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Abstract: - A proportional-integral (PI) controller and a sliding mode controller (SMC) are used to control a 
fourth-order Boost-Boost (BB) converter in continuous conduction mode with two input switches and two 
output voltages. Based on the equivalent control method, a closed-loop system is developed. The resultant PI 
gains have a nonlinear relationship with each other. The appropriate PI gains are obtained through the least 
squares method. The converter under the controller is stable and robust. The converter has voltage tracking 
accuracies within ±0.1 V for the first load and ±0.02 V for the second load. The maximum switching frequency 
is not greater than 100 KHz.    
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1 Introduction 
 
     The boost converter is a typical power 
component capable of amplifying the input voltage 
[1]. Two boost converters connected in tandem form 
a multi-variable DC-to-DC BB power converter [2].  
Its two control switches are independently 
controlled. The application of a BB converter can be 
found in the situation in which one has to control the 
two loads independently under a single converter 
device. BB converters are able to step up a DC 
power supply through two loads. Based on the 
Generalized Proportional Integral (GPI) approach, a 
sliding mode feedback controller is developed for 
the regulation task [3]. A fully integrated single-
inductor dual-output BB DC-DC converter with 
power-distributive control is designed [4]. This 
converter has better noise immunity, uses fewer 
power switches/external compensation components 
to reduce cost, and is thus suitable for system on 
chip applications. A controller for a quadratic boost 
converter with a single active switch is developed 

[5]. The average current-mode control methodology 
for an n-stage cascade boost converter is studied [6]. 
       The great efforts have been made to improve 
dynamic response, transients and voltage ripples for 
DC-DC converters. It is claimed that boundary 
control can improve fast dynamic response [7]. The 
transients caused by the discontinuity in transition 
between buck and boost modes can be reduced by 
compensating the discontinuity and nonlinearity [8]. 
The energy transfer modes and output voltage ripple 
of a boost converter are analyzed within the given 
range of the input voltage and load with the 
emphasis of compact boost converters and 
intrinsically safe switching power supplies [9].    
      Various control methods have been developed 
for boost converters. The small signal based 
pulsewidth modulation (PWM) controllers are often 
used to regulate operating points locally [10-13]. 
Nonlinear controls for DC-DC converters have 
gained attention [2, 7, 14, 15].  They include but are 
not limited to flatness, passivity based control, 
dynamic feedback control by input-output 
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linearization, exact tracking, error passivity 
feedback, boundary control, and hybrid and optimal 
controls. Hysteresis control has been used for 
converters or inverters. A hysteretic current-mode 
control is applied to a buck converter with low 
voltage microprocessor loads [16].  A self-adjusting 
analog prediction of the hysteresis band is added to 
the phase-locked-loop control to ensure constant 
switching frequency of three-phase voltage-source 
inverters [17]. Hysteresis and delta modulation 
control is implemented for a buck converter by 
using sensorless current mode [18].  
      As a popular control method for converters and 
inverters, SMC has several merits, namely, large 
signal stability, robustness, good dynamic response, 
system order reduction and simple implementation 
[19]. SMC can be naturally implemented in 
converter control, since two discrete switching 
values can directly act as gating signals to 
semiconductor switching devices in power circuits 
[20]. The SMC generates more consistent transient 
responses for a wide operating range as compared 
with the conventional linear controls [21]. Open 
loop SMC is applied to various DC-DC converters. 
The indirect control of the current on a switching 
manifold is used for output voltage regulation. Open 
loop SMC lacks robustness against system 
uncertainties and disturbances [2, 22]. A PWM-
Based sliding mode voltage controller is designed 
for basic DC-DC converters in continuous 
conduction mode [23]. Sliding mode controllers 
with dynamic sliding manifolds allow direct control 
of the voltages of buck, boost and buck-boost 
converters [24, 25]. SMC is applied to a buck 
converter with an assumption of the zero value of 
the average capacitor current [26]. A SMC analog 
integrated circuit for switching DC-DC converters is 
developed [27]. A small-signal model of boost 
converters with sliding mode control allows 
evaluation of closed-loop performances like audio-

susceptibility, output and input impedances and 
reference to output transfer function [19].  
     PID control has been widely applied to industrial 
converters or inverters. Providing reliable PID 
tuning principles and finding appropriate PID gains 
are welcome by engineers and corporations [28]. 
The semi-global asymptotic stabilizing properties of 
classic PI control in the indirect regulation of 
average models of DC-DC converters are 
established [29]. A PID auxiliary dynamics is 
designed for a buck converter under SMC [30]. 
Generalized PI controllers are applied to buck, boost 
and buck-boost converters based on integral 
reconstructors of the unmeasured observable state 
variables [31]. A double-integral term of the 
controlled variables are added to alleviate the 
regulation in error of the DC-DC converter [32]. 
The phase portrait and the frequency design method 
are applied to a boost converter under the control of 
PI and SMC, the detailed analyses are provided for 
transient dynamics and non-minimum phase 
phenomena, and it is concluded that the non-
minimum phase behavior always appears for a boost 
converter under such a controller [33].     

      This paper shows that PI and SMC control is 
applicable to a BB converter with two input 
switches and two output voltages. Through solving a 
highly nonlinear PI gain equation after the pole-
placement, the approximate PI gains can be 
obtained. This paper is organized as follows. The 
BB converter model is developed in Section 2. The 
controller is designed and the closed-loop system is 
analyzed in Section 3. Simulation and results are 
reported in Section 4. Conclusion is in Section 5. 
References follow.   
 

2 Boost-boost Converter Model  
 

A BB converter that consists of two boost 
converters connected in tandem is shown in Fig. 1. 
It consists of an input voltage source E, two  

  
Fig. 1.  Boost-Boost converter. 
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MOSFET switches M1 and M2, two anti-parallel 
diodes d1 and d2, two freewheeling diodes D1 and 
D2, two capacitors C1 and C2, two inductors L1 and 
L2, two load resistors R1 and RL. Let v1 and v2 be the 
voltages across C1  and C2, respectively. Let i1 and i2 
be the currents through L1 and L2, respectively. u1 
and u1 are sliding mode control signals applied at the 
gates of M1 and M2. M1 and M2 are independently 
controlled. As shown in [2], the ordinary differential 
equations for the BB converter are 
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where ' means the first derivative. Eqs. 1, 2, 3 and 4 
represent a typical variable structure system with the 
discontinuous right hand side. A bilinear relation 
exists between the control and the state variables. 
 

3 Controller Design 
 
3.1 Equilibrium points 
 
      The equilibrium points of the BB converter 
corresponding to constant values of the average 

control inputs are obtained by letting the right hand 
side of Eqs. 1, 2, 3  and 4 be zero while the control 
variables are set to be u1=U1 and u2=U2 where U1 
and U2 are constants [2]. Let i1d, v1d, i2d, and v2d be 
the equilibrium points of i1, v1, i2, and v2, 
respectively. Eqs. 1, 2, 3 and 4 become  
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Solving Eqs. (5), (6), (7) and (8) for i1d, U1d, i2d, and 
U2d in terms of the known v1d and v2d renders 
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Eq. 9 provides i1d, i2d, U1 and U2 as the functions of 
v1d and v2d in the steady state.  
 
3.2 Closed-loop control  
 
      The control goal is to track two constant 
voltages vd1 and vd2. The control structure for the 
converter is shown in Fig. 2 where i10 and i20 are the 
feedback reference currents, v1d and v2d are the 
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Fig. 2.  PI and sliding mode control for Boost-Boost converter. 
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reference voltages, E, v1, v2, i1, i2, u1, and u2 are 
defined previously, e1=v1d-v1 and e2=v2d-v2 are the 
voltage errors, and i1 and i2 are the positive feedback 
signals due to the structure of the sliding mode 
controllers as shown in Eqs. 16 and 17. The sensed 
information is needed for i1, i2, v1 and v2. 
 
3.2.1 Voltage loop  
 
        A PI voltage controller can eliminate the 
voltage error caused by disturbance or uncertainty. 
The feedback reference currents generated by the 
BB converter are 

                   
t
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t

ip dteKeKi
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where Kp1 and Ki1 are the proportional and integral 
gains for the first boost converter, respectively, and 
Kp2 and Ki2 are the proportional and integral gains 
for the second boost converter, respectively. 
Differentiating Eqs. 10 and 11 renders 
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The overall reference currents for the current loops 
of the BB converter are 
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3.2.2 Current loop 
 
          The switching manifolds for the sliding mode 
current controls are designed as 

           riis 111                                            (18) 

           riis 222                                           (19) 
The control signals are  

       
000

1))(1(5.0

11

11




 if s or if s

 ssignu
                             (20) 

      
000

1))(1(5.0

22

22




 if s or if s

 ssignu
.                            (21) 

The existence condition of sliding mode can be derived 
with a candidate Lyapunov function [22]. Let this 
function be 
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Differentiating Eq. 19 yields 
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With Eq. 22, the derivative of P  is  
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A sufficient condition for 0'P  is   
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Solving the inequalities (26) and (27) leads to 
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In the steady state, '
10i  and '

20i  are equal to 0 due to 

constant 10i  and 20i . The inequalities (28) and (29) 

degrade to be 

                 10 vE                                                  (30) 

                 210 vv                                                  (31) 

The above derivation shows 'P  < 0 if E < 1v  

and 1v  < 2v . The inequalities (30) and (31) are 
satisfied by selecting E<vd1<vd2. Because the 
controls in Eqs. 20 and 21 contain no control 
gains to be adjusted, the domain of attraction 
(the inequalities (30) and (31)) are 
predetermined by the system architecture 
E<vd1<vd2. The derivation of Eq. 25 implicitly 
validates Eqs. 20 and 21 since it results in a 
stable system.    
 
3.2.3 Closed-loop analysis 
 
        One can use the equivalent control method to 
analyze a discontinuous system [22]. Once the 
system is in sliding mode, s=0 and s'=0 are true. The 
continuous equivalent controls u1e and u2e replace 
the discontinuous controls u1 and u2 in s'=0.  s'=0 is 
solved for u1e and u2e. After sliding mode occurs, 
one has i1= i10 and i2= i20.   The derivatives of s are                       
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Solving Eq. 32 for u1e renders 
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Multiplying both sides of Eq. 41 by 2
2v  renders 

                  

WSEAS TRANSACTIONS on POWER SYSTEMS Zengshi Chen, Weiwei Yong, Wenzhong Gao

E-ISSN: 2224-350X 91 Volume 9, 2014



 

}.)]([[

)](){[(

)]([)[(

)]([

*))]}(({

'
2222

'
22212

2
'
22

''
222

'
1

'
2

2'
22

222
'
2221

'
2''

222

222
'
22

2
222

'
2221

vvvKvKLvv

vvKvKLvv
R

v
vC

vvKvKLv
R

v
vCv

vvKvK

vvKvKLv

dip

ip
L

dip
L

dip

dip











                                  

(42) 
Eq. 42 is a highly nonlinear equation in terms of 1v , 

2v  and their derivatives of different orders. 

Linearizing Eq. 42 with respect to 1v , 2v  and their 
derivatives of different orders around their 
equilibrium points and carrying on a controller 
design are a practical approach. Let v1δ and v2δ be 
the perturbations of v1 and v2. One has 
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Differentiating Eq. 44 renders 
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Rearranging Eq. 45 renders 
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Plugging eu1 , eu2 , '
1eu , '

2eu , '
10i , ''

10i , '
20i  and ''
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into Eq. 46 and expanding it render  
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(47) 
Eq. 47 is a highly nonlinear equation in terms of 1v , 

2v  and their derivatives of different orders. 

Linearizing Eq. 47 with respect to 1v , 2v  and their 
derivatives of different orders around their 
equilibrium points and carrying on a controller 
design are a practical approach. Let v1δ and v2δ be 
the perturbations of v1 and v2. One has 
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2
'''

2 vv  . 

Plugging them into Eq. 47, dropping any term with 

the power of 1v , 2v , '
1v , '

2v , ''
1v , ''

2v , '''
1v , and 

'''
2v  greater than 1, and dropping any product of 

some of them and any of these variables with a 
higher power render a linear ordinary differential 
equation as 
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. 
Differentiating Eq. 43 renders 
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23  vvPvPvP                          (49) 

Differentiating Eq. 49 renders 
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Differentiating Eq. 48 renders 
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Substituting Eqs. 43, 49 and 50 into Eq. 51 renders 
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The characteristic equation of Eq. 52 is 
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Assuming Eq. 53 has four equal and negative poles, 
one has the desired closed-loop system 
characteristic equation as 
    0))()()(( 0000  SSSSSSSS           (54) 

Expanding Eq. 54 renders 
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4  SSSSSSSS             (55) 

Making Eq. 53 and Eq. 55 equal to each other, one 
has                                

3333033223 4 PaaPaSbPaPa             (56) 

                           

3333
2
02312213 6 PbaPaSbPaPaPa     (57) 

3333
3
02112 4 PcaPaSPaPa                        (58) 

3333
4
011 PdaPaSPa                                     (59) 

With Eq. 59, one has 

        
d

Pa
Pa 11

33                                              (60) 

Plugging Eq. 60 into Eqs. 56, 57 and 58 renders 
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      1133223 Pa
d

a
bPaPa                          (61) 

      112312213 Pa
d

b
bPaPaPa               (62) 

      112112 Pa
d

c
PaPa                                   (63) 

Next, the nonlinear equations for 1pK , 2pK , 1iK , 

and 2iK  are obtained by solving Eqs. 59, 61, 62 and 

63. Rearranging Eq. 61 renders 
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where 2131322111 PaPaq  , 223112 Paq  , 

312213 Paq  , 111114 Pa
d

a
q  ,  

3221233115 PaPaq  ,  313123213216 bPaPaq  , 

223217 aPq  ,  223218 Paq  , and 

323223233219 bPaPaq  .   

Rearranging Eq. 62 renders                       
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where 212121 Paq  , 

2221113122 PaPaq  , 3111212223 PaPaq  , 

1111222224 Pa
d

b
Paq  ,  232125 Paq  ,  

212326 Paq  , 3211232227 PaPaq  ,  

212223113228 bPaPaq  , and 22232329 bPaq  .   

Rearranging Eq. 63 renders 
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where 112131 Paq  , 
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d

c
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231134 Paq  , and 112335 Paq  .  

Rearranging Eq. 59 renders 
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where 313141 Pdaq  , 111142 Paq  , 323143 Pdaq  , 

313234 Pdaq  , and 323245 Pdaq  .  

Grouping Eqs. 64, 65, 66 and 67 renders a matrix 

equation as 
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Eqs. 64, 65, 66 and 67 are nonlinear and there may 
exist a solution. To satisfy the control purpose, it is 
good enough to find the neighborhood of a solution 
in which any value for 1pK , 2pK , 1iK , and 2iK  

will render a robust power converter. One may use a 
numerical method to find the approximate 1pK , 

2pK , 1iK , and 2iK . For example, one may 

eliminate 2pK , 1iK , and 2iK  from Eqs. 64, 65, 66 

and 67, and obtain a highly nonlinear algebraic 
equation for 1pK . Then one numerically finds an 

approximate value for 1pK . The approximate values 

for 2pK , 1iK , and 2iK  are then obtained. However, 

in this paper, the least square method is used for 
obtaining approximate 1pK , 2pK , 1iK , and 2iK . 

With the least square method, the solution for Eq. 
68 is 

        BAAAK TT
pi

1)(                                     (69) 

The last four elements in the column array piK  act 

as approximate 1pK , 2pK , 1iK , and 2iK . Later on 

the simulation shows the validity of this method. If 
the two slow and dominant poles among the four 
poles of Eq. 52 are considered, the trajectories of a 
nonlinear system in a small neighborhood of an 
equilibrium point is expected to be close to the 
trajectories of its linearization about that point if the 
origin of the linearized state equation is a hyperbolic 
equilibrium point [34]. Approximate PI gains 
guarantee a hyperbolic equilibrium point. 
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Table 1:  Nominal Parameters 
parameter value parameter value 

E0 12 V Kp1 1.568x10-5 
R10 52 Ω Kp2 -9.081x10-5 
C10 48 µF Ki1 14.261 
L10 15.91 mH Ki2 0.797 
RL0 52 Ω vd1 15 V 
C20 107 µF vd2 24 V 
L20 40 mH f 100 KHz 

0S  -600   

 

4 Simulation and Results 
 
4.1 Pole placement 
 
      If the poles are closer to zero, the system will 
have advantages for passing low frequency signals 
and rejecting noises, but the system response is 
slower. Moreover, disturbances or uncertainties can 
easily bring the system to instability. As the poles 
are far from zero, the system response is faster and 
the system stability is better but the output may have 
magnified noises. One should compromise noise 
suppression, stability and response speed for pole 
selection. The pole situation of Eq. 53 for a stable 
BB converter can be: a) four real and negative poles; 
b) two real and negative poles and a pair of complex 
conjugated poles with negative and real parts; c) two 
pairs of complex conjugated poles with negative and 
real parts. Let the four poles be equal to each other 
and negative. For example, as a compromise, the 
desired pole 0S =-600 is used.  The nominal 

parameters are listed in Table 1. The four PI gains 
are listed in Table 1. The PI gains are not limited to 
these values. The acceptable values of PI gains 
should be around the neighbourhood of these PI 
values. One can refine these PI gains to achieve a 
desired system response. Substituting the PI values 
and other nominal parameters in Table 1 to Eq. 53 
renders   

   
0110817157785073064

7415381775 234




S

SSS
               (70) 

whose four poles are S01=-1227, S02=-370, S03=-164, 
and S04=-15. These are the actual poles for Eq. 53.  
 
4.2 Validation circuit  
     
 A BB converter with the proposed controller is 
constructed with Simulink as shown in Fig. 3. 
The converter is operated in the continuous 
mode. To show the capability of the controller, 

the feedforward input currents i1d and i2d are 
disabled. To implement the controller, the 
requirement for the system performances shall 
be evaluated, the appropriate BB converter 
parameters shall be selected, the appropriate PI 
gains shall be generated and Eqs. 10, 11, 18, 19, 
20 and 21 shall be coded.  
 
4.3 Results  
       
      Some circuit parameters are perturbed from their 
nominal values. The actual values of the inductors 
and capacitors used in the validation circuit in Fig. 3 
are L1=1.5L10=23.865 mH, L2=1.5L20=60 mH, 
C1=1.5C10=72 µF, and C2=1.5C20=160.5 µF. The 
system responses under the following conditions are 
reported: 1) the reference voltages are constant 
values as given in Table 1; 2) the reference voltages 
have multi-step changes; 3) the input voltage has a 
multi-step change; 4) the load resistance has a multi-
step change. The undershoot, overshoot, or non-
minimum phase of a transient of the output voltage 
is discussed. The fixed-step size of simulation is 10 
ìs. Since this paper deals with only simulation 
without A/D converters, 10 ìs is also the sampling 
period. Hence, the minimum sliding mode pulse 
width is 10 ìs or the maximum sliding mode 
switching frequency is 100 KHz. If the switching 
frequency is too low (e.g., less than 1 KHz), the 
proposed controller will fail to function. A system 
on a wide pulse is almost under open-loop control 
and diverges. As the switching frequency increases, 
the pulse width decreases, and the results are more 
desirable. The initial conditions of i1(0)= i2(0)=0 A 
and v1(0)= v2(0)=0 V are used for all the 
simulations.  
 
4.3.1 Reference voltages with Single step change 
 
      Eq. 53 has the four poles -431 ± 57i, -168 and -
16. As shown in the windows of the mid row of Fig. 
4, within 0.3 seconds, v1 converges to 15 V within ± 
0.1 V with an oscillation and v2 converges to 24 V 
within ±0.02 V with an oscillation. Nevertheless, the 
transient of v2 does not overshoot beyond its steady 
state value. v2 goes in the opposite direction before it 
reaches its steady state value. There is a detailed 
explanation for this kind of non-minimum phase 
phenomenon in Section 4.5 of [33]. The reference 
voltages are well tracked with high accuracy. The 
system responses are fast. The windows of the top 
row show the convergent currents i1 and i2. The 
windows of the bottom row show the sliding control 
signals u1 and u2.     
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4.3.2 Reference voltages with multi-step change 
     
        As shown in the windows of the mid row of Fig. 5, 
from the time point of 0 seconds to the time point of 0.5 
seconds, v1 and v2 converge to vd1=15 V and vd2=24 V, 
respectively; from the time point of 0.5 seconds to the 
time point of 1.0 seconds, v1 and v2 converge to vd1=20 V 
and vd2=30 V, respectively; from the time point of 1.0 
seconds to the time point of 1.5 seconds, v1 and v2 
converge to vd1=15 V and vd2=24 V, respectively. The 
transients in the first 0.5 seconds are similar to the ones in 
Section IV.C.1. Starting at the time points of 0.5 seconds 
and 1.0 seconds, v1 and v2 go in the opposite directions 
before they converge to the steady state values. These 
non minimum phase behaviors are explained in detail in 
[33].  The tracking error bands for v1 and v2 are within ± 
0.1 V and ±0.02 V, respectively. The reference voltages 
are well tracked accurately. The system response time 
after the first transient is about 0.15 seconds. The 
windows of the top row show the convergent currents i1 
and i2. The windows of the bottom row show the sliding 
control signals u1 and u2.   

    
4.3.3 Reference voltages with multi-step change 
 
       E is equal to 12 V in the first 0.5 seconds, 8 V 
in the second 0.5 seconds, and 12 V in the last 0.5 
seconds. As shown in the windows of the mid row, 
v1 and v2 converge to vd1=15 V and vd2=24 V after 
each transient, respectively. As shown in the 
windows of the mid row of Fig. 6, at the time point 
of 0.5 seconds, since E steps down from 12 V to 8 V, 
v1 and v2 have the undershoots (goes less than 15 V 
and 24 V, respectively, and converge to 15 V and 24 

V, respectively); At the time point of 1.0 seconds, 
since E steps up from 8 V to 12 V, v1 and v2 have 
the overshoots (goes greater than 15 V and 24 V, 
respectively, and converge to 15 V and 24 V, 
respectively). These transients cannot be explained 
by non-minimum or minimum phase. Instead, by 
perturbing E and v1 or v2 from their equilibrium 
points, one obtains the transfer function from E to v1 
or v2. One can predict these transients by simulating 
and analyzing these transfer functions. The details 
are referred to [33]. The tracking error bands for v1 
and v2 are within ± 0.1 V and ±0.02 V, respectively. 
The system response time after the first transient is 
about 0.15 seconds. The windows of the top row 
show the convergent currents i1 and i2. The windows 
of the bottom row show the sliding control signals 
u1 and u2. 
 
4.3.4 Step change of load resistance 
 
       R1 is equal to 52 Ω in the first 0.5 seconds, 42 
Ω in the second 0.5 seconds, and 52 Ω in the last 0.5 
seconds. RL is equal to 52 Ω in the first 0.5 seconds, 
62 Ω in the second 0.5 seconds, and 52 Ω in the last 
0.5 seconds. As shown in the windows of the mid 
row of Fig. 7, v1 and v2 converge to vd1=15 V and 
vd2=24 V after each transient, respectively. At the 
time point of 0.5 seconds, since R1 steps down from 
52 V to 42 V, v1 has the undershoot; since RL steps 
up from 52 V to 62 V, v2 has the overshoot. At the 
time point of 1.0 seconds, since R1 steps up from 42 
V to 52 V, v1 has the overshoot; since RL steps 

 

 
Fig. 3.  Simulation circuit for the Boost-Boost converter.  
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down from 62 V to 52 V, v2 has the undershoot.  
These transients are not non-minimum phase. 
Instead, by perturbing R1 and v1 or RL and v2 from 
their equilibrium points, one obtains the transfer 
function from R1 to v1 or RL to v2. One can predict 
these transients by simulating and analyzing these 
transfer functions. The details are referred to [33]. 
The tracking error bands for v1 and v2 are within ± 
0.1 V and ±0.02 V, respectively. The response time 
of v1 after the first transient is about 0.05 seconds. 
The response time of v2 after the first transient is 
about 0.25 seconds. The windows of the top row 
show the convergent currents i1 and i2. The windows 
of the bottom row show the sliding control signals 
u1 and u2. 

 
5 Conclusion 
 
      This paper studies an analytical solution to a 
Boost-Boost converter with multi-inputs and multi-
outputs under PI and sliding mode control. Via the 
equivalent control method, a fourth-order closed-

loop nonlinear ordinary differential equation is 
obtained and linearized. Through the pole 
placement, a highly nonlinear equation for PI gains 
is obtained. The least square method or a numerical 
method is used to solve this nonlinear PI gain 
equation for approximate PI gains. The transients of 
the load voltages caused by step changes of various 
circuit parameters are predictable. With a validation 
circuit and large variation of inductances and 
capacitances, the simulation results show the 
controller has high tracking accuracy, strong system 
robustness and fast transient responses. The future 
work includes a study for the solutions that can 
result in a critically damped closed-loop system 
with a minimum phase, detailed analysis of all the 
transients, and an analytical solution of PI gains.   
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Fig. 4. The response of the Boost-Boost converter under reference voltages of single step change.  
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Fig. 5. The response of the Boost-Boost converter under reference voltages of multi-step change.  
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Fig. 6. The response of the Boost-Boost converter under input voltage of multi-step change.  
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