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Abstract- This paper proposes a speed control of Switched Reluctance Motor (SRM) supplied by 

Photovoltaic (PV) system. The proposed design of speed controller is formulated as an optimization problem. 
Ant Colony Optimization (ACO) algorithm is employed to search for optimal Proportional Integral (PI) 
parameter of speed controller by minimizing the time domain objective function. The behaviour of the 
proposed ACO has been estimated with the behaviour of Genetic Algorithm (GA) in order to prove the superior 
efficiency of the proposed ACO in tuning PI controller over GA. Also, the behaviour of the proposed controller 
has been estimated with respect to the change of load torque, variable reference speed, ambient temperature, 
and radiation. Simulation results confirm the better behaviour of the optimized PI controller based on ACO 
compared with optimized PI controller based on GA over a wide range of operating conditions. Simulation 
results have shown the validity of the proposed technique in controlling the speed of SRM. 

 
Key-Words: Ant Colony Optimization; Genetic Algorithm; High Speed SRM; Speed Control; PI Controller; 
Photovoltaic System. 
 
 
1. Introduction 
Over the past decades, the switched reluctance 
motors (SRMs) have been the focus of several 
researches [1–2].The SRM has a simple, rugged, 
and low-cost structure. It has no Permanent Magnet 
(PM) or winding on the rotor. This structure not 
only reduces the cost of the SRM but also offers 
high speed operation capability for this motor. 
Unlike the induction and PM machines, the SRM is 
capable of high speed operation without the concern 
of mechanical failures that result from the high level 
centrifugal force. In addition, the inverter of the 
SRM drive has a reliable topology. The stator 
windings are connected in series with the upper and 
lower switches of the inverter. This topology can 
prevent the shoot through fault that exists in the 
induction and permanent motor drive inverter. 
Moreover, high efficiency over wide speed range 
and control simplicity is known merits of the SRM 
drive [3-4]. 
 
Several Artificial Intelligence (AI) techniques have 
been addressed in literatures to solve problems 
related to the speed control of SRM. In last few 
years, Fuzzy Logic Control (FLC) has received 
much attention in the control applications. In 
contrast with the conventional techniques, FLC 
formulates the control action of a plant in terms of 
linguistic rules drawn from the behaviour of a 

human operator rather than in terms of an algorithm 
synthesized from a model of the plant [5-13]. It 
offers the following advantages: they do not require 
an accurate model of the plant, they can be designed 
on the basis of linguistic information obtained from 
the previous knowledge of the control system and 
give better performance results than the 
conventional controllers. However, a hard work is 
inevitable to get the effective signals when 
designing FLC. Also, it requires more fine tuning 
and simulation before operational. Another AI 
approach likes Artificial Neural Network (ANN) for 
designing adaptive speed control of SRM is 
presented in [14-15]. The ANN approach has its 
own advantages and disadvantages. The 
performance of the system is improved by ANN 
based controller but, the main problem of this 
controller is the long training time, the selecting 
number of layers and the number of neurons in each 
layer. 
 

H  optimization techniques have been applied to 
robust speed control problem [16-17]. However, the 
importance and difficulties in the selection of 
weighting functions of the H optimization problem 
have been reported. Also, the additive and/or 
multiplicative uncertainty representation cannot 
treat situations where a nominal stable system 
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becomes unstable after being perturbed. Moreover, 
the pole-zero cancellation phenomenon associated 
with this approach produces closed loop poles 
whose damping is directly dependent on the open 
loop system. On the other hand, the order of the H
based controller is as high as that of the plant. This 
gives rise to complex structure of such controllers 
and reduces their applicability. 
 
Recently, global optimization techniques have 
attracted the attention in the field of controller 
parameter optimization. Genetic Algorithm (GA) is 
illustrated in [18] for optimal design of speed 
control of SRM. Despite this optimization technique 
requires a very long run time that may be several 
minutes or even several hours depending on the size 
of the system under study. Swarming strategies in 
fish schooling and bird flocking are used in the 
Particle Swarm Optimization (PSO) and presented 
in [19] for optimal design of speed control of 
different motors [20-22]. However, PSO suffers 
from the partial optimism, which causes the less 
exact at the regulation of its speed and the direction. 
In addition, the algorithm cannot work out the 
problems of scattering and optimization [23, 24]. 
Also, the algorithm pains from slow convergence in 
refined search stage, weak local search ability and 
algorithm may lead to possible entrapment in local 
minimum solutions. A relatively newer evolutionary 
computation algorithm, called Bacteria Foraging 
(BF) scheme has been presented by [25–27] and 
further established recently by [28–34]. The BF 
algorithm depends on random search directions 
which may lead to delay in reaching the global 
solution. 
 
In order to solve the above mentioned problems and 
drawbacks, this paper proposes the use of a new 
evolutionary algorithm known as Ant Colony 
Optimization (ACO) algorithm to design a robust 
speed controller for SRM. ACO is multi-agent 
system in which the behaviour of each single agent, 
called artificial ant or ant is inspired by the 
behaviour of real ants [35]. ACO has been 
successfully employed to optimization problems in 
power system such as power quality enhancement 
[36], optimal reactive power dispatch [37]. The 
feature of technique presentation is different from 
other method since it can be implemented easily; 
flexible for many problem formulations and finally 
its capability in avoiding the occurrences of local 
optima for a given problem [38]. 
 
This paper proposes a new optimization algorithm 
known as ACO for controlling high speed SRM 

supplied by PV system. ACO is used for tuning the 
PI controller parameters to control the duty cycle of 
DC/ DC converter and therefore speed control of 
SRM. The design problem of the proposed 
controller is formulated as an optimization problem 
and ACO is employed to search for optimal 
controller parameters. By minimizing the time 
domain objective function representing the error 
between reference speed and actual one, the system 
performance is improved. Simulation results assure 
the effectiveness of the proposed controller in 
providing good speed tracking system over a wide 
range of load torque, ambient temperature and 
radiation with minimum overshoot/undershoot and 
minimal settling time. Also, these results assure the 
superiority of the proposed ACO method in tuning 
controller compared with GA. 
 
2. System under Study  
The system under study consists of PV system acts 
as a voltage source for a connected SRM. The speed 
control loop is designed using ACO. The speed 
error signal is obtained by comparing between the 
reference speed and the actual speed. The output of 
the ACO controller is denoted as duty cycle. The 
schematic block diagram is shown in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
2.1 Construction of SRM 
The construction of a 8/6 (8 stator poles, 6 rotor 
poles) poles SRM has doubly salient construction 
[39]. Usually, the number of stator and rotor poles is 
even, and the construction is well explained as in 
Fig 2. The windings of the SRM are simpler than 
those of other types of motors, and winding exists 
only on stator poles, and is simply wound on it with 
no winding on the rotor poles. The winding of 
opposite poles is connected in series or in parallel 
forming a number of phases, and exactly half the 
number of stator poles, and the excitation of a single 
phase excites two stator poles. The rotor has a 
simple laminated salient pole structure without 
winding. SRMs have the advantage of reducing 
copper losses while its rotor is winding. Its 
stampings are made preferably of silicon steel, 
especially in higher efficiency applications. For 

 
Fig. 1. The overall system for SRM control. 
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aerospace application the rotor operates at very high 
speeds, requiring the use of cobalt, iron and other 
variants. The air gap is kept as minimum as possible 
(0.1 mm to 0.3 mm), and the rotor and stator pole 
arc should be kept the similar. It is advantageous if 
the rotor pole arc is larger than the stator pole arc 
[40-41]. The construction of an 8/6 SRM (stator and 
rotor) is shown in Fig. 2. 

 

 

 

 

 

 

 

 
 
Torque is developed in SRMs due to the tendency of the 
magnetic circuit to adopt the configuration of 
minimum reluctance i.e. the rotor moves in line with 
the stator pole thus maximizing the inductance of 
the excited coil. The magnetic behaviour of the 
SRM is highly nonlinear. The static torque produced 
by one phase at any rotor position is calculated 
using the following equations [40-41]. 
Co energy  diiW ),(                               (1) 

Static torque dWdstaticT /                     (2) 
From equations (1) and (2) a similar static torque 
matrix can be estimated where current will give the 
row index and  will give the column index as in 
[40-41]. The value of developed torque can be 
calculated from the static torque look up table by 
using second order interpolation method by used 
them the current value and . 
The value of actual speed can be calculated from the 
following mechanical equations: 

JmechTiTdtd /)),((/                              (3) 
where, the speed error is obtained from the 
difference between the rotor speed and its reference. 
The value of rotor angular displacement  can be 
calculated from the following equation: 
   dtd /                                                           (4) 
where δ is the angle corresponding to the 
displacement of phase A in relation to another phase 
is given by: 

)11(2
sNrN

                                            (5) 

where rN  and sN  are the number of rotor and 

stator poles respectively. Also, the positive period of 
phase is determined by the following equation: 

rC
rqN

periodduty )1(2                      (6) 

where q  is number of phases and rC  is the 
commutation ratio. 

rC  can be calculated by the following equation.  

)11(2
sr

rC


                                           (7) 

where s , r  are the stator and rotor pole arc 
respectively. 
Duration of negative current pulses is depended on 
the stored energy in phase winding. On running, the 
algorithm is corrected by PI controller. This method 
is suitably with special range for turn on angle. The 
parameters of SRM are shown in appendix.  

 
2.2 Photovoltaic System 
Solar cell mathematical modelling is an important 
step in the analysis and design of PV control 
systems. The PV mathematical model can be 
obtained by applying the fundamental physical laws 
governing the nature of the components making the 
system [42]. 
To overcome the variations of illumination, 
temperature, and load resistance, voltage controller 
is required to track the new modified reference 
voltage whenever load resistance, illumination and 
temperature variation occurs. I-V characteristics of 
solar cell are given by the following equations [43-
44]: 
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Fig. 2. The SRM 8/6 poles construction. 
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The module output power can be determined simply 
from  

IVP .                                                                 (14) 
where;  
I and V   : Module output current and voltage, 

cI  and cV  : Cell output current and voltage,  

phI and

phV  

: The light generation current and 
voltage,    

sI  : Cell reverse saturation current, 

scI  : The short circuit current, 

oI  : The reverse saturation current, 

sR  : The module series resistance, 

T : Cell temperature, 
K : Boltzmann's constant, 

oq    : Electronic charge, 
KT    : (0.0017 A/◦C) short circuit current 

temperature coefficient, 
G   : Solar illumination in W/m2, 

gE  : Band gap energy for silicon, 

A   : Ideality factor, 
rT    : Reference temperature, 

orI    : Cell rating saturation current at rT , 

sn          : Series connected solar cells, 

ik          : Cell temperature coefficient. 

Thus, if the module parameters such as module 
series resistance ( sR ), reverse saturation current (

oI ), and ideality factor (A) are known, the I-V 
characteristics of the PV module can be simulated 
by using equations (12 and 13). PV system is used 
in this paper to power SRM. The parameters of PV 
system are given in appendix. 
 
2.3 DC-DC Converter  
The choice DC-DC converter technology has a 
significant impact on both efficiency and 
effectiveness. Many converters have been used and 

tested; buck converter is a step down converter, 
while boost converter is a step up converter [45-46]. 
In this paper, a hybrid (buck and boost) DC/DC 
converter is used. The equations for this converter 
type in continuous conduction mode are: 

phV
k

k
BV





1

                                          (15) 

phI
k

k
BI 1
                                (16) 

where k is the duty cycle of the Pulse Width 
Modulation (PWM) switching signal. BV  and BI  
are the output converter voltage and current 
respectively. The Matlab/Simulink of PV system 
can be simulated as shown in Fig. 3. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

3. Objective Function 
A performance index can be defined by the Integral 
of Time multiply Absolute Error (ITAE). 
Accordingly, the objective function  tJ  is set to be:   

tJ =  


0
dtet                                                         (17) 

where actualwreferencewe   

Based on this objective function tJ  optimization 

problem can be stated as: Minimize tJ  subjected 
to: 

max
pK  PK  pK min , max

iK  iK  iK min           (18) 

This paper focuses on optimal tuning of PI 
controller for speed tracking of SRM using ACO 
algorithm. The aim of the optimization is to search 
for the optimum controller parameters setting that 
minimize the difference between reference speed 
and actual one. On the other hand, in this paper the 

Fig. 3.  Matlab/Simulink for PV system.  
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goal is speed control of SRM and finally designing a 
low order controller for easy implementation. 
 
4. Overview of ACO and GA 
Optimization Technique 
4.1 Ant Colony Optimization  
The first ACO algorithm was introduced by Marco 
Dorigo [35]. The development of this algorithm was 
inspired by the observation of ant colonies. The 
behaviour that provided the inspiration for ACO is 
the ants’ foraging behaviour, and in particular, how 
ants can find shortest paths between food sources 
and their nest. When searching for food, ants 
initially explore the area surrounding their nest in a 
random manner. While moving, ants leave a 
chemical pheromone trail on the ground. The 
pheromone quantity depends on the length of the 
path and the quality of the discovered food source 
[47]. An ant chooses an exact path in connection 
with the intensity of the pheromone. The pheromone 
trail evaporates over time if no more pheromone is 
laid down. Other ants are attracted to follow the 
pheromone trail. Therefore, the path will be marked 
again and it will attract more ants to use the same 
path. The pheromone trail on paths leading to rich 
food sources close to the nest will be more 
frequented and will therefore grow faster. In this 
way, the best solution has more intensive 
pheromone and higher probability to be chosen. The 
described behaviour of real ant colonies can be used 
to solve optimization problems in which artificial 
ants search the solution space by transiting from 
nodes to nodes. The artificial ants movement usually 
associated with their previous action that stored in 
the memory with a specific data structure [48]. The 
pheromone consistencies of all paths are updated 
only after the ant finished its tour from the first node 
to the last node. Every artificial ant has a constant 
amount of pheromone stored in it when the ant 
proceeds from the first node. The pheromone that 
has been stored will be evenly distributed on the 
path after artificial ants finished its tour. The 
amount of pheromone will be high if artificial ants 
finished its tour with a good path and vice versa. 
The pheromone of the routes progressively 
decreases by evaporation in order to avoid artificial 
ants stuck in local optima solution [48-49]. The 
ACO algorithm can be divided into the following 
steps: 
  
Step 1: Initialization 
In this step, the following parameters (

aqdtmn ,,,,max,max,,  , and o ) of ACO 
algorithm are initialized.  

where 
n  : Number of nodes, 
m  : Number of ants, 

maxt  : Maximum iteration, 

maxd  : Maximum distance for each ant’s tour, 
  : Parameter determines the relative 

importance of pheromone versus distance (
 > 0), 

  : Heuristically defined coefficient (0 <  < 
1), 

  : Pheromone decay parameter (0 <  < 1), 

aq  : Parameter of the algorithm (0 < aq < 1), 

o  : Initial pheromone level, 

The maximum distance for every ant’s tour maxd

can be calculated using the following equation: 


















1

1
maxmax

n

i idd                                            (19) 

id = )max(ur                                                     (20) 

id  : Distance between two nodes, 
u  : Unvisited node, 
r  : Current node. 
 
Step 2: Provide first position 
Generate first position randomly; the first node will 
be selected by generating a random number 
according to a uniform distribution, ranging from 1 
to n.  
 
Step 3: Transition rule 
The probability for an ant k at node i to choose next 
node j can be expressed as: 































kTij
ijtij

tijtij
tk

ijP













)(

)()(
)(     ;  kTji ,    (21) 

where  

ij  : The pheromone trial deposited between 
node i and j by ant k, 

ij  : The visibility and equal to the inverse of 
the distance ( ijdij /1 ), 

kT  : The path effectuated by the ant k at a given 
time. 
 

Step 4: Local pheromone updating 
Local updating pheromone is different from ant to 
other because each ant takes a different route. The 
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initial pheromone of each ant is locally updated as 
shown below. 

otijtij   )()1()1(                              (22) 

 
Step 5: Fitness function 
After all ants attractive to the shortest path that 
having a strongest pheromone, the best solution of 
the objective function is obtained. 
 
Step 6: Global pheromone updating 
Amount of pheromone on the best tour becomes the 
strongest due to attractive of ants for this path. 
Moreover, the pheromone on the other paths is 
evaporated in time. The pheromone level is updated 
by applying the following equation: 

)()()1()1( tijtijtij                          (23) 

 
Step 7: Program termination 
The program will be terminated when the maximum 
iteration is reached or the best solution is obtained 
without the ants stagnations. The proposed 
procedure steps are shown in Fig. 4. The parameters 
of ACO are shown in appendix. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2. Genetic Algorithm (GA) 
In the animal kingdom, animals evolve and generate 
according to the role of “survival of the fittest”. In 
nature, animals fight constantly for food, shelter and 
mates. Thus, only the fittest will survive and the 
weak will perish. This mechanism of weeding out 

the useless has worked perfectly for centuries and it 
is a good method for optimization. GA is such an 
optimization method. It is based on the mechanics 
of natural selection and natural genetics. The search 
process is very similar to the natural evolution of 
biological creature in which successive generations 
of organisms are given birth and raised until they 
are able to breed. Just like in animal kingdom, only 
the fittest will survive to produce while the weakest 
will be eliminated [50]. 
 
Four main parameters affect the performance of 
GAs: population size, number of generations, 
crossover rate, and mutation rate. Larger population 
size and large number of generations increase the 
likelihood of obtaining a near-global optimum 
solution, but substantially increase processing time. 
Crossover among parent chromosomes (solution 
vectors) is a common natural process and 
traditionally is given a rate that ranges from 0.6 to 
1.0. In crossover, the exchange of parents’ 
information produces an offspring. As opposed to 
crossover, mutation is a rare process that resembles 
a sudden change to an offspring. This can be done 
by randomly selecting one chromosome from the 
population and then arbitrarily changing some of its 
information. The benefit of mutation is that it 
randomly introduces new genetic material to the 
evolutionary process, perhaps thereby avoiding 
stagnation around local minima. A small mutation 
rate less than 0.1 is usually used [51]. A flowchart 
for the GA algorithm is shown in Fig. 5. The 
parameters of GA are shown in appendix. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Flow chart of the proposed ACO algorithm. 
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initial pheromone 
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Fig. 5. Flow chart of GA algorithm. 
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5. Results and Simulations 
In this section, the superiority of the proposed ACO 
algorithm over GA in designing PI controller for 
speed control of SRM is illustrated. Fig. 6. shows 
the variations of objective function with two 
optimization techniques. The objective functions 
decrease monotonically over generations of ACO 
and GA. Moreover, ACO converges at a faster rate 
(35 generations) compared with GA (50 
generations). Moreover, computational time (CPU) 
of both algorithms is compared based on the average 
CPU time taken to converge the solution. The 
average CPU for ACO is 32.1 s while it is 43.9 s for 
GA. The proposed ACO methodology and GA are 
programmed in MATLAB 7.1 and run on an 
Intel(R) Core(TM) I5 CPU 2.53 GHz and 4.00 GB 
of RAM. The mentioned CPU time is the average of 
10 executions of the computer code. Table 1. shows 
the parameters of PI controller, average settling 
time, and average percentage overshoot based on 
two optimization techniques. It can be seen that the 
parameters for ACO are smaller than GA. Hence, 
compared to GA, ACO greatly enhances the time 
domain characteristics for SRM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.1 Response under step change in load torque 
Fig. 7 shows the step change in load torque of SRM. 
The speed response and control signal for this case 
are shown in Figs. 8-9 respectively. These Figures 
indicate the capability of the ACO in reducing the 
settling time and system oscillations over GA. 

Moreover, the actual speed tracks the reference 
speed rapidly. The settling time is approximately 
0.06, and 0.064 second for ACO and GA 
respectively. Hence, the proposed ACO is capable 
of providing sufficient speed tracking compared 
with GA.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table. 1. Comparison between ACO and GA. 
 

PK  iK  Average 
settling time 

(second) 

Average 
percentage over 

shoot 
ACO 0.0349 8.0125 0.057 16.13 
GA 0.0126 8.6354 0.063 17.02 

Time in second 
Fig. 7. Step change in load Torque. 
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Fig. 8. Change in speed due to step load torque. 
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5.2 Response under variable speed and load 
torque:  
In this case, the system responses under variation of 
reference speed and load torque are obtained. Fig. 
10. shows the variation of the load torque as an 
input disturbance while the parameters of PV 
system are constant. Moreover, the system 
responses for different controllers are shown in Figs. 
11 and 12. It is clear from these Figs.; the proposed 
ACO algorithm outperforms and outlasts GA in 
controlling the speed of SRM and reducing settling 
time effectively. Therefore, compared with GA 
based controller, ACO based controller greatly 
enhances the system performance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.3 Response under variable load torque, reference 
speed and PV parameters 
In this case, variations of load torque, reference 
speed, and PV parameters are applied. Fig. 13 
shows the change of load torque, radiation and 
temperature respectively. Moreover, the system 
responses for both controllers are shown in Figs. 14 
and 15. It is clear from these Figs, that the proposed 
ACO is more efficient in improving speed control of 
SRM compared with GA. Also, the proposed 
controller has a smaller settling time and system 
response is quickly driven with the reference speed. 
Thus, the potential and superiority of the proposed 
ACO over GA is demonstrated. 
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Fig. 10. Change in load torque. 
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5.4 Robustness and performance indices 
To demonstrate the robustness of the proposed 
controller, three different performance indices are 
used. These indices are: The Integral Absolute value 
of the Error (IAE), the Integral of the Square value 
of the Error (ISE), and the Integral of the Time 
multiplied Square value of the Error (ITSE). It is 
worth mentioning that the lower the value of these 
indices is, the better the system response in terms of 
time domain characteristics [52]. Numerical results 
of performance robustness for variations of load 
torque, reference speed, and PV parameters are 
listed in Table 2. It can be seen that the values of 
these indices corresponding to ACO are smaller 
compared to those of GA. This demonstrates that 
the overshoot, undershoot, and settling time are 
reduced by applying the proposed ACO based 
controller. 

 
 
 
 
 
 
 
 
6. Conclusions 
In this paper, a new method for speed control of 
SRM (8/6 poles) is proposed via ACO. The design 
problem of the proposed controllers is formulated as 
an optimization problem and ACO is employed to 
search for optimal parameters of PI controller. By 
minimizing the time domain objective function, in 
which the difference between the reference and 
actual speed are involved; speed control of SRM is 
improved. Simulation results emphasis that the 
designed ACO based PI controller is robust in its 
operation and gives a superb performance over GA 
for the change in load torque, reference speed, 
radiation, and temperature. Besides the simple 
architecture of the proposed controller, it has the 
potentiality of implementation in real time 
environment. 

 
Appendix 
The optimization parameters are as shown below: 
a) Genetic parameters: Max generation=100; 
Population size=50; Crossover probabilities=0.75; 
Mutation probabilities =0.1. 
b) ACO parameters: n =10, m =5, maxt =5, maxd

=49,  =2,  =0.6, =0.1, aq =0.6, o =0.1. 

c) SRM parameters: sN =8, rN =6, Rating speed 

=13700 r.p.m, rC =0.8, q =4, Phase resistance of 
stator=17 ohm, Phase inductance of aligned 
position=0.605 H, Phase inductance of unaligned 
position=0.1555 H, Step angle=15o. 

d) A = 1.2153; gE = 1.11; orI = 2.35e-8; scI =4.8; 

rT =300; K= 1.38e-23; sn =36; oq =1.6e-19; ik
=0.0021. 
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