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Abstract: – The objective of this paper is to present a decision-based function to determine the optimal 
maintenance scheduling strategy of thermal power units taking into account the particular obligations of 
Generation Company, such as bilateral contracts. Opportunities for energy selling at the electricity market as 
well as a detailed modeling of the power plants are considered in the optimization problem. The deterministic 
constrained combinatorial optimization problem that considers maximization of profit is solved using the 
interior point cutting plane method. This method possesses the advantages of both, the interior point method 
and the cutting plane method, and becomes very promising approach for the large-scale discrete optimization 
problem. Furthermore, in order to improve the robustness and efficiency of this method, a new general optimal 
base identification method is developed and introduced to deal with various types of optimal solutions. The 
implementation and performances of proposed solution technique are presented. The effectiveness of the 
approach is tested on the realistic size case study, and numerical results are demonstrated and discussed. 
 
 
Key-Words: – Maintenance scheduling; electricity market; bilateral contracts; market prices, interior point 
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1 Introduction 
The maintenance activities for Generation Company 
(GenCo) present one of important tasks that have 
significant reflections on its profit and efficiency. It 
is particularly emphasized in liberalized ambient 
where GenCos are faced with numerous challenges 
with respect to ensuring reliable electricity supply at 
profit-efective rate. One of these challenges concerns 
the planned preventative maintenance of company's 
power generating units. Maintenance scheduling as 
critical technical task requires carefully planning 
and analysis to guarantee system reliability and 
economic benefits for the GenCo. Because all power 
units must be maintained and inspected, the planners 

in GenCo must schedule planned outages during the 
year. Several factors entering into this scheduling 
analysis includes: weekly (or daily) power profile 
(bilateral contracts), market prices, amount of 
maintenance to be done on all power units, capacity 
of units, availability of maintenance crews, elapsed 
time from the last maintenance activities, techno-
logical restrictions and season limits, obligations 
toward System Operator (SO) regarding to ancillary 
services. All these factors must be included into 
GenCo’s objective for profit maximization. 

The maintenance scheduling is hard, complex 
combinatorial optimization problem that has been 
studied widely in past. Traditional optimization 
techniques such as integer programming [1,2], 
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decomposition methods [2,3,4], goal programming 
[5] have been used to solve this problem. Modern 
evolutionary techniques, as genetic algorithm [6,7], 
simulated annealing [7,8], memetic algorithm [9], 
tabu search [7,10,11] and fuzzy sets theory [12,13] 
have been applied to the problem. The maintenance 
scheduling of thermal power units should be 
optimized in terms of the objective function under 
series of constraints. The selection of objectives and 
constraints depends on the particular needs of 
maintenance scheduling problem, the data available, 
an accuracy to be sought and chosen methodology 
for solving this problem. There are generally two 
categories of objectives in maintenance scheduling 
problem: based on costs [1,3,4,7,14] or on profit 
[11,15,16,17] and based on reliability [8,10,12]. The 
most common objective based on costs is to 
minimize the total operating costs over the planning 
period (horizon). This minimization often requires 
many approximations or computationally intensive 
simulation to yield a solution. It was reported in 
literature that minimization of the total operating 
costs (or production costs that is the main part of the 
operating costs for thermal units) is an insensitive 
the objective for maintenance scheduling problem 
[6,8,14]. A number of reliability indices, such as 
expected lack (shortage) of reserve, expected energy 
not supplied and loss of load probability, which are 
based on power system measures has been used as 
reliability criteria for the formulation of objective 
function [8,10,14]. The maintenance timetable 
should satisfy set of constraints related to power 
units (maintenance window constraints), prevent the 
simultaneous maintenance of set of units (exclusion 
constraints), restrictions the start of maintenance on 
some units after period of maintenance of other 
units (sequence constraints), system constraints 
(balance constraints, transmission constraints), crew 
constraints, etc.  

In recent literature the maintenance scheduling 
problem has been oriented toward new relations in 
electric power sector. In a number of electricity 
markets, deregulation of the power industry has 
given GenCos the independence to maintain power 
units in decentralized manner with a minimum 
regulatory intervention for system security purposes 
only. The maintenance periods of time for power 
units are scheduled either by profit-seeking GenCos 
only, or by coordination between profit-seeking 
GenCos and reliability-concerned SO, and the 
extent of coordination depends on the market 
environment and actual legislative. Although the 
coordination procedure how SO adjust individual 
GenCos' maintenance schedules and how each 
GenCo responds to adjusted schedule is important, it 

is not a main concern of this paper and one can 
investigate more about this subject. An applicable 
procedure that conciliates objective for GenCos, to 
schedule their units for maintenance in order to 
maximize their profit, and SO requirement that 
ensures adequate security throughout the weeks of 
year, is determined through multiple interaction 
between GenCos and SO and given in [15,16]. In 
this paper the maintenance scheduling problem is 
analyzed from the GenCo point of view. In order to 
ensure adequate level of security, in this paper we 
assume simple interaction of the SO toward the 
GenCo taking into account minimal level of reserve 
requirement. This requirement can be a part of SO's 
total policy, contained in its plan of ancillary 
services. For minimal level of reserve GenCo will 
have benefits through price of capacity in reserve 
(this revenue is not analyzed in this paper). 

The maintenance scheduling is an active research 
area in power system optimization. The complexity 
introduced by planning concepts such as multiple 
and contradictory objectives, associated with the 
combinatorial nature of the problem, lead to the 
perception of limitation of traditional methods. 
Rounding off based method has quick computation 
speed, but it significantly degrades optimality and 
may be impossible to obtain a feasible solution. 
Standard integer (binary) programming methods, as 
branch and bound algorithm, are non-polynomial. 
Consequently, it is slow and intractable for large-
scale problems. Heuristic algorithms, as genetic 
algorithms, simulated annealing, tabu search and 
fuzzy sets theory, are very computationally time-
consuming provided that the size of the search space 
is huge. 

In recent years, interior point method (IPM) has 
been widely used for solving optimization problems 
in electric power system, for its fast convergence 
characteristics and dealing with inequalities 
conveniently. Generally, IPM deals with problems 
in which all variables are continuous. Interior point 
cutting plane method (IPCPM) appeared as a 
powerful tool to deal with mixed integer programm-
ing that enlarges the application area of IPM. In 
1992, IPCPM was proposed by Mitchell and Todd 
to solve the perfect match problem [18]. Mitchell 
and Borchers solve linear ordering problems by 
IPCPM [19]. The comparison with simplex cutting 
plane method (SCPM) [20,21,22] shows that it has 
remarkable advantages as problem size increases. 
Ding, et al. use IPCPM to solve large-scale, discrete 
and nonlinear mixed integer optimal power flow 
problems [23,24]. 

If the optimal solution of the relaxation problem 
solved by IPM is a degenerate solution or convex 
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combination solution, the cutting planes will fail to 
be generated, and the IPCPM will fail. A new base 
identification method is presented. The improved 
algorithm can find optimal base for various types of 
optimal solutions. Efficiency of base identification 
procedure is improved. Large computation time may 
be consumed in matrix rank calculation and row-
column transformation. The perturbation method 
and some linear algebra techniques are introduced to 
IPCPM that can significantly improve computation 
efficiency. 
The focus of this paper is development of compre-
hensive model for maintenance scheduling strategy 
of thermal power units taking into account the 
particular obligations of the GenCo from long-term 
bilateral contracts, as well as determination of 
power profile for selling on electricity market based 
on forecasted prices. The main contributions of this 
paper are as follows: 
1. presentation of the approach that is flexible and 

robust to be used in the maintenance scheduling 
of thermal power units; 

2. development of a hybrid model that combines 
energy sales through bilateral contracts and 
energy sales on the market for the maximization 
of GenCo’s profit with smaller uncertainty from 
market price volatility; 

3. application of the interior point cutting plane 
method for mixed-integer linear programming 
approach that guarantees convergence to the 
optimal solution and computational efficiency 
in large-scale case studies. 

 
This paper is organized as follows. Section 2 

provides the notation used throughout the paper. In 
Section 3 optimal maintenance scheduling problem 
is modeled as deterministic programming problem. 
Section 4 details the principle of IPCPM and its 
application for the problem. In Section 5 results 
from a realistic size case study are presented and 
discussed. Section 6 states all of the conclusions of 
this paper. 
 
 
2 Notation 
The notation used throughout the paper is stated 
below: 
Indexes: 
i  thermal unit index 
k  thermal power plant index 
m  bilateral contract index 
t  time period (week) index 

Constants: 
θ  number of hours in week ( θ = 168 ) 

( )c
m tπ  price of bilateral contract m in period t  

[$/MWh] 
( )s tπ  market price of energy in period t  [$/MWh] 
,i ka  fixed operating cost of unit i  in plant k  [$/h] 
,i kb  linear cost term in cost characteristic of unit i  

in plant k  [$/MWh] 
,i kc  quadratic cost term in cost characteristic of 

unit i  in plant k  [$/MW2h] 
,i kd  variable O&M cost of unit i  in plant k  

[$/MWh] 
,
M
i kC  maintenance cost of unit i  in plant k  [$/MW] 

,i kET  earliest maintenance start of unit i  in plant k  
,i kLT  latest maintenance start of unit i  in plant k  

,i kM  duration of maintenance for unit i  in plant k  
kN  number of units in plant k  that can be 

maintained simultaneously 
,a bO  number of periods during that maintenance of 

units a and b should overlap 
( )c

mp t  power from bilateral contract m in period t
[MW] 

,i kP  capacity of unit i  in plant k  [MW] 
,i kP  minimum output of unit i  in plant k  [MW] 

0( )R t  minimum reserve level assigned to GenCo 
from the SO in period t  [MW] 

,a bS  number of periods required between the end 
of maintenance of unit a and the beginning of 
maintenance of unit b  

Variables: 
, ( )i kP t

 
power generated by unit i  in plant k  in 
period t  [MW] 

( )sp t  power for bid on market in period t  [MW] 
, ( )i kv t

 
0/1 variable, equal to one if unit i  in plant k  
is online in period t , otherwise zero 

, ( )i ky t
 

0/1 variable, equal to one if unit i  in plant k  
is being maintained in period t , otherwise 
zero 

Numbers: 
kI  number of thermal units in plant k  

K  number of thermal power plants 
M  number of bilateral contracts 
T  number of periods of the planning horizon. 

 
 
3 Problem Formulation 
 
3.1 Objective function 
Important point in maintenance scheduling of 
thermal power units presents selection of objective 
function. It depends of long-term GenCo’s strategic 
parameters, its obligations toward SO, regulatory 
agreements and etc. Because of that, maintenance 
scheduling is essentially multi-objective task with 
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conflicting objectives. In this paper the objective is 
to maximize profit for the GenCo. The expected 
profit for the GenCo is calculated as a difference 
between expected revenues and operating costs. 
Operating costs include costs of energy production 
and maintenance costs. The bilateral sales contracts 
with particular energy patterns and price profiles are 
included in this objective. Also, in objective (1) the 
market clearing prices for each period are known. 

The objective function for GenCo is expressed as 
profit maximization and formulated as follows: 
 

==

  θ π + θπ − 
  
∑∑

11

( ) ( ) ( ) ( ) ( )max
MT

c c s s
m m o

mt

t p t t p t C t        

(1) 

2
, , , , , ,

1 1

,, , , ,
1 1 1 1

( ) ( ) ( ) ( )

( ) ( )

k

k k
M

K I

o i k i k i k i k i k i k
k i
K I K I

i ki k i k i k i k
k i k i

C t t P t P t

P t C P t

a v b c

d y

= =

= = = =

= θ + + +

+θ +

∑∑

∑∑ ∑∑
(2) 

In equation (1) the first term is related to revenue 
from bilateral contracts between the GenCo and 
other market players (load serving entities, traders, 
distribution companies). The amount of power that 
the GenCo has agreed to serve in period t  as result 
of bilateral contract m is ( )c

mp t  and the price that the 
GenCo will be paid is ( )c

m tπ . With this contract, the 
GenCo’s revenue increases for ( ) ( )c c

m mt p tπ . The 
second term represents expected revenue from 
selling power ( )sp t  on market with forecasted price 

( )s tπ  in period t . The third term represents the total 
costs ( )oC t  consist of production costs (fuel costs) 

, ( )i kFC t , variable O&M costs ,i kd  and maintenance 
costs 

,
M
i kC , as stated in (2). The fuel costs are 

represented by quadratic function: 
 

= + + 2
, , , , , ,( ) ( ) ( )i k i k i k i k i k i kFC t b P t P ta c    (3) 

 
In order to use state-of-the-art techniques for 

linear programming, quadratic fuel cost functions 
are modelled by by piecewise linear approximation 
[25]. This ensures formulation of problem as mixed-
integer linear programming model that can be 
solved faster than original mixed-integer nonlinear 
programming model. The representation of this 
approximation is stated in Section 5. 
 
3.2 Bilateral contracts and energy for market 
In the newly restructured electricity market, the 
GenCo and other market players (load serving 
entities, distribution companies) can sign long-term 

bilateral contracts to cover players needs, which are 
derived from the demand of their customers. These 
bilateral contracts cover the real physical delivery of 
electrical energy. The actors agree on different 
prices, quantities, or different qualities of electrical 
energy. Also, duration of the contracts may differ, 
from medium-term (weekly, monthly) to long-term 
(yearly, few years). How much of their capacity and 
demand GenCo and players will contract through 
bilateral contracts, and how much they will leave 
open for market transactions, is their strategic and 
fundamental question. Basically, their reasons for 
contracting bilateral contracts are follows. Because 
of price volatility, market power risk and possible 
constraints in transmission network, the GenCo will 
estimate how much of its capacity will be contracted 
through bilateral contracts, and how much of 
capacity will be offered on the market. Bilateral 
contracts reduce risk for the GenCo because its 
capacities may go unused as a result of not finding 
buyers or transportation capacity on the market. 
Also, load-serving entities, distribution companies, 
as other party in bilateral contracts with the GenCo, 
face with risk on the market because of price 
volatility. Additionally, for large consumers whose 
load needs high reliable electric energy, the bilateral 
contracts give guarantee that their load will be 
always supplied. The bilateral contracts define that 
certain amount of energy during number of hours 
will be delivered at given time in the future, at 
agreed prices and at defined locations. The GenCo 
must take these bilateral contracts into consideration 
when scheduling its units [25]. 

Usually, bilateral contracts have a discrete power 
pattern during certain number of periods as well as 
corresponding price pattern. Power ( )c

mp t  and price 
( )c

m tπ  in period t are constant. This implies that 
revenue from all bilateral contracts is constant. 
According to forecasted weekly prices on market, 
GenCo has possibility to sell a part of its remaining 
production on the market. Level of power for bid on 
the market in period t , ( )sp t , depends of market 
price in period t , ( )s tπ . The revenue from selling 
power on the market is ( ) ( )s st p tπ . The variables ( )sp t  
are optimization variables. 

Prices and power quantities relevant for the 
bilateral contract can be obtained by systematic 
negotiation scheme [26] throughout the GenCo and 
its contract partners can reach a mutually benefit 
and tolerable risk. Negotiation for prices and power 
quantities will converge only if both sides can find 
price mix that provides an acceptable compromise 
between the risks and benefit (usually, part of the 
portfolio management).  
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3.3 Maintenance constraints 
The following relations represent set of constraints 
that must be satisfied in maintenance scheduling 
problem. Also, minimal request on reserve level 
determined by the SO is here taken in consideration 
as obligation for the GenCo. 
 
a) Minimum and maximum power output: The 
power output for each online unit must be within 
declared range represented by its minimum and 
maximum power output: 
 

       ,, , , ,( ) ( ) ( ) , ,i ki k i k i k i kP t P t P t i k tv v≤ ≤ ∀ ∀ ∀   (4) 
 

The unit cannot be online if it is in maintenance 
that ensured by constraint: 
 

       , ,( ) ( ) 1 , ,i k i kt t i k tv y+ ≤ ∀ ∀ ∀    (5) 
 

If the unit undergo maintenance in period t , 
, ( ) 1i k ty = , constraint (5) ensures that , ( ) 0i k tv = , 

because of that constraint (4) ensures the output of 
the unit is set to zero during maintenance. The 
power output of the unit can be equal to zero if the 
unit is not online and is not undergo maintenance. 
 
b) Contracted arrangements and power for market: 
The total power generated in thermal units must be 
enough to covers the contracted load patterns and 
power determined for the market for each period: 
 

     ,
1 1 1

( ) ( ) ( )
kK I M

c s
i k m

k i m

P t p t p t t
= = =

= + ∀∑∑ ∑   (6) 

 
 
c) Requirement on minimum of reserve: Available 
capacity of units must satisfied requirement on 
minimal level of reserve imposed by the SO for 
each period: 
 

0, ,
1 1 1

(1 ( )) ( ) ( ) ( )
kK I M

c s
i k i k m

k i m

P t p t p t R ty
= = =

− − − ≥∑∑ ∑  

 (7) 
 
d) Maintenance duration: For each unit must be 
ensured the necessary number of time periods for its 
maintenance during the horizon. The constraint (8) 
ensures this request: 
 

      , ,
1

( ) ,
T

i k i k
t

t M i ky
=

= ∀ ∀∑     (8) 

e) Continuous maintenance period: This constraint 
ensures that the maintenance for each unit must be 
finished once when begins: 
 

       , , , ,( ) ( 1) ( 1) , ,i k i k i k i kt t t M i k ty y y− − ≤ + − ∀ ∀ ∀  
(9) 

 
f) Earliest and latest maintenance start time: 
Planner in the GenCo determines earliest and latest 
maintenance start time for each thermal power unit 
taking into consideration specific unit maintenance 
requirements, appropriate season limits (heating, 
working feasibility, crew availability). Suppose 

⊂,i kT T  is the set of periods when maintenance unit 
i  in plant k  may start, so: 
 

{ }       = ∈ ≤ ≤ ∀ ∀, , ,: ,i k i k i kT t T ET t LT i k       (10) 

 
g) Number of units in the plant that can be maintain 
simultaneously: The next constraint limits the 
number of units in one plant that can be maintained 
at the same time: 
 

      ,
1

( ) ( ) ,
kI

i k k
i

t N t k ty
=

≤ ∀ ∀∑               (11) 

 
h) Incompatible pairs of units: The requirement that 
some units cannot be maintained at the same time is 
easily stated by binary constraints (12). If units a 
and b (in the same plant or in other plants) cannot 
undergo maintenance during the same period, this is 
stated as follows: 
 

     , ,( ) ( ) 1a k b kt t ty y+ ≤ ∀               (12) 
 
i) Maintenance priority: If power unit a must be 
maintained before unit b, that following constraint 
must be satisfied: 
 

{ }                  for 

, ,
1

,

( 1) ( )

, ( ) 0, ( 1) 0

t

a k b k

a k

t

t t

y y

y
τ=

τ − ≥

∀ = τ − ≤

∑         (13) 

 
j) Separation among consecutive maintenance 
outages: If between finish of maintenance of unit a 
and begin of maintenance of unit b (in the same 
plant or in different plants) is needed separation of 

,a bS  periods, than following constraints must be 
satisfied [15]: 
 

     , , , ,
1

( ) ( )
t

a k a k a b b kM S t ty y
τ=

τ − − ≥ ∀∑              (14) 
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{ }               for 

min max
, , , ,, , , ,

1 1

, , ,

( ) ( )

, ( ) 0, ( ) 0

t t

a k a k a b b ka b k a b k

a k a k a b

M M S M

t t M S

y y

y
τ= τ=

τ − − ≤ τ

∀ = τ − − ≤

∑ ∑  

(15) 
 

{ }=min
, ,, , min ,a k b ka b kM M M , { }=max

, ,, , max ,a k b ka b kM M M . 
 
k) Overlap in maintenance outages: If during period 
in that unit a finishes the maintenance before unit b 
and if duration the maintenance of unit b must 
overlap specified number of periods ,a bO , than 
following constraints must be satisfied [15]: 
 

   , , , ,
1

( ) ( )
t

a k a k a b b kM O t ty y
τ=

τ − + ≥ ∀∑              (16) 

{ }               for 

min max
, , , ,, , , ,

1 1

, , ,

( ) ( )

, ( ) 0, ( ) 0

t t

a k a k a b b ka b k a b k

a k a k a b

M M O M

t t M O

y y

y
τ= τ=

τ − + ≤ τ

∀ = τ − + ≤

∑ ∑   

(17) 
 
Unit a and unit b can be in the same power plant, or 
in different plants. If is , ,a b b kO M= , that unit a and 
unit b finish maintenance simultaneously. 
 
 
4 Methodology and Algorithm 
 
4.1 IPCPM principle and its implementation 
In traditional cutting plane method (CPM), the 
linear programming relaxations have been solved 
using the simplex method. Simplex method has an 
exponential-time characteristic, which restricts its 
real-world application. Contrarily, IPM searches 
optimum inside the feasible region, its iteration 
numbers do not obviously change as the scale of 
system increases, so it is superior to the simplex in 
convergence and calculation speed [27]. Generally, 
cutting plane method for (0/1) mixed-integer linear 
programming requires solving a large number of 
linear programming relaxations, so it is obvious that 
replacing simplex algorithm with IPM will improve 
calculation efficiency. Based on this idea, IPCPM in 
many theoretical studies and practical applications 
were shown as very promising tool for solving 
large-scale discrete optimal problems. 

The main computational principle of IPCPM and 
its implementation for the maintenance scheduling 
problem is given in Fig. 1. Obviously, two points 
are very important for IPCPM success. Firstly, how 
to generate cutting plane without simplex tableau? It 

is necessary to modify the classical techniques for 
generating cutting planes from the optimal tableau 
[23]. Secondly, how to identify the base variables in 
IPCPM? The base identification in IPCPM is as 
important as simplex tableau generation in SCPM. 
In [23] shown how is obtained base information 
from the matrix 2 1−T TDA (AD A ) AD  under non-
degenerate hypothesizes. Unfortunately, most of 
linear programming problems are degenerate and 
many problems have multiple optimums, which 
limit the IPCPM applications. 
 

  
 

ig. 1: The calculation flowchart of IPCPM for the 
maintenance scheduling problem. 

 
 
4.2 Failure reason analysis 
Cutting plane can be generated once the optimal 
base is obtained. For traditional SCPM, the optimal 
solution converges to the vertex point of convex 
hull. Optimal base can be obtained based on the 
simplex tableau and then the cutting planes are 
generated. However, for IPCPM, if relaxed linear 
program is degenerate or has multiple solutions, the 
base cannot be correctly identified. There are two 
cases in that the optimal base cannot be identified:  
(i) the optimal solution is degenerate and (ii) the 
linear relaxation programming has multiple optimal 
solutions. 

Assume that the linear programming problem has 
the standard form: = ≥min{ : , 0}Tc x Ax b x , and its 
dual problem form: + = ≥max{ : , 0}T Tb y A y s c s , 
where is ∈( , , ) nRc x s , ∈( , ) mRb y , ×∈ m nRA , and 
A  is assumed to have full row rank. 

initialization
k = 0

the maintenance scheduling
problem is infeasible. Stop!

the optimum is
found. Stop!

relax the maintenance scheduling problem
to a linear programming LP(k) by
deleting the integral constraints

solve LP(k) by
using IPM

k = k + 1

identify the
optimal basis

get cutting plane by the
information of optimal basis

add the cutting plane into
IP(k), IP(k+1) is obtained

LP(k) is
feasible?

integer values
are all integral

feasible?

N

Y

Y

N
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A simple problem is used to shown the failure 
reason of IPCPM caused by the above two cases: 
 
max 1 22 4x x+                                                          (a) 
s.t. 1 2 32 8x x x+ + =                                                (b) 
      1 4 8x x+ =                                                        (c) 
      2 5 3x x+ =                                                        (d) 
      1 2 3 4 5, , , , 0x x x x x ≥  

 
The problem (a) – (d) is equivalent to: 

 
max 1 22 4x x+                                                          (e) 
s.t. 1 22 8x x+ ≤                                                       (f) 
      1 8x ≤                                                               (g) 
      2 3x ≤                                                               (h)  
      1 2, 0x x ≥  
 

It is a multiple solution for linear programming 
problem. There are three types of solutions: 
1) non-degenerate solution x’=(2,3,0,6,0), number 

of nonzero elements is equal to 3 (it equals to 
number of equality constraints); 

2) degenerate solution x”=(8,0,0,0,3), number of 
nonzero elements is less than 3; 

3) convex combination solution x’’’=αx’+(1-α)x” 
and for α∈(0,1), e.g. x’’’=(4.5,1.75,0,3.5,1.25) 
when α=7/12, the amount of nonzero elements 
is greater than 3. 

 
The geometric meanings of the above optimal 

solution types are shown in Fig. 2. Line AC 
represents (h); line CD represents (g); line BD 
represents (f); the region area (convex polytope) 
enclosed by ABD0 is the feasible region constructed 
by constraints (f), (g) and (h). Because the line BD 
parallels the line represented by objective function, 
any point on line BD is the optimal solution. 
 

 
 

Fig. 2: Schematic diagram of optimal solutions. 

As the simplex method searches for optimal 
solutions through vertices, the solution is definitely 
vertex point of the optimal face. The vertex solution 
is corresponding to the non-degenerate solution 
(point B) or degenerate solution (point D) shown in 
Fig. 2. Gomory cutting planes can be generated 
from the final simplex tableau. Obviously, a simplex 
tableau is not available when the interior point 
method is used. Interior point method searches for 
optimal solution through the interior of feasible 
region, and all three types of solutions may be 
obtained. As shown in Fig. 2, the optimal solution is 
more likely to converge to any point pertaining to 
line BD. In other words, the optimum is convex 
combination solution. In this situation, IPCPM 
would fail as the optimal base cannot be identified. 
 
 
4.3 The improvement of IPCPM 
An optimal base identification method is developed 
[28] and its procedure can be described as in Fig. 3. 

The index set  {1,…,n} is partitioned into subsets 
ℑ1, ℑ2 and ℑ3, and defined as follows: 
 
ℑ = > =1 { | 0, 0}j jj x s ,   ℑ = = =2 { | 0, 0}j jj x s , 

ℑ = = >3 { | 0, 0}j jj x s , ( js – dual slack variables). 
 

 
 

Fig. 3: Diagram of optimal base identification. 
 

The columns of matrix A and elements of vector 
c are classified as three parts: 

 
= ∈ ℑ1 * 1{ | }jA jA , = ∈ ℑ1 1{ | }jc jc  

= ∈ ℑ2 * 2{ | }jA jA , = ∈ ℑ2 2{ | }jc jc  

= ∈ ℑ3 * 3{ | }jA jA , = ∈ ℑ3 3{ | }jc jc  

 
where A1, A2 and A3 are composed of the 
corresponding columns of index sets ℑ1, ℑ2 and ℑ3 

0 1

1

2
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3

3
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4
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optimization trajectory of IPCPM
optimization trajectory of simplex method

optimal face
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of matrix A separately; c1, c2 and c3 are composed of 
the corresponding elements of index sets ℑ1, ℑ2 and 
ℑ3 of vector c separately.  

The procedure is as follows: 
① Classify the type of solution: non-degenerate 
solution, degenerate solution or convex combination 
solution. The index sets ℑ1, ℑ2 and ℑ3 are obtained: 

i) if it is a non-degenerate solution, the index set 
of nonzero elements is the index set of optimal 
base, let 1=B A , go to ⑩; 

ii) if it is a degenerate solution, let 1=B A , go to 
⑥; 

iii) if it is convex combination solution, go to ②. 
② The movement of primal optimal solution: 

i) solve equation 1 0=A z . As 1A  is column 
linearly dependent, z may have multiple 
solutions. Choose one of nonzero vector z; 

ii) solve = + ≥,
1 1 0tx x z , calculate the range of 

scalar t : min maxt t t≤ ≤ . 
③ Choose anyone of mint  and maxt , let = +,

1 1 tx x z
. For certain =,

1 0jx  ( ,
1jx represents the jth element 

of ,
1x ), ,

1jx  is removed from ,
1x  and added into 2x , 

the column corresponding to ,
1jx  is removed from 

1A  and added into 2A , let = ,
1 1x x , = ,

1 2 3( , , )x x x x . 
④ If 1A  is column dependent, go to ②, else let 

1=B A , go to next step. 
⑤ If 1 2( ) ([ , ])rank rank<B A A  go to ⑧, else go to next 
step. 
⑥ Add the columns of 2A  which are linearly 
independent of B  into B . 
⑦ If ( )rank m=B , go to ⑩, else go to next step (m is 
number of linear independent constraints). 
⑧ The movement of dual optimal solution: 

i) solve equation 0=TB z  and choose anyone of 
nonzero vector z ; 

ii) according to 3 3' ≤TA y c , calculating the range 
of t : min maxt t t≤ ≤ . 

⑨ Choose anyone of mint  and maxt , let ' t= −y y z
certainly j satisfies 3 3'j ja =T y c  ( 3ja  is jth column of 

,3A  3jc  is jth element of 3c ), 3ja  is removed from
3A  and added into 2A  and B, meanwhile B should 

be kept column linearly independent, go to ⑦. 
⑩ Stop procedure, B is optimal base matrix. 
 
 
5 Case Study 
To illustrate the effectiveness of the proposed model 
we have presented an illustrative case study. The 
model has been implemented and solved with C++ 
language on PC based platform with GenuineIntel 
processor clocking at 3.20 GHz with 3 GB of RAM. 
 
5.1 Input data 
Input data from realistic case study are presented in 
this section. The GenCo generation system consists 
of five thermal power plants with total 20 power 

units. Table 1 and Table 2 show list of thermal units 
with its capacities, maintenance parameters, fuel 
cost coefficients, O&M and maintenance costs. The 
length of the planning horizon is 52 weeks, and 
maintenance schedule for each unit will occur just 
once during the planning horizon. 

 
Table 1: The parameters of thermal power units  

plant 
k 

unit 
Pmin Pmax M ET LT i no. 

TPP 
#1 

1 1 265 310 5 23 32 
2 2 265 310 6 18 26 
3 3 120 220 6 1 20 
4 4 115 180 4 1 44 
5 5 65 90 4 1 44 

TPP 
#2 

1 6 100 155 3 1 50 
2 7 120 180 5 1 36 
3 8 120 180 5 1 36 

TPP 
#3 

1 9 360 450 7 24 38 
2 10 255 330 4 22 29 
3 11 215 270 4 18 42 
4 12 160 240 6 16 29 

TPP 
#4 

1 13 420 450 3 34 40 
2 14 265 320 5 20 28 
3 15 220 340 6 20 35 
4 16 210 255 5 1 45 

TPP 
#5 

1 17 155 230 5 1 45 
2 18 130 180 4 18 29 
3 19 120 160 5 12 40 
4 20 120 160 5 18 36 

 
Table 2: Fuel cost coefficients, O&M costs and 

maintenance costs of thermal power units 
plant unit a b c d CM 

TPP 
#1 

1 90 9.64 0.0395 0.76 126 
2 90 9.64 0.0395 0.76 126 
3 122 11.04 0.0673 0.44 117 
4 104 12.60 0.0883 0.43 104 
5 130 16.02 0.0831 0.36 93 

TPP 
#2 

6 210 10.44 0.0639 0.30 104 
7 156 13.09 0.0761 0.34 104 
8 156 13.09 0.0761 0.34 104 

TPP 
#3 

9 555 4.77 0.0234 0.82 137 
10 287 7.34 0.0493 0.77 126 
11 135 9.93 0.0534 0.53 117 
12 255 11.04 0.0678 0.48 117 

TPP 
#4 

13 540 5.91 0.0263 0.79 137 
14 297 10.05 0.0471 0.72 126 
15 303 11.13 0.0398 0.81 117 
16 167 16.04 0.0477 0.69 117 

TPP 
#5 

17 136 12.18 0.0701 0.51 117 
18 144 14.01 0.0826 0.49 104 
19 202 13.89 0.0931 0.52 104 
20 202 13.89 0.0931 0.52 104 
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Using of piecewise linear approximation for 
quadratic fuel cost characteristics given in Eq. (3), 
complete model is then presented as mixed-integer 
linear programming (MILP) formulation of the 
maintenance scheduling problem that ensures an 
efficient solution using IPCPM. The piecewise 
linear approximation of cost characteristics (variable 
costs) is formulated as follows [25,29]: 
 

       
=

= ∀ ∀ ∀∑,
1

( ) ( , ) ( , , ), , ,
N

i k n n
n

VC t F i k d i k t i k t  

       
=

= + ∀ ∀ ∀∑,, ,
1

( ) ( ) ( , , ), , ,
N

i ki k i k n
n

P t P t d i k t i k tv  

        ≤ ≤ ∀ ∀ ∀ =0 ( , , ) ( , ), , , , 1,2,...,s
n nd i k t d i k i k t n N

 
where N  is the number of blocks of the piecewise 
linear variable cost function, ( , )nF i k  represents the 
slope of block n  of the variable cost of thermal unit 
i , ( , , )nd i k t  represents the power produced by unit i  
in period t  using nth power block, ( , )s

nd i k  is size of 
the nth power block for unit i . 

Variable costs have been modelled using the 
piecewise linear approximation with three blocks as 
shown in Table 3. 
 
Table 3: Piecewise linear approximation of fuel cost 

characteristic of thermal power units 

plant unit T 1
 

(M
W

) 

T 2
 

(M
W

) 

F 1
 

($
/M

W
h)

 

F 2
 

($
/M

W
h)

 

F 3
 

($
/M

W
h)

 

TPP 
#1 

1 280 295 31.168 32.353 33.538 
2 280 295 31.168 32.353 33.538 
3 153.3 186.7 29.435 33.922 38.409 
4 136.7 158.3 34.822 38.649 42.475 
5 73.3 81.7 27.516 28.901 30.286 

TPP 
#2 

6 118.3 136.7 24.392 26.735 29.078 
7 140 160 32.876 35.920 38.964 
8 140 160 32.876 35.920 38.964 

TPP 
#3 

9 390 420 22.320 23.724 25.128 
10 280 305 33.716 36.181 38.646 
11 233.3 251.7 33.871 35.829 37.787 
12 186.7 213.3 34.544 38.160 41.776 

TPP 
#4 

13 430 440 28.265 28.791 29.317 
14 283.3 301.7 35.877 37.603 39.330 
15 260 300 30.234 33.418 36.602 
16 225 240 36.790 38.221 39.652 

TPP 
#5 

17 180 205 35.664 39.169 42.674 
18 146.7 163.3 36.863 39.616 42.369 
19 133.3 146.7 37.475 39.958 42.441 
20 133.3 146.7 37.475 39.958 42.441 

 

In Table 3 constants T1 and T2 mean upper limit 
of blocks 1 and 2 of thermal unit variable cost. 

Table 4 shows forecasted weekly prices on the 
market. It should be noted that price profile should 
be obtained by appropriate forecasting procedures. 

 
Table 4: Weekly forecasted market prices 

t  ( )s tπ  t  ( )s tπ  t  ( )s tπ  t  ( )s tπ  

1 44.44 14 37.84 27 40.59 40 36.19 
2 45.87 15 37.62 28 40.26 41 34.87 
3 44.99 16 41.58 29 42.68 42 36.63 
4 44.44 17 36.74 30 41.47 43 41.58 
5 47.08 18 41.47 31 34.76 44 47.96 
6 44.11 19 46.09 32 36.08 45 47.85 
7 46.09 20 45.65 33 37.84 46 52.36 
8 42.9 21 42.46 34 35.97 47 53.13 
9 41.14 22 46.86 35 34.65 48 51.26 

10 39.93 23 46.75 36 35.64 49 54.89 
11 40.15 24 49.17 37 38.83 50 58.63 
12 39.16 25 47.08 38 34.87 51 66.22 
13 40.37 26 43.01 39 33.66 52 56.32 
 
The request on minimum reserve determined by 

the SO, that GenCo must satisfy as an obligation, 
assumed to be value of 250 (MW) for each week. 

The GenCo has two yearly bilateral contracts, for 
example, with large consumers. First contract has 
power pattern that is constant during certain number 
of weeks with corresponding price pattern and 
second contract with constant power during year 
with fixed price. The contracted power profiles and 
prices are presented in Table 5. 
 

Table 5: Bilateral contracts with power profile 
(MW) and prices profile ($/MWh) 

CONTRACT #1 
t 1-8 9-24 25-28 29-32 33-40 41-49 50-52 

1( )cp t  2300 2150 2000 1700 1750 2200 2300 

1( )c tπ  45.5 38.8 38.0 38.4 36.9 42.5 52.9 

CONTRACT #2: 2( )cp t = 1250 (BASE LOAD); 2( )c tπ = 45.8 

 
The results of following test cases are analysed: 

• case #1: only constraints (1) – (11); 
• case #2: case #1 plus incompatible pairs of units 

(units 4 and 5 in TPP#1 and units 7 and 8 in 
TPP#2 cannot be maintained at the same time); 

• case #3: case #2 plus maintenance priority (in 
TPP#3, unit 9 must be maintained before unit 13 
in TPP#4); 

• case #4: case #3 plus separation among 
consecutive maintenance outages (after finishing 
maintenance of unit 16 in TPP#4 and beginning 
maintenance of unit 20 in TPP#5, separation of 
5 weeks is needed); 
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• case #5: case #4 plus overlap in maintenance 
outages (maintenance of unit 14 in TPP#4 must 
begin 3 weeks before unit 9 in TPP#3 finish its 
maintenance). 

 
5.2 Test results and analysis 
For specified test cases, Table 6 shows total costs, 
profit and total energy for market. Maximum profit 
and the biggest energy amount for the market are 
obtained in test case #1 that considers only basic 
constraints (4) – (11). The lowest costs and the 
smallest energy amount for the market are obtained 
in test case #5 characterized with the smallest value 
of profit compared with other cases. It can be seen 
from Table 6 how different set of constraints 
assigned to maintenance scheduling problem affects 
total costs of GenCo’s generation system, and how 
affects its profit. In all cases, total energy from both 
bilateral contracts is equal 29,114,400 (MWh). 
 
Table 6: The global results for different test cases – 

with bilateral contracts 

test case total costs 
($) 

profit 
($) 

total energy for 
market (MWh) 

#1 872,372,944.5 677,634,841.3 7,110,600 
#2 875,677,007.3 676,948,698.9 7,173,533 
#3 873,235,053.5 676,893,648.6 7,109,390 
#4 875,219,021.6 676,636,072.0 7,167,367 
#5 866,444,939.5 673,087,691.8 6,916,560 

 
It is illustrative to consider the influence of 

bilateral contracts on GenCo’s profit for the above 
test cases. Table 7 shows total costs, profit, and the 
total generated energy for market without bilateral 
contracts. Introduction of bilateral contracts further 
complicates finding optimal maintenance schedule. 
However, always it ensures an additional profit for 
the GenCo. Furthermore, plant generation becomes 
far less sensitive to fluctuations of market prices, 
simply because bilateral contracts stipulate energy 
production and placement. 
 
Table 7: The global results for different test cases – 

without bilateral contracts 

test case total costs 
($) 

profit 
($) 

total energy for 
market (MWh) 

#1 865,154,473.0 581,259,694.5 35,987,717 
#2 864,898,156.6 580,971,102.9 35,980,997 
#3 865,154,473.0 581,259,694.5 35,987,717 
#4 864,155,260.8 580,158,658.1 35,956,082 
#5 864,580,583.7 576,363,503.8 35,972,597 

 
Let’s assume that market prices have deviations 

in the range of ±5%, as reason, for example, errors 

in forecast prices. The increment of this deviations 
is –1% (decrease prices), i.e. +1% (increase prices). 
The elements from two bilateral contracts remain 
the same and they are given in Table 5. 

Next, we focus on test case #5. Table 8 shows 
profit for every incremental price change on the 
market, as well as profit deviation for a given price 
change. Results in Table 8 lead to the conclusion 
that existence of bilateral contracts play the role of 
shock absorber in the profit function, meaning that 
change of profit happens slowly than change of 
market prices. Essentially, profit deviations are 
attenuated when compared to the market prices 
changes. For instance, 5% price decrease causes 
only 2.04% decrease in the profit. The sensitivity is 
somewhat larger in the case of price increase, where 
5% market price increase causes 2.25% increase in 
the profit. 
 

Table 8: The profit deviations with changes in the 
market prices 

market prices 
deviation –5% –4% –3% –2% –1% 0% 

profit (mil. $) 659.3 662.1 664.8 667.6 670.9 673.1 

profit deviation 
(%) –2.04 –1.64 –1.24 –0.82 –0.32 0 

market prices 
deviation 1% 2% 3% 4% 5% 

 

profit (mil. $) 676.2 678.9 682.0 684.8 688.2 
 

profit deviation 
(%) 0.51 0.86 1.33 1.74 2.25 

 

 
Obtained maintenance schedule of the thermal 

power units for test cases #1 and #5 can be seen in 
Tables 9 and 10. 

Tables 9 and 10 show total production of thermal 
units PT(t), power for market pS(t), total reserve R(t) 
and power in maintenance PM(t) for each week t. 
Shown in Tables 9 and 10, resulting schedule during 
the horizon satisfied all specified constraints and 
ensured profit maximization obtained by IPCPM 
described in Section 4. Schedules for test cases #2, 
#3 and #4 are obtained in similar manner, where 
given constraints are satisfied for each test case. In 
analyzed test cases maintenance constraints, weekly 
power profile from bilateral contracts and weekly 
forecasted market prices are dominant factors for 
high number of contemporaneous power plants in 
maintenance condition. The effect of constraints in 
the maintenance scheduling problem significantly 
impacts both total production, as well as the power 
offered to the market. 
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Table 9: The maintenance schedule for case #1 

w
ee

k units in 
maintenance 

PT(t) 
 (MW) 

pS(t) 
(MW) 

R(t) 
(MW) 

PM(t) 
(MW) 

1 – 4760 1210 250 0 
2 – 4760 1210 250 0 
3 – 4760 1210 250 0 
4 – 4760 1210 250 0 
5 – 4760 1210 250 0 
6 – 4760 1210 250 0 
7 – 4760 1210 250 0 
8 – 4705 1155 305 0 
9 – 4512 1112 498 0 

10 – 4433 1033 577 0 
11 – 4452 1052 558 0 
12 3 4182 782 608 220 
13 3 4283 883 507 220 
14 3,4,5 3885 485 635 490 
15 3,4,5,6 3660 260 705 645 
16 3,4,5,6,12 3812 412 313 885 
17 3,4,5,6,12 3500 100 625 885 
18 12 4327 927 443 240 
19 12 4520 1120 250 240 
20 12 4520 1120 250 240 
21 12 4520 1120 250 240 
22 – 4760 1360 250 0 
23 – 4760 1360 250 0 
24 – 4760 1360 250 0 
25 – 4760 1510 250 0 
26 2 4417 1167 283 310 
27 2 4160 910 540 310 
28 2,10,14 3597 347 453 960 
29 2,10,14,18 3593 643 277 1140 
30 2,10,14,18 3522 572 348 1140 
31 1,2,10,14,18 2950 0 610 1450 
32 1,8,14,15,18,20 2950 0 570 1490 
33 1,8,15,20 3407 407 613 990 
34 1,8,9,15,20 3000 0 570 1440 
35 1,8,9,15,20 3000 0 570 1440 
36 7,8,9,13,15,20 3000 0 250 1760 
37 7,9,13,15 3028 28 562 1420 
38 7,9,13,16,17,19 3000 0 285 1725 
39 7,9,11,16,17,19 3000 0 465 1545 
40 7,9,11,16,17,19 3000 0 465 1545 
41 11,16,17,19 3450 0 645 915 
42 11,16,17,19 3473 23 622 915 
43 – 4567 1117 443 0 
44 – 4760 1310 250 0 
45 – 4760 1310 250 0 
46 – 4760 1310 250 0 
47 – 4760 1310 250 0 
48 – 4760 1310 250 0 
49 – 4760 1310 250 0 
50 – 4760 1210 250 0 
51 – 4760 1210 250 0 
52 – 4760 1210 250 0 

Table 10: The maintenance schedule for case #5 

w
ee

k units in 
maintenance 

PT(t) 
 (MW) 

pS(t) 
(MW) 

R(t) 
(MW) 

PM(t) 
(MW) 

1 – 4760 1210 250 0 
2 – 4760 1210 250 0 
3 – 4760 1210 250 0 
4 – 4760 1210 250 0 
5 – 4760 1210 250 0 
6 – 4760 1210 250 0 
7 – 4760 1210 250 0 
8 – 4705 1155 305 0 
9 – 4512 1112 498 0 

10 – 4433 1033 577 0 
11 – 4452 1052 558 0 
12 3 4182 782 608 220 
13 3 4283 883 507 220 
14 3 4090 690 700 220 
15 3 4020 620 770 220 
16 3 4380 980 410 220 
17 3 4020 620 770 220 
18 – 4567 1167 443 0 
19 – 4760 1360 250 0 
20 – 4760 1360 250 0 
21 – 4630 1230 380 0 
22 – 4760 1360 250 0 
23 16 4505 1105 250 255 
24 9,16 4055 655 250 705 
25 9,16,18 3875 625 250 885 
26 2,9,16,18 3565 315 250 1195 
27 2,9,16,18 3370 120 445 1195 
28 2,9,14,18 3297 47 453 1260 
29 2,9,10,12,14 3077 127 283 1650 
30 2,9,10,12,14 3032 82 328 1650 
31 2,7,10,12,14 3008 58 622 1380 
32 1,7,10,12,14,19 2950 0 520 1540 
33 1,5,7,12,19,20 3337 337 533 1140 
34 1,5,7,12,15,19,20 3000 0 530 1480 
35 1,5,7,15,19,20 3098 98 672 1240 
36 1,5,8,15,19,20 3113 113 657 1240 
37 8,15,20 3808 808 522 680 
38 4,8,13,15,17 3000 0 630 1380 
39 4,8,11,13,15,17 3000 0 360 1650 
40 4,6,8,11,13,17 3000 0 545 1465 
41 4,6,11,17 3450 0 725 835 
42 6,11,17 3648 198 707 655 
43 – 4567 1117 443 0 
44 – 4760 1310 250 0 
45 – 4760 1310 250 0 
46 – 4760 1310 250 0 
47 – 4760 1310 250 0 
48 – 4760 1310 250 0 
49 – 4760 1310 250 0 
50 – 4760 1210 250 0 
51 – 4760 1210 250 0 
52 – 4760 1210 250 0 
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Table 11: Model dimensions for case #5 
# of binary 
variables 

# of real 
variables 

# of  
constraints 

2288 3484 7208 
 
Table 12: Evolution cutting planes through iteration 

progress for case #5 
iteration 

ID 
cutting 
plane 

iteration 
ID 

cutting 
plane 

iteration 
ID 

cutting 
plane 

1 1145 6 148 11 25 
2 986 7 97 12 14 
3 759 8 66 13 6 
4 431 9 43 14 3 
5 257 10 38 15 0 

 
Table 11 summarizes calculation dimensions for 

case #5. The presented maintenance scheduling 
problem has many binary and continuous variables 
that are typical for MILP. Because the complexity 
of the presented formulation, it cannot be solved by 
original IPCPM. In fact, the main reason is failing to 
find the cutting plane, as it is analyzed in section 
4.2. The optimal solution is obtained by using 
improved IPCPM and number of cutting planes 
during 15 iterations is listed in Table 12. 
 
 
6 Conclusion 
In restructured power systems and liberalized 
market, maintenance scheduling problem has new 
characteristics different from those in traditional 
environment. In presented maintenance scheduling 
model, GenCo’s interest is to maximize profit, 
combining energy sales through bilateral contracts 
and energy sales on market. GenCo is responsible 
for performing necessary maintenance of its power 
units in order to sustain its position on the market. 
The maintenance periods of time for power units are 
scheduled either by profit-seeking GenCos only, or 
by coordination between profit-seeking GenCos and 
reliability-concerned System Operator and extent of 
coordination depends on the market characteristics. 
Although the coordination procedure how System 
Operator adjust the individual GenCos' maintenance 
schedules and how each GenCo responds to the 
adjusted schedule is important, it is not a main 
concern of this paper and one can investigate more 
about this subject. In this paper the maintenance 
scheduling problem is analyzed from the GenCo 
point of view.  

To solve this maintenance scheduling problem, 
the interior point cutting plane method is used. This 
method possesses advantages of both, interior point 
method and cutting plane method, and becomes very 

promising approach for large-scale and discrete 
optimization problems. The new base identification 
method is presented to solve problem of degenerate 
solutions and convex combination solutions. The 
improved algorithm can solve difficulties brought 
by multiple solutions. 

The presented model has been successfully tested 
on the realistic size case study. Numerical results 
have revealed the accuracy and computationally 
efficient performance of the presented formulation. 
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