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Abstract: - This paper presents a new method for transient stability assessment of power systems using kernel 

principal component analysis (KPCA) and Gaussian process (GP). Considering the possible real-time 

information provided by PMU, a group of system-level classification features are firstly extracted from the 

power system operation condition to construct the original feature set. Then KPCA is used to reduce the 

dimension of input space, and GP is employed to build a TSA model. Furthermore, the classification accuracy 

and generalization performance of the GP model are improved by combining existing single covariance 

functions to make new composite ones. The proposed method can overcome the disadvantages that many of the 

current machine learning methods usually suffer from, such as overfitting, difficulty in parameter selection and 

prediction with no probability interpretation. The effectiveness of the proposed method is validated by the 

simulation results on the New England 39-bus test system. 
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1 Introduction 
Transient stability assessment (TSA) has been 

recognized as an important task to ensure the secure 

and economical operation of power systems [1], [2]. 

Problems arising from the introduction of new 

power market designs and growing presence of 

intermittent renewable power generation are 

nudging power systems toward potential dynamic 

instability scenarios. The uncertainty of predicting 

future operating conditions has created an acute 

need to understand the dynamic nature of power 

systems deeply in order to be prepared for critical 

situations. In recent years, wide area measurement 

system (WAMS) using time-stamped phasor 

measurement units (PMU) has been receiving ever 

increasing attention from both the academia and the 

industry, which makes it possible to explore wide 

area protection and control schemes to avoid the 

system collapse [3]-[6]. 

Transient stability refers to the ability of 

synchronous machines of an interconnected power 

system to remain in synchronism after being 

subjected to a severe disturbance, such as a short 

circuit on a transmission line [1]. It depends on the 

ability to maintain/restore equilibrium between 

electromagnetic torque and mechanical torque of 

each synchronous machine in the system. The 

current methods to determine the stability status of a 

power system mainly include: time-domain (T-D) 

simulations method [7], transient energy function 

methods [8] and the extended equal area criterion 

[9]. With the rapid development of artificial 

intelligence, recent research shows that machine 

learning techniques, such as decision trees (DT), 

artificial neural networks (ANN), and support vector 

machines (SVM), are promising approaches for on-

line TSA of power systems [10]-[16].  

However, since power systems are high-

dimensional nonlinear dynamical systems, the 

mapping between state parameters and transient 

stability of power systems is a complex nonlinear 

relationship. In addition, many of the current 

machine learning methods usually suffer from some 

inherent disadvantages, which limit the practical 

application of the machine learning-based TSA 

(MLTSA) methods in power systems. For example, 

ANN has problems of overfitting and local optima 

[12], and SVM has difficulty in parameter selection 

and prediction with no probability interpretation 

[17]. 

Gaussian process is a Bayesian probabilistic 

kernel machine [18], [19], which is very suitable for 

the high-dimensional nonlinear classification and 

regression problems [20], [21]. Gaussian process 
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can overcome the disadvantages mentioned above of 

other machine learning methods, such as difficulty 

in parameter selection and prediction with no 

probability interpretation.  

Feature extraction and selection is one of the 

most important tasks for MLTSA. PCA is a well-

known feature extraction and data representation 

technique widely used in the areas of pattern 

recognition. However, PCA is restricted to linear 

transformations. In order to improve the 

classification accuracy of TSA, we propose to use 

KPCA, a generalization of linear PCA to a nonlinear 

setting that was introduced by Schölkopf et al [22]. 

The remainder of this paper is organized as 

follows. First the GP theory is introduced in brief. 

Details of the proposed TSA method using KPCA 

and GP are presented next. Application of the 

proposed method is demonstrated using the New 

England 39-bus test system, and finally the 

conclusions are made. 

 

 

2 Brief Introduction to GP 
Given data points ix  from a domain χ  with 

corresponding class labels { }1 ,1- +∈iy , one would 

like to predict the class membership probability for 

a test point *x . This is achieved by using a latent 

function f  whose value is mapped into the unit 

interval by means of a sigmoid function 

1] [0,R:sig →  such that the class membership 

probability )1( x+=yp  can be written as ))(sig( xf . 

The class membership probability must normalize 

( ) 1
y
p y x =∑ , which leads to 

( 1 ) 1 ( 1 )p y p yx x= + = − = − . If the sigmoid function 

satisfies the point symmetry condition 

sig( ) 1 sig( )t t= − − , the likelihood can be compactly 

written as 

( ) sig( ( ))p y y fx x= ⋅  

Given the latent function f , the class labels are 

assumed to be Bernoulli distributed and independent 

random variables, which gives rise to a factorial 

likelihood, factorizing over data points. 

∏
=
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ii fypfp
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The prior distribution of the latent function is 

),(),( 0 KmfXf Np =θ                         (2) 

where 0m , K  and θθθθ  are respectively mean 

vector, covariance matrix and hyperparameter 

vector. For notational convenience we will assume 

0)( ≡xm  throughout. Thus, the elements of K  are 

( , , )
ij i j
K k x x= θθθθ , where χ∈ji xx , . 

By application of Bayes’ rule, one gets an 

expression for the posterior distribution over the 

latent values f  
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When making predictions, we marginalize over 

the training set latent variables 

* * * *( , , , ) ( , , , ) ( , , )dp p p= ∫f X y X f f X X f y X fθ θ θθ θ θθ θ θθ θ θ      (4) 

Finally, the predictive class membership 

probability p* is obtained by averaging out the test 

set latent variables 

* * * * * *( , , , ) sig( ) ( , , , )d *p y y f p f f= ∫x y X x y Xθ θθ θθ θθ θ      (5) 

 

 

2.1 Covariance Functions 
There are many covariance functions, the following 

single covariance functions [18] are used in this 

paper.  
2

2

SEiso 2

( )
( , ) exp( )

2

i j

i j f
k

l
σ

−
= −

x x
x x               (6) 

2

2

RQiso 2

( )
( , ) 1

2

i j

i j f
k

l

α

σ
α

−
 −

= +  
 

x x
x x              (7) 

where 2

f
σ , l  and α  are all hyperparameters.  

In order to improve the classification accuracy 

and generalization performance of GP, this paper 

makes a new composite covariance function by 

combining single ones [18]. 

CKiso SEiso RQiso
( , ) ( , ) ( , )

i j i j i j
k k k= +x x x x x x        (8) 

 

 

2.2 Gaussian Approximation 
Unfortunately, the latent distribution in (3) and the 

predictive distribution in (4) cannot be written as 

analytical expressions. To obtain exact answers, five 

different Gaussian approximations to the posterior 

are depicted in [19]. Laplace approximation is 

adopted in this paper, and then the posterior 

distribution can be expressed as 
1 1

( , , ) ( , ( ) )p N
− −≈ +f y X f m K Wθθθθ          (9) 
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2.3 Determination of Optimal 

Hyperparameters 

The optimal hyperparameters ]; ;[
2 ασ  lf=θ  can be 

adaptively obtained through the maximum 

likelihood method, where the log marginal 

likelihood function is 

T 11 1
ln ( , ) ln ( ) ln

2 2
p p

−≈ − + +y X y m m K m I KWθθθθ (12) 

 

 

3 GP for TSA 
From the point of view of pattern recognition, TSA 

can be treated as a two-pattern classification 

problem with two basic classes (i.e. the stable class 

and the unstable class). In order to seek the right 

balance between model complexity and 

generalization capability in the classification 

process, it is very important to design a reasonable 

classification model. Therefore, considering the 

possible real-time information provided by PMU, a 

new GP-based TSA model is presented in this 

paper. 

 

 
3.1 Knowledge Base Generation 
The application of supervised learning algorithms is 

based on the priori knowledge which depicts the 

characteristics of a system. For TSA of power 

systems, the knowledge base should cover sufficient 

operating points to determine the detailed transient 

stability boundary.  

In this paper, data required for training and 

testing the classifier were generated offline through 

the T-D simulations. The simulation was done based 

on the classical machine model and the constant 

impedance load model. A successful reclosure of the 

faulted line was applied after fault clearance, and no 

topology changed result from the fault.  

A total of 500 simulation cases at 20 different 

fault locations were generated at 5 different loading 

levels (under 80, 90, 100, 110 and 120% of the base 

load). Corresponding to each loading level, 5 kinds 

of active and reactive load powers were randomly 

set. The contingencies considered were three-phase 

short-circuit faults. A standard clearing time of five 

cycles was assumed for all the contingencies. 345 

out of 500 generated operating points were 

randomly sampled as the training data set, and the 

remaining as the testing data set. 

A class label was assigned to denote the transient 

unstable and stable status of a simulation case 

following a contingency. This class label is 

calculated according to maximum relative rotor 

angle deviation during the transient period. If the 

maximum relative rotor angle deviation exceeds 360 

degree [16], the system is considered as unstable 

and the class label is marked as “-1”, otherwise the 

class label is marked as “+1”.  

 

 
3.2 Selection of Input Features 
Selection of the appropriate features is an important 

problem for MLTSA. Transient stability depends on 

both the initial operating state of the system and the 

severity of the disturbance [1]. Meanwhile, 

instability results if the stability cannot absorb the 

kinetic energy corresponding to these rotor speed 

difference. Thus, post-fault states of the generator 

rotors strongly symbolize the stability states of a 

power system, and the post-fault rotor variables 

such as acceleration rates and kinetic energies are 

good predictors for TSA.  

Unfortunately, previous works have mainly 

focused on the analysis of pre-fault static features, 

as the traditional monitoring systems such as 

supervisory control and data acquisition (SCADA) 

are not able to get the synchronous measurement 

information for the wide-area power systems. The 

bottleneck is break through with the advent of 

WAMS, which provide rich data sources by the 

availability of real-time synchronized 

measurements. Therefore, this paper focuses on 

applications of the real-time state information 

obtained from WAMS to the selection of input 

features for MLTSA. 

After having studied the comprehensive existing 

literature and having carried out a lot of the 

simulation analysis, a group of system-level 

classification features independent of the scale of 

power systems were initially selected as the input 

features. These feathers are listed in Table. 1, where 

tcl, tcl+3c, tcl+6c and tcl+9c respectively denote the fault 

clearing time, the 3rd cycle after the fault clearing 

time, the 6th cycle after the fault clearing time, the 

9th cycle after the fault clearing time. 

 
TABLE I  THE SELECTED INPUT FEATURES  

No. Input features 

Tz1 
Mean value of all the mechanical power before the fault 

incipient time 
Tz2 Mean value of all the initial rotor acceleration rates 

Tz3 Mean square error of all the initial acceleration rates 
Tz4 Maximum value of all the initial active power impact 

Tz5 Minimum value of all the initial active power impact 

Tz6 Mean value of all the initial acceleration power 
Tz7 Maximum value of all the initial rotor kinetic energies 

Tz8 Maximum value of the difference of initial acceleration rates 

Tz9 
Maximum value of the difference of initial rotor kinetic 

energies 

Tz10 Maximum value of the difference of initial rotor angle 
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Tz11 
Initial rotor angle of the machine with the maximum 
acceleration rate 

Tz12 Maximum value of all the initial rotor acceleration rates 
Tz13 Minimum value of all the initial rotor acceleration rates 

Tz14 Total system 'energy adjustment' 

Tz15 Value of system impact at tcl 

Tz16 Maximum value of the difference of acceleration rates at tcl 

Tz17 Maximum value of the difference of rotor kinetic energies at tcl 

Tz18 Maximum value of the difference of rotor angles at tcl 
Tz19 Mean value of all the rotor kinetic energies at tcl 

Tz20 
Rotor angle of the machine with the maximum kinetic energy 
at tcl 

Tz21 
Kinetic energy of the machine with the maximum rotor angle 

at tcl 
Tz22 Maximum value of all the rotor kinetic energies at tcl 

Tz23 Maximum value of all the rotor kinetic energies at tcl+3c 
Tz24 Maximum value of all the rotor kinetic energies at tcl+6c 

Tz25 Maximum value of all the rotor kinetic energies at tcl+9c 

Tz26 
Kinetic energy of the machine with the maximum rotor angle 
at tcl+3c 

Tz27 
Kinetic energy of the machine with the maximum rotor angle 
at tcl+6c 

Tz28 
Kinetic energy of the machine with the maximum rotor angle 

at tcl+9c 
Tz29 Maximum value of the difference of rotor angles at tcl+3c 

Tz30 Maximum value of the difference of rotor angles at tcl+6c 
Tz31 Maximum value of the difference of rotor angles at tcl+9c 

Tz32 Mean value of all the rotor kinetic energies at tcl+3c 

Tz33 Mean value of all the rotor kinetic energies at tcl+6c 
Tz34 Mean value of all the rotor kinetic energies at tcl+9c 

 

 

3.3 Data Pre-processing 
To avoid training difficulties caused by the different 

units of input features, z-score standardization 

method is used as the data pre-processing method. 

DDdd σ)-(' =              (13) 

where D  and Dσ  are, respectively, the mean and 

standard deviation of any feature D  in sample data. 
'd  is the normalized value of d , Dd ∈ . 

 

 

3.4 KPCA 
In KPCA, a nonlinear transformation Φ  maps the 

input data into a higher dimensional feature space F 

and PCA is then carried out in that feature space 

[22]. 

For the input data 
=1

{ }m
i i
x , Φ( )

i
x  represents the 

mapped data in F. The covariance matrix C  of the 

eigenvalue problem λ =v Cv  is 

1

1
Φ( )Φ( )

m
T

j j

jm =
∑C = x x                      (14) 

with eigenvalues λ ≥ 0  and eigenvectors \{0}F∈v . 

We can write an equivalent system 

Φ( ) ) (Φ( ) )
i i

λ( ⋅ = ⋅x v x Cv                   (15) 

Then, consider the coefficients 
i

α  such that 

1

Φ( )
m

i i

i

α
=
∑v = x                               (16) 

and define an m m×  kernel matrix K  by 

: (Φ( ) Φ( ))
ij i j
K = ⋅x x .                     (17) 

Combining (15), (16), and (17) leads to 
2mλK Kα = αα = αα = αα = α                              (18) 

with αααα  a column vector with entries 
1
, ,

m
α α⋯ . 

Finding solutions for the eigenvalue problem 

mλ Kα = αα = αα = αα = α , solves (18). To extract the principal 

components, the projection of the image of a test 

point Φ(x)  onto the eigenvectors k
v  in F is 

computed via 

1

( Φ(x)) (Φ( ) Φ(x))
m

k k

i i

i

α
=

⋅ = ⋅∑v x               (19) 

The dot product matrix is given by ( , )
ij i j
K k= x x ,  

then 

1

( Φ(x)) ( , )
m

k k

i i

i

K x xα
=

⋅ =∑v                   (20) 

The kernel function employed in this paper is the 

radial basis function (RBF): 
2

( , ) exp( 2 )i j i jK σ= − −x x x x             (21) 

where σ  is the width of the Gaussian. 
 

 

3.5 Training of GP-based TSA Model 
The training process of the GP-based TSA model is 

the process of determining the model parameters. 

The training process of the proposed model mainly 

includes the following steps.  

Step 1: According to (8), determine priori forms 

of the covariance functions and initialize the 

corresponding model hyperparameters. 

Step 2: Based on the Bayesian framework and 

the training sample information, the optimal 

parameters of GP model are adaptively determined 

by using logarithmic marginal likelihood 

maximization.  

Step 3: According to the obtained optimal 

hyperparameters, the ideal TSA model is obtained. 
 

 

3.6 Testing Process of the Proposed Model 
The testing process can be broken into the following 

steps. 

Step 1: Data pre-processing. According to (13), 

data pre-processing is carried out and the sample set 

is divided into a training set and a test set. 

Step 2: Based on the Bayesian framework, the 

ideal TSA model is obtained by applying maximum 

likelihood method to determine the optimal 

hyperparameters of GP automatically. 

Step 3: According to (9), the posterior 

distribution of latent function value of the test 

sample can be obtained by using Laplace algorithm. 

Step 4: According to (5), the prediction probability   

that the final stability result is stable can be 
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obtained. If 5.0* >p , the system is considered as 

stable; otherwise, the system is considered as 

unstable. 

 

 

4 Case Study 
In order to evaluate the performance of the proposed 

method, the New England 39-bus test system was 

used. This system is a well-known test case for TSA 

studies reported in the literature [15], [16]. The one 

diagram of the test system is shown in Fig. 1. 
 

 
Fig. 1. New England 39-bus test system 

 

All of the programs in this paper are 

implemented in MATLAB running on a PC with 

Microsoft Windows Server 2003 operating system, 

Intel Pentium dual CPU E2200 @ 2.20 GHz, 2.19 

GHz and main memory 1 GB. 

 

 

4.1 Test Results of the Proposed Method 
In order to verify the effectiveness of the proposed 

method, PCA was used to analyze the original 

feature set A, and obtained the 10-dimensional 

feature subset A2 which responsible for 95% of the 

variance of A. Comparison tests were carried out 

between A, A2 and the feature subset A1 obtained by 

KPCA. The optimal hyperparameters of GP models 

and test results are shown in Table 2 and Table 3. 

 
TABLE II  THE OPTIMAL MODEL PARAMETERS 

Covariance Function Hyperparameter Optimal value 

SEiso 
fσ  1.62 

l  3.94 

RQiso 
fσ  3.11 

l  5.29 
α  2.35 

CKiso 

(SE)

fσ  4.72 

(SE)l  5.63 

(RQ)

fσ  3.76 

(RQ)l  1.85 

α  3.08 

 

 
 

 

 
TABLE III  TEST RESULTS OF GP MODELS 

Feature 
set 

Dimension TSA model 
Training 
time /s 

Test 
accuracy /% 

A 34 

GP(SEiso) 14.26 96.13 

GP(RQiso) 18.03 95.48 
GP(CKiso) 20.48 98.06 

A1 8 

GP(SEiso) 13.49 96.77 

GP(RQiso) 17.64 94.84 
GP(CKiso) 18.69 98.71 

A2 11 

GP(SEiso) 13.65 95.48 

GP(RQiso) 16.96 94.19 
GP(CKiso) 19.41 96.77 

 

As shown in Table. 3, compared with A, A1 has 

similar classification accuracy, but the data 

dimension is reduced to 1/4. Moreover, KPCA has 

better classification accuracy and fewer dimensions 

than PCA.  

From Table 3, we can also see that different 

covariance functions lead to large differences in 

classification accuracy of the corresponding GP 

models, and that GP (CKiso) has better classification 

accuracy than other GP models in all three feature 

sets. The results show that a covariance function is 

the crucial ingredient affecting the performance of 

GP, and that making a new composite covariance 

function is an effective way to improve the 

classification accuracy and generalization 

performance of the GP model. 

 

 

4.2 Test Results of Other TSA Models 
In order to properly evaluate the performance of the 

proposed method, the above feature sets A and A1 

were used as the input of other TSA models such as 

DT, multi-layer perception (MLP) and SVM. The 

parameters of the models were set as follows: DT 

was constructed using the C4.5 algorithm with 

default configuration (pruning with 0.25 confidence 

factor); the training algorithm of MLP was the back-

propagation algorithm and the learning rate was set 

to 0.8; the kernel function of SVM used in this 

paper was RBF kernel and the associated parameters 

were optimized through a grid search during the 4-

fold cross-validation process [16]. The test results 

are shown in Table. 4.  
 

TABLE IV  TEST RESULTS OF OTHER MODELS 

Feature set TSA model Test accuracy /% 

A 

DT 95.48 

MLP 94.84 
SVM 97.42 

GP(CKiso) 98.06 
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A1 

DT 96.13 

MLP 95.48 
SVM 96.77 

GP(CKiso) 98.71 

 

From Table 4, it can be observed that the 

proposed GP-based TSA model has better 

classification accuracy than all other TSA models. 

The reason is that GP is based on the automatic 

Occam’s razor principle to realize the trade-off 

between data-fit and model complexity [18]. 

 

4.3 Probability Interpretation of GP-based 

TSA Model 
As shown in Fig. 2, probability prediction 

characteristics of the GP model can give the 

uncertainty measure of TSA results, which can not 

be achieved by other above-mentioned MLTSA 

models, such as DT, MLP and SVM. The prediction 

probability p* can not only give the qualitative 

results of whether the system is stable or not, but 

give quantitative evaluation of the stability trend. 

Therefore, it can provide a reference for a 

hierarchical control strategy.  
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Fig. 2. Probabilistic prediction of GP 

 

Furthermore, the samples with prediction 

probability p* in a middle area which cannot be 

distinctly assessed are classified as indeterminate 

cases (e.g., the upper boundary and lower boundary 

are respectively set to 0.8 and 0.2), not assigned to 

either the stable or the unstable class, as shown in 

Fig. 3. This can reduce erroneous classification and 

improve the reliability of TSA. 
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Fig. 3. Schematic diagram of ‘indeterminate’ class 

 

 

5 Conclusions 
Considering the possible real-time information 

provided by PMU, a new method for transient 

stability assessment of power systems using KPCA 

and GP is presented in this paper. The proposed 

method has been examined on the New England 39-

bus test system, and the following conclusions can 

be drawn from the work: 

(1)The proposed method can overcome the 

disadvantages existed in many of current MLTSA 

methods, such as overfitting, difficulty in parameter 

selection and prediction with no probability 

interpretation. 

(2)Without sacrificing classification performance 

of the original feature set, KPCA can significantly 

reduce the data dimension, and has better 

performance than PCA. 

(3)Compared with single covariance functions, 

composite ones can effectively improve the 

classification accuracy and generalization 

performance of the GP model.  
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