by 

comparing the sampled signal v(k) with a perfect 

sinusoidal waveform d(k) point by point. If the 

difference between both exceeds a threshold value eT, 

the system starts the analysis of DWT on this captured 

power quality event. 

Since this system is implemented on a DSP board 

and the memory space is limited, the DWT analysis is 

launched only at the occurrence of power disturbances. 

Such implementation could reduce the total required 

computation and realize real-time analysis. The  

purpose of DWT initialization is to configure the 

levels to be decomposed and the order of Daubechies 

wavelet. The DWT would decompose the power 

disturbance signal based on these configurations. The 

whole algorithm shown in figure 4 is coded in C 

language associating some assembly-language  

subroutines. 
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Fig. 4 The flow chart of the software 

structure 
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6. Experimental Results 

6.1. Determination of Occurrence Time for 

Power Disturbances 

Wavelet transform provides an excellent time 

localization feature when a transient or high-frequency 

disturbance occurs in a normal signal. In order to 

calculate the occurrence time of disturbance, the 

system searches for the impulses in the decomposed 

level cD1, cD2, and cD3, in which the impulses 

location means the point that the disturbance appears. 

The DSP stores the clock time every 1024 sample 

points, denoted as Tn. If the disturbance occurs in the 

kth point at the level of cDi (i=1,2,3…), then the 

occurrence time can be calculated by 

8000

12)1( +−
+=

i

nd

k
TT      (21) 

where 8000 is the sampling rate (Hz). For example, 

figure 5 illustrates a power interrupt signal and its 

DWT results in the cD1 level. The impulse in the cD1 

level appears at the 369th point, and Tn is stored as 

9.088 seconds which is counted from the time at 

which the system turned on. Therefore, the occurrence 

time is determined as 9.088+ ((369-1)×21+1)/8000 = 

9.180 seconds. 

 

6 .2 .  Decompo sit io n Resu lt s o f  Power  

Disturbances 

A number of power disturbances have been 

analyzed by the DWT implemented in the DSP board, 

such as perfect sine waveform, power sag, swell, 

interrupt, and oscillation transient. All of these 

experimental results show that the proposed DWT 

implementation is able to decompose these 

disturbance waveforms into several frequency bands. 

The disturbance occurrence time can be immediately 

localized in the corresponding bands. 

One of the tested waveforms is presented here for 

demonstration. It is a power sag, whose 

decomposition result is displayed in figure 6. In this 

figure, subplot (a) is the original waveform of the 

power sag, (b) is the cD1 which is the coefficients of 

the detail version in level 1 covering [2000-4000] Hz, 

(c) is the cD2 covering [1000-2000] Hz, (d) is the cD3 

covering [500-1000] Hz, and (e) is the cA3 which is 

the coefficients of the approximation version in level 3, 

covering [0-500] Hz. The disturbances in this power 

sag waveform are pointed out by large-magnitude 

impulses in each band. The highest frequency band 

cD1 shows the most precise time-localization ability 

among these four bands due to the best frequency 

resolution of this band. 

Fig. 3. The hardware structure of experimental 
setup 

Parallel port 
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7. Discussions 

7.1. Frequency Response of Filers 

An ideal filter, with the low-pass filter for example, 

completely eliminates all frequencies above the 

cut-off frequency (half-power point) while passing 

those below unchanged. The frequency response curve 

of the ideal filter displays a vertical sharpness at the 

cut-off frequency. An ideal low-pass filter can be 

realized theoretically by multiplying a signal by the 

rectangular function in the frequency domain or, 

equivalently, by convolution with a sinc function in 

the time domain. However, it is not realizable for a 

practical and finite-length signal because the sinc 

function extends to infinity, termed the infinite 

impulse response (IIR) filter. In addition, the 

realization of an ideal filter, with infinite-length 

coefficients, would require much more computation 

than a practical filter. In contrast, the DWT employs 

the finite impulse response (FIR) and orthogonal filter 

to avoid redundant computation, although at the cost 

of filter leakage. 

 For Daubechies wavelets, the scaling functions and 

wavelets along with their magnitude spectrum 

obtained from the Fourier transform are shown in 

figure 7.  

Figure 7(a) shows that both high-pass and low-pass 

filters of the first-level decomposition have a cut-off 

frequency of 2000 Hz at which the magnitude is 0.707 

p.u. (i.e. 2/1 ). Therefore, the frequency band of [0, 

4000] Hz is split into [0, 2000] and [2000, 4000] Hz. 

The filtered and decimated signal in the band of [0, 

2000] Hz is then decomposed again and separated into 

[0, 1000] and [1000, 2000] Hz by the filters that have 

the frequency response shown in figure 7(b). Similarly, 

the band of [0, 1000] Hz is further divided into [0, 500] 

and [500, 1000] Hz in the third-level of decomposition. 

In figure 7(b), the frequency response curves on the 

right side exhibit the 3-dB bandwidth of 1000 Hz. The 

3-dB bandwidth is defined as the difference between 

the two frequencies on either side of the peak at which 

the squared magnitude of the frequency response is 

exactly half its peak value. This 3-dB bandwidth is 

centered at 1500 Hz and covers the band from 1000 to 

2000 Hz. This provides a Q-factor, determined by the 

ratio of the center frequency to the 3-dB bandwidth, of 

roughly 0.67 for this band pass filter. The Q-factor 

maintains consistency with respect to the wavelet and 

scaling function dilation because  

)()]/([ awaatF Ψ=ψ      (22) 

)()]/([ awaatF Φ=φ      (23) 

where F[ ] represents Fourier transform and 

Ψ( )/Φ( ) denote the Fourier transform of ψ( )/φ( ) 

respectively. The center frequency of F[ψ(t/a)] for any 

(a) 

p.u.. 

(b) 

Fig. 5. (a) The interrupt signal and (b) its first level of 

decomposition result cD1 

Time (s) 

Fig. 6. The power sag waveform and its 

decomposition results 

p.u. 

Signal 

cD2 

cD1 

cD3 

cA3 

Time (s) 

(a) 

(b) 

(c) 

(d) 

(e) 
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a is at 1/|a| times the center frequency of the mother 

wavelet, and its 3-dB bandwidth is also 1/|a| times the 

3-dB bandwidth of the mother wavelet. Consequently, 

the ratio of the center frequency to the 3-dB 

bandwidth yields the same value for the Q- factor as 

before [19]. Thus, the filtering process for each level 

of decomposition actually applies a set of 

constant-Q-factor band pass filters, which is also the 

natural characteristic in dilating the wavelet or scaling 

function for wavelet transformation. 

 

7.2. Filter Leakage 

One issue raised by the FIR filter is filter leakage. 

When a signal falls within a filter, it will also appear at 

a reduced level in the adjacent filters. This would 

cause the energy of a signal in a certain filter band to 

leak into another band, consequently causing possible 

fault diagnosis of energy distribution. To illustrate the 

filter leakage, a harmonic distorted signal consisting 

of the fundamental 60 Hz and its 3rd, 5th, and 7th 

harmonic components, those all falling inside the band 

of [0, 500] Hz, is generated and decomposed by using 

Daub2 (filter length: 4) and Daub8 wavelets (filter 

length: 16) separately. The decomposition results are 

shown in figures 8 and 9 respectively. Because these 

harmonics belong to the band of [0, 500] Hz (cA3 

band), the rest of the bands ideally should not display 

any energy relating to these harmonics. However, it is 

seen that a certain amount of harmonics energy leaks 

to higher-frequency bands cD3 and cD2, even the 

highest one cD1 shown in figure 8. Since a 

longer-length filter would cause less energy leakage. 

The decomposition result by utilizing Daub8 wavelet, 

with a longer filter length than Daub2, has the leakage 

appearing in the band of cD3 only and none in cD2 

and cD1, as shown in figure 9. The easiest way to 

reduce filter leakage is to compute with a 

longer-length filter, yet at the expense of taking larger 

time sequences for the process.  

 

 

7.3. Calculation Time of the DWT 

As to the hardware implementation aspect, the time 

consumption of the DWT is an important issue. Less 

time consumption would increase the possibility of 

realizing real-time analysis. The DWT is basically a 

convolution of the signal and filter coefficients. The 

convolution in discrete format can be done 

mathematically by an inner-product that can be 

implemented easily by the instruction of 

Multiplication-Accumulation (MAC) in most of the 

DSP chips. The MAC instruction can complete one 

multiplication and addition in one clock cycle. In the 

experiment, the Daubechies wavelet is applied to 

analyze the signal. The order of Daubechies wavelet is 

denoted by m. A L-level decomposition on a N-point 

signal would cost a period of time:  

MACLDWT TmNT ⋅−⋅⋅⋅= − )
2

1
2(2

1
   (24) 

where TMAC signifies the time consumed by one 

MAC instruction. This equation indicates that the time 

consumption for a DWT is proportional to the signal 
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Fig. 7. Daubechies wavelets and their scaling functions along 
with Fourier Transform results. 
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Fig. 8. DWT analysis of the harmonic waveform  
by using Daub2 wavelet. 
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Fig. 9. DWT analysis of the harmonic waveform 

by using Daub8 wavelet. 

length and the order of Daubechies wavelets. In order 

to maintain both limited filter leakage and less 

calculation time, the DSP implementation, therefore, 

in this study takes Daub4 for the wavelet transform. 

 

 

 

 

8. Conclusions 

In this paper, a new DWT based power disturbance 

analysis scheme has been described. The algorithm is 

implemented with a Texas Instruments (TI) 32-bit 

TMS320C6711 DSP along with TLC320AD535 16-bit 

analog to digital converter. The investigation reveals 

that the proposed method can successfully be 

employed for real-time analysis of power disturbances, 

such as the frequency-time decomposition, detection 

of disturbances, and transient localization. 

The developed scheme is highly reliable and 

flexible to suit the requirements of various power 

disturbances. Unlike a PC-based implementation, this 

DSP-based prototype has a simple structure and small 

dimensions. It has the potential to be the basis for 

hand-held devices of power disturbance analyzers. 
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