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Abstract:- This paper has been designed optimize feed-back controller for dynamic response of the power systems.

The power system consists of the infinite bus through a transmission line supplied by a synchronous machine and

also multi machine power system. The effect of two control signals fed to the voltage regulator and the mechanical

system is investigated. Robust Linear quadratic Gawssian (LQG) control technique based power system stabilizer

is developed for excitation system control and the mechanical system control. The proposed robust LQG-PSS is

simple, effective, and can ensure that the system is asymptotically stable for all admissible uncertainties and

abnormal operating conditions. To validate the effectiveness of the proposed power system stabilizer, a sample

power system consists of multi machine and single machine are simulated and subject to different disturbance and

parameter variations. Kalman Filter is used for compound with LQR to get robust LQG control. The results prove

the robustness and powerful of proposed LQG controller stabilizer than LQR controller in terms of fast damping

response and less settling time of power system states responses.
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1 Introduction

Many papers have been published on the
synthesis of the power system stabilizer (PSS) control
system. Some approach it by complex frequency
methods using the concept of synchronizing and
damping torques [1, 2], some by optimal control
methods and also, by using pole placement methods
[3-5]. In control system designed a satisfactory
controller cannot be obtained by considering the
internal stability objective alone. The interconnected
power system can be achieved by conventional
controller as[1, 3].  A brief overview of the theoretical
foundation of H synthesis is introduced in [7]. The

H formulation and solution procedures are
explained, and guidelines on how to choose proper
weighting functions that reflect the robustness and
performance goals are given in [8,9,10 ]. H
synthesis is carried out in two stages. First, in what is
called the H formulation procedure, robustness to
modeling errors and weighting the appropriate input-
output transfer functions usually reflects performance
requirements. The weights and the dynamic model of
the power system are then augmented into an

H standard plant [9].  Second, in what is called the

H solution procedure, the standard plat is
programmed into a computer aided design software,
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such as MATLAB[11],  and the weights are iteratively
modified until an optimal controller that satisfies the

H optimization problem is found.  Time response
simulations are used to validate the results obtained
and to illustrate the dynamic system response to state
disturbances. The effectiveness of such controllers is
examined at different extreme operating conditions.
Using the linear quadratic regulator (LQR) for
comparison with the proposed robust H controller.
The present paper used the LQR approach and
Kalman filter to design a robust LQG power system
stabilizer for stabilization the dynamic responses at
different operating conditions.

2  Power System Model

Two power system models are studying in this

research as follow:

2.1. Single machine model

A synchronous machine connected to infinite bus
through transmission line is obtained in a an
interconnected power system between automatic
voltage regulation and load frequency control as
shown in a block diagram of Fig.1. Where :

ω = the mechanical speed.
∆ω   = speed deviation
R = regulation constant.
μs = damping factor
KA = exciter constant.
TA = exciter time constant.

∆δ    = change in torque angle.
∆Efd = change equivalent excitation voltage
∆E'

q = change internal voltage behind transient
reaction

K1 to K6 = constant of linear Zed model of
synchronic machine

The state space formulation can be obtained as
follows :

Steady-state Representation
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In a matrix form as follows:

dPUBXAX  
.

(7)

where;

 tfdgmq EPTEX  '

Fig.1: The block diagram of single machine power system.
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2.2. Multi-machine model

The power system in this model consists of three
synchronous machines connected to infinite bus and
its dynamic performance is represented in the state
variables form. The single line diagram model for the
system is shown in the Fig.2 and is based upon the
following assumptions

1- Saturation is neglected,
2- Armature transformer voltage is

neglected,
3- Damper winding effect is neglected.

.
Once the A, B and C matrices are determined,
applying the Linear Quadratic Gaussian LQG
controller on it.  The multi machine power system
data and load flow are displayed in tables 1, 2 [2, 12].

Fig.2: Three machine-infinite bus system.

Table 1: The Multi-machine Power System Data

Table 2 : The Multi-machine load flow data.

M/C Machine data

Xd Xq Xj Tdo H KA TA Base quantities

1 1.68 1.66 0.32 4.0 2.31 40.0 0.05 360 MVA, 13.8KV
2 0.88 0.53 0.33 8.0 3.40 45.0 0.05 503 MVA, 13.8KV
3 1.02 0.57 0.20 7.76 4.63 50.0 0.05 1673 MVA, 13.8KV

Bus Power flow Qo MVA Vto pu.  o. degrees
Po, MW

1 26.5 37.0 1.3 10
2 518 -31.5 1.025 32.52
3 1582 -69.9 1.3 45.82
4 410.0 49.1 1.6 20.69
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Each plant is represented by a 4th -order generator equipped with a static exciter. The state equation of this system
is given by

BUAXX 
.

(8)
Where

X = [W1, W2, W3,   1,   2,   3, e َ◌q1,  e َ◌q2, e َ◌q3,  eFD1,  eFD2,  eFD3]T

U = [u1 u2 u3]
T

A = Matrix system
B = input matrix
Is the input vector .The system A and B are given as follows

3 Control Design Strategy

3.1 Optimal LQR control design

The object of the optimal control design is
determining the optimal control law u(t,x) which can
transfer system from its initial state to the final state
such that  given quadratic  performance index is
minimized.

[KLQR ,S,E]=lqr(A,B,Q,R,N) (9)

Where: Q is positive semi definite matrix and R is
real symmetrical matrix. The problem is to find the
vector feedback K of control law, by choosing matrix

Q and R to minimize the quadratic performance index
J is described by  :




 
0

1 )( dtuRuxQxJ tt

The optimal control law is written as

Δ u(t)= K Δ x (t)

KLQR = - R-1 Bt P (10)

The matrix P is positive definite, symmetric
solution to the matrix Riccati equation, which has
written as:
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P A + At P + Q - P B R-1 Bt P = 0 (11)

3.2 optimal compensator LQG control

We have introduced the Kalman filter, which is an
optimal observer for multi-output plants in the
presence of process and measurement noise, modeled
as white noises. The optimal compensator Linear
Quadratic Gaussian (LQG) consists of combine
between optimal LQR control and Kalman filter as
shown in Figs.3,4.  In short, the optimal compensator
LQG design process is the following:

1- Design an optimal regulator LQR for a linear
plant assuming full-state feedback (i.e.
assuming all the state variables are available
for measurement)  and a quadratic objective
function.

2- Design a Kalman filter for the plant assuming
a known control input, u(t), a measured
output, y(t), and white noises, v(t) and z(t).
The Kalman filter is designed to improve an
optimal estimate of the state-vector.

3- Combine the separately designed optimal
regulator LQR and Kalman filter into an
optimal compensator LQG.

4- The optimal regulator feedback gain matrix,
K, and the Kalman filter gain matrix, L, are
used to complete closed  compensator system
LQG as follows:

From Eq. 10 get optimal regulator gain matrix KLQR.
Calculate the Kalman filter gain as follows. Let the
system as

.
x = Ax + Bu + Gw {State equation} (12)
y = Cx + Du + v {Measurements}

with unbiased process noise w and measurement
noise v with covariance’s

E{ww'} = Q,    E{vv'} = R,    E{wv'} = N ,

[L,P,E] = LQE(A,G,C,Q,R,N) (13)

Returns the observer gain matrix L such that the
stationary Kalman filter.

x_e = Ax_e + Bu + L(y - Cx_e - Du)

Produces an optimal state estimate x_e of x using the
sensor measurements y. The resulting Kalman
estimator can be formed with estimator. The noise
cross-correlation N is set to zero when omitted. Also
returned are the solution P of the associated Riccati
equation.

AP+PA'-(PC'+G*N)R(CP+N'*G')+G*Q*G'=0 (14)

and the estimator poles E = EIG(A-L*C).

Using MATLAB function readymade command reg
to construct a state-space model of the optimal
compensator LQG, given a state-space model of the
plant, sysp,  the optimal regulator feedback gain
matrix K, and the Kalman filter gain matrix L. This
command is used as follows:

),,(_ LLQRKsyspregclosedsys  (15)

Where;
sys_closed is the state-space model of the LQG
compensator. The final, get the system overall
feedback sysCL as:

)_,( closedsyssyspfeedbacksysCL  (16)

Where, sysCL is the state-space of LQG plus state-
space of system with open-loop

Fig. 3: Linear Quadratic Gaussian (LQG) control system.
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Fig.4 : The LQG synthesis.
Where: A  = system matrix
B  = control matrix
C  = output matrix
S  =laplace operator

3.3 State estimation using Kalman filter

Alternatively, it is possible to estimate the
whole state vector by using a Kalman filter. The
Kalman filter optimally filters noise in the measured
variables and allows the estimation of unmeasured
states. The Kalman filter uses a model of the system
to find a state estimate ˆx(t) by integrating the
following state observer equation:

(17)

where my is the measured output and Kf is the

Kalman filter gain. The Kalman filter assumes that
the measurements obey the following model:

(18)

Where G is a noise distribution matrix, w and v are
white noise processes. v is the
measurement noise and is assumed to have a
covariance matrix Rf. w is known as process noise
and is assumed to have a covariance matrix Qf . The
Kalman filter gain Kf is found as follows:

where P is the solution of the algebraic Ricatti
equation:

)

If we use the control law given in Equation 17 with a
state estimate obtained using a Kalman filter, then we
are using the LQG (Linear Quadratic Gaussian)
control law:

(20)

4 Digital Simulation Results

4.1 Simulation of single machine model

From LQR control (Eqn. 10), the feedback gain and
solution of Reccati equation are :











0.0032-0.04130.0015-0.1779-1.73020.0214-

0.08310.1071-0.00400.44933.9708-0.0655
LQRK





























0.00000.0000-0.00000.00010.0010-0.0000

0.0000-0.00030.0000-0.0014-0.01380.0002-

0.00000.0000-0.00000.0001-0.0005-0.0000

0.00010.0014-0.0001-0.02930.1226-0.0005-

0.0010-0.01380.0005-0.1226-1.65240.0025

0.00000.0002-0.00000.0005-0.00250.0004

*1000S

From LQG  and Kalman filter control (Eqn. 13), the
observer gain matrix L and solution of reccati
equation P  are :
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(19)
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Table 3: Eigen values calculation with and without controllers of single machine power system.

Operating
point

Without
control

LQR-Control With
Kalman

LQG+Feedback
Control

P=1, Q=0.25
pu.

Lag p.f  load

-0.0367 +6.9961i
-0.0367 - 6.9961i
-14.2953
-12.4821
-2.7625
-3.7201

-1.1161 + 7.2542i
-1.1161 - 7.2542i

-43.3537
-14.2787
-5.6556
-2.9596

-7.24 +10.0732i
-7.24 -10.0732i
-14.3023
-12.4881
-3.7076
-2.8026

-7.2411 +10.0732i
-7.2411 -10.0732i
-1.1161 + 7.2542i
-1.1161 - 7.2542i

-43.3537
-14.3023
-14.2787
-12.4881
-5.6556
-3.7076
-2.8026
-2.9596

P=1, Q= -0.25
pu
Lead p.f

0.1033 + 6.3047i
0.1033 - 6.3047i

-14.9008
-12.4804
-2.4303
-3.7285

-1.2812 + 6.6267i
-1.2812 - 6.6267i
-6.1062
-1.5921

-43.3498
-14.8640

-2.28 + 6.6889i
-2.28 - 6.6889i
-3.7220
-2.3389

-14.9022
-12.4809

-1.2812 + 6.6267i
-1.2812 - 6.6267i
-2.2857 + 6.6889i
-2.2857 - 6.6889i
-14.9022
-14.8640
-12.4809
-6.1062
-1.5921
-2.3389
-3.7220

-43.3498

Figure 5 shows the rotor angle deviation response
due to 0.1 load disturbance with and without LQG
and LQR controllers at lag power factor load (P=1,
Q=0.25 pu). Fig.6 depicts the rotor speed deviation
response due to 0.1 load disturbance with and without
LQG  and LQR controllers at lag power factor load
(P=1, Q=0.25 pu). Fig. 7 shows the rotor speed
deviation response due to 0.1 load disturbance with
LQG compared with LQR controllers at lag power
factor load (P=1, Q=0.25 pu). Fig. 8 displays the
rotor speed deviation response due to 0.1 load
disturbance with LQG compared with LQR
controllers at lead  power factor load (P=1, Q= - 0.25
pu). Fig. 9 shows the rotor speed deviation response
due to 0.1 load disturbance with and without LQG
and LQR controllers at lead  power factor load (P=1,
Q= -0.25 pu) .Moreover, Table 3 displays the
Eignvalues calculation with and without controllers
for single machine power system. Also, Table 4
shows the Settling time for single machine model
with and without controllers
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Fig.5: Rotor angle dev. Response due to 0.1 load
disturbance with and without LQG  and LQR controllers at

lag power factor load (P=1, Q=0.25 pu).
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Fig.6: Rotor speed dev. Response due to 0.1 load
disturbance with and without LQG  and LQR controllers at

lag power factor load (P=1, Q=0.25 pu).
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Fig. 7: Rotor speed dev. Response due to 0.1 load
disturbance with LQG compared with LQR controller at

lag power factor load (P=1, Q=0.25 pu).
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Fig. 8: Rotor speed dev. Response due to 0.1 load
disturbance with LQG compared with LQR controller at

lead  power factor load (P=1, Q= - 0.25 pu).
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Fig. 9: Rotor speed dev. Response due to 0.1 load
disturbance with and without LQG  and LQR controllers at

lead  power factor load (P=1, Q= -0.25 pu).

Table 4: Settling time for single machine model with and
without controllers

States Without
Control

LQR-
Control

LQG-
Control

P=1,
Q=0.25
pu.

Rotor
Speed

> 10 Sec. 7 Sec. 4 Sec.

Rotor
Angle

>10 Sec. 5 Sec. 2.5 Sec.

P=1, Q=
-0.25 pu.

Rotor
Speed

 3.5 Sec. 2 Sec.

Rotor
Angle

 2 Sec. 0.5 Sec.

4.2 Simulation results of multi-machine
system

From LQR control (Eqn. 10), the feedback gain is:


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


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0.00000.00000.00000.00010.00000.00000.00020.00010.0000-0.0310-0.0060-0.0014-

0.00050.01710.00040.00900.02320.00510.0105-0.21180.0314-5.3269-0.3101-0.1203-

0.00330.00010.00040.02220.00230.00770.11170.0034-0.00076.1716-0.9033-0.3427-

LQRK

From LQG  and Kalman filter control (Eqn. 13), the
observer gain matrix L and solution of reccati
equation P  for multimachine power system are
calculated as:
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P = 1.0e+005 *
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Figure 10 depicts the rotor speed deviation response
due to 0.1 load disturbance with and without LQG
control of M/C-1. Fig.11 shows the rotor speed
deviation response due to 0.1 load disturbance with
and without LQG control of M/C-2. Also, Fig.12
shows the rotor speed deviation response due to 0.1
load disturbance with LQG compared with LQR
controllers of M/C-2. Fig. 13 depicts the rotor speed
deviation response due to 0.1 load disturbance with
and without LQG control of M/C-3. Fig.14 shows the
rotor speed deviation response due to 0.1 load
disturbance with and without LQG and LQR control
of M/C-3. Moreover, Fig. 15 depicts the rotor speed
deviation response due to 0.1 pu load disturbance
with LQR control for three machines. Also, Fig.
16displays the rotor speed deviation response due to
0.1 pu load disturbance with LQG control for three
machines. Table 5 displays the Settling time for
multi-machine model with and without controllers.
Also, table 6 shows the Eignvalues calculation with
and without controllers of multi- machine model
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Fig. 10: Rotor speed dev. Response due to 0.1 load
disturbance with and without LQG control of M/C-1.
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Fig.11: Rotor speed dev. Response due to 0.1 load
disturbance with and without LQG control of M/C-2.
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Fig.12: Rotor speed dev. Response due to 0.1 load
disturbance with LQG and LQR controllers of M/C-2.
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Table 5: Settling time for multi-machine model with and
without controllers

Operating
Point

Rotor
speed
of

Without
controller

With
LQR-
Control

With
LQG –
Control

P=1,
Q=0.25
pu

M/C-
1

 12 Sec. 7 Sec.

M/C-
2

 9 Sec. 5.5 Sec.

M/c-3  5 Sec. 3 Sec

5 Discussion

From Table 6, the eignvalues with the Linear
Quadratic Gaussian controller(LQG) is the best than
Linear Quadratic Regulator (LQR) controller.
Kalman Filter using with the regulator LQR to
produced the LQG. Also, Table 5 displays the
decreasing in the settling time for three machines
with using LQG controller than other controller.
Moreover, the three machines on multi machine
system are unstable without control but with
proposed LQG controller all machine become stable
with less settling time.

Fig. 16: Rotor speed dev. Response due to 0.1 pu load
disturbance with LQG control for three machines.
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Fig. 13: Rotor speed dev. Response due to 0.1 load
disturbance with and without LQG control of M/C-3.

Fig.14: Rotor speed dev. Response due to 0.1 load disturbance
with and without LQG and LQR control of M/C-3.

Fig. 15: Rotor speed dev. Response due to 0.1 pu load
disturbance with LQR control for three machines.
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Table 6: Eigen values calculation with and without controllers of multi- machine model

Without control With LQR With Kalman With LQG With LQG +
Feedback control

Certain
Operating
Point

-18.8713
-15.1893
-17.0519
0.0953 + 7.8364i
0.0953 - 7.8364i
-0.0627 + 7.3692i
-0.0627 - 7.3692i
0.2637 + 4.0915i
0.2637 - 4.0915i
-5.8914
-3.4305
-1.5112

-34.1322
-19.5804
-15.7307
-0.0721 + 7.8603i
-0.0721 - 7.8603i
-0.0776 + 7.3715i
-0.0776 - 7.3715i
-0.2581 + 4.0793i
-0.2581 - 4.0793i
-5.5632
-3.0683
-1.1913

-18.8684
-17.0507
-15.1612
-2.7296 + 7.4647i
-2.7296 - 7.4647i
-2.8210 + 7.0795i
-2.8210 - 7.0795i
-6.4027
-2.4204 + 2.8257i
-2.4204 - 2.8257i
-3.4688
-1.5217

-34.1388
-19.6481
-15.7647
-2.9275 + 7.5560i
-2.9275 - 7.5560i
-2.8056 + 7.1482i
-2.8056 - 7.1482i
-4.1097 + 3.2205i
-4.1097 - 3.2205i
-4.7248
-2.0980
-1.0843

-34.1250
-19.5046
-18.8652
-17.0493
-15.6930
-15.1210
-0.2888 + 7.9098i
-0.2888 - 7.9098i
-0.0909 + 7.3805i
-0.0909 - 7.3805i
-2.4990 + 7.3546i
-2.4990 - 7.3546i
-2.8479 + 6.9797i
-2.8479 - 6.9797i
-0.9751 + 4.7816i
-0.9751 - 4.7816i
-7.5320
-0.8193 + 2.4713i
-0.8193 - 2.4713i
-5.7117
-3.6632
-3.3731
-1.2828
-1.5345

6 Conclusion
The present paper introduces an application of a

robust linear quadratic Gaussian LQG controller to
design a power system stabilizer. The LQG optimal
control has been developed to be included in power
system in order to improve the dynamic response and
give the optimal performance at any loading
condition.  The LQG controller design gives good
performance in terms of fast damping dynamic
oscillation. The LQG is better than LQR controller in
terms of small settling time and less overshoot and
under shoot. The digital results show that the
proposed PSS based upon the LQG can achieve good
performance over a wide range of operating
conditions.
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