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Abstract: - Time delays have become unavoidable in power systems since communication links are extensively 
used for sending and receiving control signals. This paper investigates the effect of time delays on the stability 
of a single-area load Frequency Control (LFC) system. A direct and exact method to compute delay margins is 
presented. The delay margin is the maximum amount of the time delay that the system can tolerate before it 
becomes unstable for a given operating point.The proposed method starts with the determination of all possible 
purely imaginary characteristic roots for any positive time delay. To achieve this, Rekasius substitution is first 
used to convert the transcendental characteristic equation of the LFC system into a polynomial. Then, Routh 
stability criterion is applied to determine the critical root, the corresponding oscillation frequency and the delay 
margin for stability. For a wide range of controller gains, delay margins of LFC system are determined to find 
out the qualitative effect of controller gains on the delay margin. Finally, theoretical delay margin results are 
verified by using the time-domain simulation capabilities of Matlab/Simulink. 
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1 Introduction 
With the extensive use of open communication 
infrastructure and phasor measurement units (PMU) 
in the wide-area measurement/monitoring systems 
(WAMS), time delays have become inevitable in 
electric power systems, and raise concerns about the 
system dynamic response [1, 2]. The total time 
delay consisting of measurement and 
communication delays in power systems has a 
destabilizing impact, reduces the effectiveness of 
control system damping and leads to unacceptable 
performance such as loss of synchronism and 
instability [3-6]. In this paper, we focus on the effect 
of time delays on the stability performance of a 
single-area LFC system. The main goal of the LFC 
system is to maintain a reasonably uniform 
frequency in an interconnected power system 
consisting of several pools [7]. 

Traditionally, dedicated communication links 
were used to sending and receiving control signals. 
For this reason, in stability analysis it was 
reasonable to neglect time delays associated with 
the communication network. However, 
communications delays significantly increase when 
an open and distributed communication network is 
used to send control signals [3, 4, 6, 26]. It was 
reported that communication delays in LFC systems 

can be in the range of 5-15 sec [6]. The size of 
communication delays mainly depends on the 
physical media of communication (such as fiber-
optic-cables, digital microwave links, power lines, 
telephone lines and satellite links [1]) as well as 
several other factors including the phasor package 
size, transmission protocol employed and 
communication network load (congested or idle). As 
a result, these delays may fluctuate randomly in a 
certain range. Therefore, it is essential to estimate 
the maximum amount of time delay known as the 
delay margin that the system could tolerate without 
becoming unstable. Such knowledge on the delay 
margin (upper bound in the time delay) will be 
helpful in the controller design for cases where 
uncertainty in the delay is unavoidable. 

There are mainly two types of theoretical 
methods to compute delay margins of time-delayed 
dynamical systems. The first group of methods is 
basically frequency domain approaches that aim to 
determine the critical eigenvalues or roots of the 
system. The common starting point of these direct 
methods is the determination of all the imaginary 
roots of the characteristic equation. The existing 
frequency domain procedures can be classified into 
the following five distinguishable approaches:  

WSEAS TRANSACTIONS on POWER SYSTEMS Şahin Sönmez, Saffet Ayasun, Ulaş Eminoğlu

E-ISSN: 2224-350X 67 Volume 9, 2014



i) Schur-Cohn (Hermite matrix formation) 
[8-10] 

ii) Elimination of transcendental terms in the 
characteristic equation [11] 

iii) Matrix pencil, Kronecker sum method [8-
10, 12] 

iv) Kronecker multiplication and elementary 
transformation [13] 

v) Rekasius substitution [14-16]. 

These methods demand numerical procedures of 
different complexity and they may result in different 
precisions in computing imaginary roots. A detailed 
comparison of these methods, demonstrating their 
strengths and weakness can be found in [17]. 
Among these methods, the method reported in [9] is 
the only method that has been effectively used to 
estimate the delay margin for automatic generation 
control systems with commensurate time delays [6]. 
The exact method based on Rekasius substitution 
presented in [15] has been applied only into small-
signal stability analysis of power system to compute 
delay margins [18]. Finally, the method presented in 
[11] has been successfully applied to stability 
analysis of time-delayed generator excitation control 
system [19-21]. 

The second group of methods includes indirect 
time-domain methods based onLyapunov stability 
theory and linear matrix inequalities (LMIs) 
techniques [22]–[24] and has been applied to 
calculate the delay margin of the wide-area damping 
controller [25] and LFC system [26]. Even though 
indirect methods can deal with both constant and 
time-varying delays, they give conservative delay 
margin results. On the other hand, the frequency 
domain methods could give accurate delay margin 
results [19, 20]. 

This paper utilizes a frequency-domain approach 
based on Rekasius substitutionreported in [14-17] to 
compute the delay margins of LFC system. The 
proposed method first uses Rekasius substitution 
[14] to convert the transcendental characteristic 
equation of the LFC system into an algebraic 
polynomial, which is then analyzed relatively easily 
for cases with purely imaginary roots. This 
procedure does not use any approximation or 
transformation to eliminate the transcendentality of 
the characteristic equation. Therefore, it is exact and 
the purely imaginary roots of the new algebraic 
polynomial coincide with the purely imaginary roots 
of the transcendental characteristic equation exactly. 
As a result, this method reduces the stability 
problem effectively to one free of delay, which in 
turns requires calculating only imaginary roots of a 

single-variable polynomial. For this reason, Routh 
stability criterion is then used to determine the 
critical root, the corresponding oscillation frequency 
and the delay margin for stability. 

Time delay margins are computed for a wide 
range of proportional and integral (PI) controller 
gains. The accuracy of theoretical delay margins is 
validated by using Matlab/Simulink to demonstrate 
the effectiveness of the proposed method. Finally, 
delay margins results are compared with those 
obtained by an indirect method based on Lyapunov 
stability theory [26]. It is observed that the proposed 
method gives more accurate delay margin results for 
LFC system. 
 
2 Time-Delayed LFC System 
The block diagram of a single-area LFC system is 
shown in Fig. 1. The conventional LFC model is 
modified to take into account the communication 
time delay into the control loop [4], [7], [26]. All 
generators are assumed to be equipped with a non-
reheat turbine. The PI controller, which is the load 
frequency controllers used currently in industry, is 
included in the model. 

The state space equation model of LFC system 
could be represented as follows [4, 7]: 

( ) ( ) ( )
( ) ( )

dx t Ax t Bu t F P
y t Cx t

= + + ∆

=
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Fig. 1 Block diagram of a single-area LFC system with a communication delay 

 
where, , , ,m v df P P P∆ ∆ ∆ ∆  represent the deviation of 
frequency, the generator mechanical output, valve 
position, and load, respectively. ACE and ACE∫  
denote the area control error and its integral. Finally, 
M, D, Tg, Tch and R are the moment of inertia of the 
generator, generator damping coefficient, time 
constant of the governor, time constant of the 
turbine, and speed drop, respectively. 

Since there is no net tie-line power exchange in 
the single-area LFC system, the area control error 
(ACE) is defined as 

ACE fβ= ∆      (2) 

where β  represents frequency bias factor. In order 
to simplify the stability analysis, all the time delays 
including the communication delays for 
transmission of control signal between the control 
center and power plant, and the delay for 
transmission of ACE are lumped together and 
represented by an exponential block se τ−  in Fig. 1 
[4, 26].  In this case, the input of PI controller is the 
ACE signal and PI controller output is 

( )

( ) ( )

u t K ACE K ACEP I
Ky t KCx tτ τ

= − − ∫

= − − = − −
   (3) 

where [ ]   P IK K K= , KP and KI denote proportional 
and integral controller gains, respectively. 

Substituting the input signal given in (3) into (1) 
results in the following closed-loop model of the 
LFC system: 

( ) ( ) ( )
( ) ( )

d dx t Ax t A x t F P
y t Cx t

τ= + − + ∆
=



  (4) 

where  
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For stability analysis, it is necessary to obtain the 
characteristic equation of  time-delayed LFC 
system. This could be easily achieved by using the 
following: 

( , ) det

           ( ) ( ) 0

s
d

s

s sI A A e

P s Q s e

τ

τ

τ
−

 ∆ = − − 
= + =

   (5) 

where, τ is the total time delay, ( )P s  and ( )Q s  are 
polynomials in s with real coefficients given below: 

4 3 2
4 3 2 1

1 0

( )
( )

P s p s p s p s p s
Q s q s q

= + + +

= +
  (6) 
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= + = =

  (7) 

The location of the roots of the characteristic 
equation of (5) must be determined to analyze the 
stability of LFC system with a time delay. In the 
following section, first, the stability problem is 
described and the stability analysis of the single-
area LFC system using Rekasius substitution is 
presented. 
 
3 Stability Analysis 
3.1 Delay-Dependent Stability and Delay 
Margin 
For stability analysis of the LFC system, it is 
essential to determine conditions on the delay such 
that the LFC system will be stable. The stability is 
characterized by roots of the characteristic equation 

WSEAS TRANSACTIONS on POWER SYSTEMS Şahin Sönmez, Saffet Ayasun, Ulaş Eminoğlu

E-ISSN: 2224-350X 69 Volume 9, 2014



defined by (5). Please note that there exists an 
exponential term se τ−  in the characteristic equation, 
which makes the stability analysis complicated. The 
characteristic equation may have infinitely many 
roots because of the exponential term and thus, the 
computation of these roots becomes a difficult task. 
However, for stability analysis of the LFC system, 
there is no need to determine all roots. It is 
sufficient to evaluate the variation of roots of the 
system characteristic equation with respect to the 
time delay. As with the delay-free system (i.e., 

0τ = ), the stability of the LFC system depends on 
the locations of the roots of system’s characteristic 
equation defined by (5). It is obvious that these roots 
are a function of the time delay τ . As τ  changes, 
location of some of the roots may change. For LFC 
system to be asymptotically stable, all the roots of 
the characteristic equation of (5) must lie in the left 
half of the complex plane. In other words 

( , ) 0,      s s Cτ +∆ ≠ ∀ ∈     (8) 

where C+  represents the right half plane of the 
complex plane. 

Depending on system parameters, there are two 
different possible types of asymptotic stability 
situations due to the time delayτ [8]: 

i) Delay-independentstability: The 
characteristic equation of (5) is said to be 
delay-independent stable if the stability 
condition of (8) holds for all positive and 
finite values of the delay, [0, )τ ∈ ∞ . 

ii) Delay-dependent stability: The 
characteristic equation of (5) is said to be 
delay-dependentstable if the condition of (8) 
holds for some values of delays belonging 
in the delay interval, [0, )τ τ ∗∈  and is 

violated for other values of delayτ τ ∗≥ . 

σ

0τ =

0τ =

ωj
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*τ

cjω
1τ 2τ

1 *τ τ τ= −∆
2 *τ τ τ= +∆

1 2*τ τ τ< <

cjω−

 
Fig. 2 Illustration of movement of characteristic 
equation roots with respect to the time delay 

In the delay-dependent case, the roots of the 
characteristic equation move as the time delay τ  
increases starting from 0τ = . Figure 2 illustrates the 
movement of the roots. Note that the delay–free 
system ( 0τ = ) is assumed to be stable. This is a 
realistic assumption since for the practical values of 
system parameters the LFC system is stable when 
the total delay is neglected. Observe that as the time 
delay τ  is increased, a pair of complex roots moves 
in the left half of the complex plane. For a finite 
value of 0τ > , they cross the imaginary axis and 
pass to the right half plane. The time delay value τ ∗  
at which the characteristic equation has purely 
imaginary roots is the upper bound on the delay size 
and is defined as the delay margin.  The system will 
be stable for any given delay less or equal to this 
margin, τ τ ∗≤ .  

The following section presents the proposed 
method based on Rekasius substitutionthat allows us 
to evaluate the delay dependency of stability and 
enables us to compute delay margins for the delay-
dependent case. 

3.2 Computation of Delay Margin using 
Rekasius Substitution Method 
A necessary and sufficient condition for the system 
to be asymptotically stable is that all the roots of the 
characteristic equation of the LFC system given in 
(5), lie in the left half of the complex plane. In the 
single delay case, the problem is to find values of 
τ ∗  for which the characteristic equation of (5) has 
roots (if any) on the imaginary axis of the s-plane. 
Clearly, ( ) 0s,τ∆ =  is an implicit function of s and 
τ  which may, or may not, cross the imaginary axis. 

Assume for simplicity that ( 0) 0s,∆ =  has all its 
roots in the left half plane. That is, the delay-free 
system is stable. Observe that the characteristic 
equation of (5) has an exponential transcendentality 
feature because of the term se τ− . This results in 
infinitely many finite roots, which makes the 
determination of the roots and delay margin a 
difficult task. However, this problem could be easily 
overcome by using an exact substitution for the 
transcendental term suggested by Rekasius [14]. 
This substitution is given as; 

1    ,   
1

s Tse T
Ts

τ τ− +−
= ∈ℜ ∈ℜ

+
    (9) 

and is defined only for s=jωc. It should be pointed 
out that the equation (9) is an exact substitution, not 
an approximation, when the characteristic equation 
of (5) has roots on the imaginary axis. Further, (9) 
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gives the following mapping condition relating ωc 
and T [14, 16]: 

* 12 ( )    0,1,2,...c
c

Tan Tτ ω π
ω

− = ± =  
 (10) 

This equation describes an asymmetric mapping in 
which one T  is mapped into infinitely manyτ ∗ ’s for 
a given ωc. Inversely, for the same ωc, one particular 
τ ∗  corresponds to one T  only. The substitution of 
(9) into (5) results in an augmented characteristic 
equation as; 

5 4 3 2
5 4 3 2 1 0( , )s T a s a s a s a s a s a∆ = + + + + + (11) 

where  

5 4 4 4 3

3 3 2 2 2 1 1

1 1 1 0 0 0

,  ,  
,  ( ),  

,   

a Tp a p Tp
a p Tp a p T p q
a p q q T a q

= = +

= + = + −

= + − =

(12) 

This method reduces the stability problem 
effectively to one free of delay, which in turns 
requires calculating only roots of a single-variable 
polynomial. It is obvious from (11) that after 
Rekasius substitution the system characteristic 
equation of (5) has become an ordinary polynomial 
whose coefficients are parameterized in T only. 
Note that T ∈ℜ , thus it can also be negative. It must 
be noted that the 4th order characteristic equation 
with delay given in (5) is now converted into a 5th 
order polynomial given in (11) without 
transcendentality. It is clear that these two equations 

( , )s τ∆  and ( , )s T∆  possess exactly the same 
imaginary roots and there is no correspondence 
between the remaining roots. Since these two 
equations have a perfect coincidence with respect to 
the imaginary roots, we prefer solving the simpler 
{ }( , )  for ( , ) 0k ckT s Tω ∆ = instead of solving

{ }*( , )  for  ( , ) 0k ck sτ ω τ∆ =


. The question is to 

determine all T ∈ℜ  values, which causes imaginary 
roots of cs jω=  of the augmented characteristic 
equation ( , ) 0s T∆ = . For this purpose, Routh-
Hurwitz criterion could be utilized. To determine 
the values of substitution parameter T , we need to 
form the Routh array based on (11) and set the only 
term 11( )R T in the 1s  row to zero [15, 16, 27]. The 
Routh’s array is obtained as; 

5
5 3 1

4
4 2 0

3
31 32

2
21 22

1
11

0
22

            

            

   0

       0

      0     0

s       0     0

s a a a
s a a a
s  R    R    
s R    R
s R    

R    

    (13) 

where  

22 0

31 2 3 4
21

31

 

,

4 3 5 2 4 1 5 0
31 32

4 4

21 32 31 22
11

21

a a a a a a a aR , R , R a
a a

R a a a R R R RR R
R R

− −
= = =

− −
= =

(14) 

By setting the term 11( )R T  in the 1s  row to zero we 
obtain the following 7th order polynomial of T  as; 

7 6
7 6 1 0... 0t T t T t T t+ + + + =   (15) 

The roots of this polynomial may easily be 
determined by standard methods. Depending on the 
roots of (15), the following situation may occur: 

i) The polynomial of (15) does not have any 
real roots, which implies that the 
characteristic equation of (5) does not have 
any roots on the jω -axis. In that case, the 
system is stable for all 0τ ≥ , indicating that 
the system is delay-independent stable. 

ii) The polynomial of (15) has at least one 
positive or negative real root, which implies 
that the characteristic equation of (5) has at 
least a pair of complex roots on the jω -axis. 
In that case, the system is delay-dependent 
stable.  

The polynomial given by (15) may have at most 
seven real roots, { }1 2 7, ,....,cT T T T= . Once this set 
of real roots is determined, the corresponding 
crossing frequencies cs jω= ±  can be found using 

the auxiliary equation, which is formed by the 2s  
row of the Routh’s array. For a real i cT T∈

1,2,...,7i = , the auxiliary equation is given as 
follows; 

2
21 22( ) ( ) 0i iR T s R T+ =   (16) 

It must be mentioned here that in order for (16) to 
yield imaginary roots cs jω= ± , the following 
additional sign agreement condition has to be 
satisfied also [15]; 
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Table 1 Delay margin results obtained by the proposed method for various values KP and KI 

)(* sτ  IK  

PK  0.05 0.1 0.15 0.2 0.4 0.6 1.0 
0 30.9151 15.2014 9.9595 7.3354 3.3816 2.0421 0.9229 

0.05 31.8750 15.6813 10.2794 7.5752 3.5014 2.1218 0.9704 
0.1 32.7509 16.1192 10.5712 7.7940 3.6103 2.1938 1.0124 
0.2 34.2258 16.8562 11.0621 8.1616 3.7922 2.3127 1.0785 
0.4 35.8338 17.6579 11.5940 8.5578 3.9802 2.4255 1.1183 
0.6 34.9216 17.1950 11.2776 8.3121 3.8260 2.2811 0.9474 
1.0 0.5954 0.5857 0.5753 0.5643 0.5158 0.4634 0.3610 

Table 2 Delay margin results obtained by the method [26] for various values  KP and KI 

)(* sτ  IK  

PK  0.05 0.1 0.15 0.2 0.4 0.6 1.0 
0 27.927 13.778 9.056 6.692 3.124 1.910 0.886 

0.05 27.874 14.061 9.284 6.866 3.215 1.974 0.927 
0.1 27.038  13.682 9.220 6.941 3.290 2.029 0.963 
0.2 25.114  12.760 8.617 6.535 3.320 2.108 1.016 
0.4 20.364  10.426 7.065 5.384 2.832 1.912 1.017 
0.6 14.618  7.477 5.1567 3.958 2.130 1.475 0.827 
1.0 0.546  0.538 0.530 0.522 0.482 0.438 0.348 

 

21 22 0R R >     (17) 

Observe that the coefficient 21R  is a function of 

i cT T∈  and 22R  is a positive constant coefficient 
since 22 0 0R a q= = . For this reason, the auxiliary 
equation will yield imaginary roots, for positive 21R  
only. For those i cT T∈  values, the crossing 
frequencies are obtained from (16) as; 

22

21( )c
i

R
R T

ω =      (18) 

Observe that we can determine at most seven 
different crossing frequencies { }1 2 7, ,...,c c cω ω ω  
corresponding to { }1 2 7, ,....,cT T T T= . Substituting 

ciω  and iT  for 1,2,...,7i =  into (10), we can further 

get the corresponding time delays { }1 2 7, ,...,τ τ τ∗ ∗ ∗ . 

According to the definition of delay margin, the 
minimum of those time delays will be the system 
delay margin. 
 
 
 
 
 

 
4 Results 

In this section, for various values P and PI controller 
gains, delay margins are determined. The accuracy 
of theoretical delay margin results is confirmed by 
using Matlab/Simulink [28]. The LFC system 
parameters used in this paper is as follows [26]: 

sMD

RsTsT gch

 10 ,21 ,0.1

,05.0 , 1.0 , 3.0

===

===

β
 

4.1 Theoretical Results 
First, we choose a typical PI controller gains 

10 6 0 6 P IK . ;K . s−= =  to demonstrate the delay 
margin computation. The process of the delay 
margin computation consists of the following five 
steps: 

Step 1: Determine the characteristic equation of 
time delayed LFC system using (5), (6) and (7). 
This equation is found to be: 

4 3 2( , ) (0.015 0.2015 0.52 1.05 )
              (0.63 0.63) 0s

s s s s s
s e τ

τ
−

∆ = + + + +

+ =  
Step 2: Apply Rekasius substitution given by (9) 
into (5) in order to obtain the augmented 
characteristic equation given by (11) and (12). The 
coefficients of this equation are found to be 

WSEAS TRANSACTIONS on POWER SYSTEMS Şahin Sönmez, Saffet Ayasun, Ulaş Eminoğlu

E-ISSN: 2224-350X 72 Volume 9, 2014



5 4

3 2

1 0

0.015 ; 0.2015 0.015;  
0.52 0.2015;  0.42 0.52;
0.63 1.68;  0.63

a T a T
a T a T
a T a

= = +
= + = +
= − + =  

Step 3: Compute elements of Routh table given by 
(14) and determine the values of cT  using (15). 
Only three roots among the seven roots of (15) are 
found to be real. All the roots are given below. 

1 2

3 4

5 6

7

1 61878  0 13167 0 48238
0 13167 0 48238 0 09500

0 07444 0 07444 0 000001
0 07444 0 000001

T . ; T .   j . ; 
T .   j . ; T . ;
T . ; T .   j . ; 
T .   j .

= = +
= − = −
= − = − +
= − −  

Step 4: Compute 21R  for all real T values and 
check their sign. Note that for only 1 1.61878T = , 

21R  is positive and its value is 21 0.98072R = . For 
this reason, the remaining real roots of T  are not 
taken into account since they will not result in 
imaginary roots for the characteristic equation of the 
LFC system defined by (5) or equivalently the 
auxiliary equation given in (16). 
Step 5: Compute the crossing frequency cω  using 
(18) and the corresponding delay margin using (10). 
They are found to be 0.80149 rad/scω =  and. 

2.2811 sτ ∗ = . This result indicates that the delay 
margin is about 2.28112 sτ ∗ =  for 0 6PK .= , 

10 6 IK . s−= . When time delay exceeds this value, 
the LFC system will become unstable. 

Delay margin results for various values of PI 
controller gains ( PK , IK ) are summarized in Table 
1 and shown in Fig. 3. Results indicate that the 
delay margin *τ  decreases when IK  is increased 
for fixed PK  values. As a result, it could be stated 
that the increase of IK  results in a less stable LFC 
system. The effect of PK  on the delay margin has 
two tendencies when IK  is fixed. The delay margin 
increases with the increase of PK  when PK  
belongs to the interval of 0 0.4PK = − . On the other 
hand, the delay margin decreases with the increase 
in PK  for 0.6PK ≥ . This kind of effect of PK  on 
the delay margin has also been observed in the time-
delayed excitation control system [20]. 

When delay margin ( *τ ) results are compared 
with those of [26] presented in Table 2, it is 
observed that *τ  values are larger than those 
obtained by the method reported in [26]. The 
comparison clearly indicates that indirect time-

domain methods based onLyapunov stability theory 
gives more conservative delay margin results. The 
conservative delay margin estimation of [26] could 
be clearly seen in Fig. 4 and 5 in which that delay 
margin results are compared for fixed values of 

0.2PK =  and 0.6PK = as IK  is changed from 
0.05IK =  to 1IK = . Please note that delay margin 

results of [26] shown by the dashed line is always 
lower than those of the proposed method. Time-
domain simulations given in the following section 
will validate the accuracy of delay margin results. 

The effect of the Integral (I) controller only is 
also investigated when 0PK = . Figure 6and Table 
3 show delay margin results for 0.05 1IK = −  It is 
clear that the delay margin decreases with the 
increase of IK . Moreover, delay margins are larger 
than those obtained by the method reported in [26]. 

Table 3 Delay margin results for various values KI 

IK  
)( * sτ  

Proposed 
Method 

Method of 
[26] 

0.05 30.9151 27.9268 
0.1 15.2014 13.7775 

0.15 9.9595 9.0560 
0.2 7.3354 6.6915 
0.4 3.3816 3.1241 
0.6 2.0421 1.9104 
1.0 0.9229 0.8858 

 

 
Fig. 3 Variation of the delay margin with respect to 
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Fig. 4 Variation of the delay margin with respect to 

IK  ( 0.2PK = ) 

 
Fig. 5 Variation of the delay margin with respect to 

IK  ( 0.6PK = ) 

 
Fig. 6 Variation of the delay margin with respect to 

IK  ( 0PK = ) 
 

 
Fig. 7 Frequency deviation for different time delays 

( 0, 0.6P IK K= = ) 

 
Fig. 8 Frequency deviation for different time delays 

( 0.6, 0.6)P IK K= =  

 
Fig. 9 Frequency deviation for different time delays 

( 0.1, 0.2P IK K= = ) 
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4.1 Verification of Theoretical Results 
The simulations are carried out using 
Matlab/Simulink to verify theoretical delay margin 
results. For illustrative purposes, three different sets 
of controller gains are chosen as: 
( 0, 0.6)P IK K= = ( 0.6, 0.6)P IK K= =  and 
( 0.1, 0.2)P IK K= = . 

For ( 0, 0.6P IK K= = ) controller gains, it is 
clear from Table 3 that the delay margin is 
computed as * 2.0421  sτ =  by the proposed method 
and * 1.9104 sτ =  by the method [26]. However, the 
delay margin obtained by using simulation is found 
to be  * 2.0478 sτ = . Figure 7 shows simulation 
results for  * 2.0478 sτ =  as well as for two other 
delay values ( 2.0 ,  2.1 )s sτ τ= = . The LFC system 
is marginally stable  * 2.0478 sτ =  since sustained 
oscillations are observed in the frequency deviation. 
When the time delay is less than  * 2.0478 sτ = , the 
LFC system is expected to be stable. Figure 7 also 
presents such a stable simulation result for 

2.0 .sτ = On the other hand, when the time delay is 
larger than  * 2.0478 sτ = , the system becomes 
unstable since it has growing oscillations, as shown 
in Fig. 7 for 2.1 sτ = . 

When the theoretical delay margins of the 
proposed methods ( * 2.0421 sτ = ) and that of [26] 
( * 1.9104 )sτ =  are compared with the one 
determined by using simulation (  * 2.0478 sτ = ), it 
could be concluded that the theoretical delay margin 
obtained by the proposed method is in close 
agreement with the simulation result. The relative 
percentage error observed in delay margin results 
are 0.278 % for the proposed method and 6.710 % 
for the method of [26], clearly indicating the 
accuracy the proposed method. 

For ( 0.6, 0.6P IK K= = ) controller gain, Table 1 
and 2 show that delay margins of the proposed 
method and method of [26] are * 2.2811 sτ =  and 

* 1.475 sτ = . On the other hand, the delay margin is 
found to be * 2.2869 sτ =  by using the simulation 
approach. The relative percentage error between the 
theoretical delay margin result and simulation result 
is 0.254 % while it is 35.502 % for the method [26]. 
The low percentage error observed in the proposed 
method validates again its accuracy similar to the 
previous case. Figure 8 presents the frequency 
deviation for three different time delays, 2.1 sτ = , 

* 2.2869 sτ =  and 2.4 sτ = , illustrating, stable, 
marginally stable and unstable cases, respectively.  

Finally, simulation results are depicted in Fig. 9 
for PI controller gains of 0.1, 0.2P IK K= = . In this 
case, from Table 1 and 2, the delay margins are 

* 7.7940 sτ =  and * 6.9410 sτ =  for the proposed 
method and method of [26], respectively while it is 
determined as * 7.7950 sτ =  by the simulation. The 
frequency deviations are presented in Fig. 9 for 

7.6 sτ =  (stable), * 7.7950 sτ =  (marginally stable) 
and 7.9 sτ =  (unstable), which validates the 
accuracy of delay margins computed by the 
proposed method. 
 
5 Conclusions  
This paper has analyzed the stability of the single 
area LFC system that contains communication 
delays. A theoretical method based on Rekasius 
substitution has been proposed to compute the delay 
margins. The accuracy of delay margin results is 
proved using time domain simulation capabilities of 
Matlab/Simulink. It has been observed that the 
relative percentage error between the theoretical 
delay margin results and ones determined by 
simulation are negligible. Therefore, the proposed 
method is an effective method to estimate delay 
margins of LFC systems. Moreover, delay margin 
computation and simulation studies clearly indicate 
that the proposed method provides more accurate 
delay margins as compared to the methods based on 
Lyapunov stability and linear matrix inequality 
techniques. The stability analysis of multi-area LFC 
systems with delays is put in perspective as future 
work. 
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