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Abstract:-   Design of power system stabilizer for enhancement power system stability is proposed. The effect 

of the proposed PSS on the synchronizing and damping torque coefficients is proved. To study the 

effectiveness of the proposed linear quadratic regulator (LQR) power system stabilizer, a sample power system 

in a linearized model is simulated and subjected to different operating conditions. The Linear Quadratic 

Gaussian (LQG) power system stabilizer is proposed. The power system dynamic responses after applying a 

variety of operating points with the proposed LQG-PSS stabilizer are plotted. The output of such stabilizer is 

fed directly to the automatic voltage regulator (AVR) of the synchronous machine. The input to such stabilizer 

are four state variables, two are accessible which are the deviation of the speed ( ωΔ ) and rotor angle ( δΔ ). 

The other two inaccessible states that are the deviation of the Voltage proportional to q-axis flux linkage. 

(
'

qEΔ ) and the Generator field voltage ( fdEΔ ). An observer has been designed to access the two inaccessible 

states.  Further, the effect of connecting the proposed power system stabilizer on synchronizing and damping 

torque coefficients is tabulated. A comparison between the effect of the power system stabilizer based on either 

LQR approach,  the proposed LQG stabilizer in terms of either power system responses or its eigenvalues due 

to different load condition is reported. 
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List of symbols: 

 Is the rotor angle (Rad.) 

 Is the rotor speed (pu.) 

 Is the mechanical power (pu.) 

 Is the self damping coefficient 

(pu.) 

 Is the inertia constant in (s) 

 
Is the quadrature  axis 

voltage(pu.) 

 Is the excitation voltage (pu.) 

 Is the direct axis reactance (pu) 

 
Is the transient direct axis 

reactance (pu) 

 
Is the direct axis short circuit 

time constant (s) 

 Is the exciter time constant (s) 

 Is the exciter gain (pu.) 

 Is the optimal control gain 

 Is the system matrix 

 Is the state variables 

 Is the input matrix 

 

1 Introduction 
 

Improved dynamic stability of power system can be 

achieved through utilization of supplementary 

excitation control signal  

[1-4] . The controller which generates this 

supplementary signal  is called  power system 

stabilizer PSS .The conventional lead-lag power 

system stabilizer PSS is widely used  . Other types 

such as proportional-integral and proportional-

integral-derivative PSSs have been proposed [5-6] . 

However, the gain settings of these stabilizer are 

determined based on the linearized model of the 

power system around a nominal operating point to 

provide optimal performance at this point. While the 

power systems are highly non-linear and the 

operating conditions can vary over a wide range as a 
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result of load changes , line outages, and 

unpredictable major disturbances such as  three-

phase faults. Consequently , these stabilizers no 

longer ensure the optimal performance . Alternative 

adaptive control techniques have been proposed  to 

overcome such problems [7-10] .  

 

However, most adaptive controllers are 

designed on the basis of a linear model and 

parameter identification of the system model in real-

time which is a time consuming task. The 

phenomenon of stability of synchronous machine 

has received a great deal of attention in the past and 

will receive increasing attention in the future Small 

signal stability analysis of power systems becomes 

more important nowadays. Under small 

perturbations, this analysis is to predict the low 

frequency electromechanical oscillations resulting 

from poorly damped rotor oscillations. These 

oscillations stability becomes a very important issue 

as reported in [11]. The operating conditions of the 

power system are change with time due to the 

dynamic nature, so it is need to track the system 

stability on-line. To track the system, some stability 

indicators will be estimated from given data and 

these indicators will be updated as new data 

received.  

Synchronizing torque coefficients Ks  and damping 

torque coefficients Kd are used as stability 

indicators. To achieve stable operation of the 

machine, both Ks  and Kd  must be positive 

[12,16].Certain techniques have been proposed to 

estimate the value of Ks  and Kd which involved 

optimization technique. Some techniques have been 

explored by means of frequency response analysis 

decomposes the change in electromagnetic torque 

into two orthogonal components in the frequency 

domain. The two equations are expressed in terms 

of the load angle deviation then solved directly.  

 

The present paper uses LQR and LQG 

control approach to design a  power system 

stabilizer[9]. An expression for synchronizing  and 

damping  torque coefficients with robust controller 

is established. 

  

 

2  Studied Power System Modeling 

The linearized model of the studied power system 

consisted of synchronous machine connected to 

infinite bus bar through transmission line is 

represented in a block diagram as shown in Fig.1. 

Its state space formulation can be expressed as 

follows [10]: 
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In a matrix form as follows: 
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Fig. 1: Block diagram of  power system  

under study 
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The parameters and coefficients of A matrix and B 

vector are defined in ref. [10 ]. The implementation 

of the state feedback control law for the infinite bus 

synchronous machine  connected to power system 

stabilizer PSS and reduced-order observer is shown 

in Fig. 2 

 

3  Reduced- Order Observer Design 

 

Fig.2: Block diagram of the synchronous 

machine connected to the power system stabilizer  

 

The reduced-order observer feedback and gain 

parameters which are the  F, G and  H   matrices are 

calculated  for the given power system as follows 

[13] 
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The observer gains depends upon the above system 

and can be written as     





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



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r
LL
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The observer feedback and gain are : 

 12r22 ALAF         (8) 

2111rr AALFLG                  (9) 

1r2 BLBH        (10) 

Substituted by the values of A11 ,A12 , A21 and A22  

in Eq.(8), then  calculate the matrix  F  as follows: 
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Also, substitute by F, Lr , A in Eqn.(9) to find G as 

follows: 



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Similarly, substitute by B, L in Eq.(10) to find H as:  
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The reduced-order observer differential equations 

are: 
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 Equation (13)  is rewritten as follows: 

U

AT

AK

Y

Y

GG

GG

Z

Z

ff

ff

Z

Z
.

0

2

1

2221

1211

2

1

2221

1211

2

.
1

.































































 

Also, the estimator of the observer equation can be 

written as: 
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The  Observer Gain  Feedback 

 

  Aobs =
T

22A ,          Bobs  =
T

12A  

and using Matlab function [ PLACE ]  to calculate 

observer gain feedback [ Lr ], where, 

  

  ),,( obsobsobsr PBAplaceL                           (14) 

 

4  LQR Power System Stabilizer 
 

The feedback gain of the closed loop system 

design by The design of the power system stabilizer 

based on linear-quadratic regulator LQR control for 

continuous-time systems as follow:  

),,,,(],,[ NRQBAlqrESK                      (15) 

 

calculates the optimal gain matrix K such that the 

state-feedback law  u=-Kx     minimizes the cost 

function 

 dtuNXRuuQXXIntegralJ )2( '''   

Subject to the state dynamics 

  .
.

BuAXX   

The matrix N is set to zero when omitted. Also 

returned are the Riccati equation solution  S and the 

closed-loop eigenvalues E: 

 

,0)()( ''1'   QNSBRNSBSASA  

           (16) 

 )*( KBAEIGE          

 

 K=[ H1  H2   H3    H4 ]. 

 

5  LQG  Power System Stabilizer 
 

The optimal control technique was presented 

for designing linear regulator that minimized a 

quadratic objective function. Using a separation 

principle, we can combine the optimal regulator 

with the optimal observer (the kalman filter ), result 

the LQG compensator. In other words, if LQR 

control and  the observer  using Kalman filter are 

designed, the resulting system is referred to as 

Linear Quadratic Gaussian (LQG) Control or LQG-

compensator. In short, the optimal compensator 

design process is the following [14,15]: 

 

a- Design an optimal regulator for a linear 

plant using full-state feedback. The 

regulator is designed to generate a control 

input, u(t), based upon the measured state-

vector, X. 

b- Design a Kalman filter for the plant 

assuming a known control input, u(t), a 

measured output, y(t), and white noises, V 

& Z . The Kalman filter is designed to 

provide an optimal estimate of the state 

vector, X. 

 

c- Combine the separately designed optimal 

regulator and Kalman filter into an      

optimal compensator (LQG), which 

generates the input vector, u(t), based upon 

the estimated state-vector, Xo ,rather than 

the actual state-vector, X, and the measured 

output, y(t).    

Since the optimal regulator and Kalman filter are 

designed separately, they can be selected to have 

desirable properties that are independent of one 

another. The overall closed-loop eigenvalues consist 

of  the regulator eigenvalues and the kalman filter 

eigenvalues, (i.e. for the 4
th 

order system, there is 8 

closed-loop eigenvalues, and for the 6
th
 order 

system, there is 12 closed-loop eigenvalues.). The 

closed-loop system's performance can be obtained 

as desired by suitably selecting the optimal 

regulator's weighting matrices Q & R, and the 

kalman filter's spectral noise densities, V & Z. 

Hence, the matrices Q ,R ,V , and Z are the design 

parameters for the closed-loop system with an 

optimal compensator. For the noisy plant with the 

following state-space representation :  

 

ZDUCXY

VBUAXX






 

Where; A is a system matrix, B is the input vector , 

C is the output vector , V is the process noise 
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spectral density matrix, and Z is the measurement 

noise spectral density matrix, the state-space 

realization of the optimal compensator is given by 

the following state and output equations as in [11] : 

 

o

o

KXU

LYXLDKLCBKAXo






)(
 

                                                               

Where: 

 K and  L are the optimal regulator and Kalman 

filter gain matrices, respectively, and  Xo is the 

estimated state vector. Figure 3 shows the block 

diagram of the optimal LQG-compensator 

 

 

 

 

Fig. 3:  Block diagram of the optimal LQG-

compensator. 

 

 

Using MATLAB's Control System Toolbox, a 

state-space model of the regulating closed-loop 

system, syscl ,can be constructed as follows : 

),(

)))'((,,
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DsizezerosKL
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 (17) 

Where : 

 sysp : is the state-space model of the plant,  

sysc  :is the state-space model of the LQG 

compensator, and syscl : is the state-space model of 

the closed loop system 

 

 6  Effect of  LQR-PSS On 

Synchronizing and  Damping Torque 

Coefficients 
 

 Fig. (1) shows the block diagram of sample 

power system under study. From this figure, the 

electric torque relation can be expressed as follows 

[12]: 

 
'
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By adding the LQR control signal  defined in 

equation (15), the feedback gain K defiend  as: 

 

 4321 HHHHK   

Using thyristor type excitation, where, its transfer 

function can be expressed by 
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where; KA is the excitation gain , TA is time constant 

of excitation system  .  

The following equation is obtained 
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After some algebraic manipulation the following 

equation is obtained 
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and by substituting in equation (19), the following 

yields : 
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Substitute   S . Where, S is the Laplace 

transform factor . The relation between 
'

qE  and 

  can be estimated  

Substitute the value of 
'

qE  in equation (18), the 

deviation of the electrical torque as a function of 

delta deviation can be obtained  as follows: 
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To determine the damping and synchronizing torque 

coefficient , the s factor is substituted by jw 
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  dSe KKT  

 

where; 

KS is a synchronizing torque coeffecient. 

Kd is a damping torque coeffecient. 

 

To evaluate the KS and Kd over a wide range of 

input frequency oscillation, the following analysis is 

obtained. 

 

6.1  KS and Kd at lower frequency wt <<1: 
 

 The synchronizing torque coefficient with 

LQR control can be expressed by the following 

equation:  

o

o

S
b

a
KK  1  

)334631(

)14454(32
1

HAKKHAKAKKK

HAKHAKKAKKKKK
K






                       

                                                                      (23) 

While the synchronizing torque coefficient without 

proposed LQR controller can be found by putting 

the H's  equal zero .The following equation gives the 

synchronizing torque coefficient . 

A

A

S
KKK

KKKKK
KK

63

5432

1
1

)(




                    (24) 

Moreover, the damping torque coefficient can be 

calculated with proposed LQR controller as follows: 

 
2

11

o

oo

d
b

baba
K


  

or; 
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Without LQR controller, the damping torque  

coefficient can be written as follows: 

















 ATK

AKKK

ATTKAKK

AKKK

KK

dK 4

631

))(54(

631

32
                         

                                                                                        

                                                                  (26)                                 

6.2  KS and Kd at higher frequency wt >>1: 

 

The synchronizing torque  coefficient at higher 

frequency with LQR controller can be calculated as 

: 

 )(
1

2

11

2

21
b

ba
a

b
KK oS 


 

Without LQR  controller, the KS is determined by 

putting H's equal zero  and the results can be 

obtained by 

 
22

432

1
T

KKK
KK S


  

Moreover, the damping torque coefficient Kd with 

LQR controller is obtained as  

 

A

AA

d
TT

HKTKKK

b

a
K

2

2432

2

2

1 )(




  

Without LQR controller, the Kd  is expressed by  

 

 
T

KKK
K d 2

432


  

7  Digital Simulation Results 
 

Choosing the machine parameters at nominal 

operating point as 

;
;0;6';377;10.;

.4.0;32.0;55.1;6.1 '





DTwM

upXXXX

doo

edqd
 

sTKupQupP AA 06.0;25.;.25.0.;.1   

 

The design of the proposed LQR PSS is established 

as follows,  

The nominal A matrix given in eqn.(6) is evaluated 

as : 


























667.1681.194047.15

1667.463.02356.

01104.01317.

003770

nA  

 

and also vector B is obtained as follows 

  TB 06.0/25000  

Referred to Eq.(14), the observer gains is calculated 

as  follows after choosing  the eigenvalues of 

reduced-order observer  Pobs = [-8+j6 , -8+j6],  then 

calculate the observer gains Lr as follows:           

 











7.42722.10

00
rL  

After calculates observer gain the rL , then  

substituted in Eq.(8), Eq.(9) and Eq.(10) 

 











667.1656.666

1667.06667.0
F , 

 













64392547

7051
G ,and 

 









667.416

0
H  

 

The assumption in Eqn.(15) are  matrix N=0 and 

matrix R=50 , and Q as follow: 

 

    matrix   Q  =



















001.000

0100

0010

0001

 , 

 

 

Solving Eqn. (15),  the Riccati equation  S is: 

 

 S  =   























0000

09.14.345.1

04.3453290

05.108.1

 

 The matrix S is a positive definite  

Also, the optimal gain matrix K is calculated as:   

 

 K=[ H1  H2   H3    H4 ]. 

 

 0015.01292.01090.01217.0 K    (27) 
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From LQG design assume the V=1.73 e+7 and 

Z=0.01. The output LQG Kalman gain vector 

L=10
7
[0 0  -0.0065  -1.05]

t
. Fig.4 depicts the power 

system model in a block diagram with different 

power system stabilizers for comparison. Using the 

value of feedback gain vector K obtained in 

equation (27) ,  the dynamic stability of the 

linearized studied power system subjected to load 

disturbances is simulated on the computer using  

Matlab program Package.  

Figs. 5,6,7 and 8 show the speed deviation 

responses due to load disturbances of 0.1 p.u. 

without and with PSSs ( either based on 

conventional LQR approach and proposed LQG -

PSS at different operating points. To validate the 

effectiveness of the proposed LQR- PSS. The digital 

simulation results prove the robustness of the 

proposed PSS in terms of fast damping with system 

uncertainties defined in parameter and operating 

point changes. Table 1 displays the synchronizing 

and damping torque with and without LQR 

Controller  at low frequency wt <<1. Also, Table 2 

depicts the synchronizing and damping torque with 

and without LQR Controller  at high frequency wt 

>>1. Table 3 display the eigenvalues analysis at 

different controller and different operating 

conditions. 

 

 

 

 

Fig. 4:Schematic diagram of power system model 

with different power system stabilizers 

 

 

 

 

 

 

 

Fig. 5: speed deviation responses due to 0.1 p.u load 

disturbances  with and without PSSs. At normal 

load (P=1, Q=0.25 pu.) 

 

 

 

Fig. 6: speed deviation responses due to 0.1 p.u load 

disturbances  with and without PSSs. At heavy load 

(P=1, Q=0.8 pu.) 

 

 

 

 

 

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1
x 10

-3

time in Sec.

R
o
to

r 
S

p
e
e
d
 d

e
v
. 

in
  

p
u
.

 Rotor Speed dev. response in pu. at (P=1,Q=.25 pu.)

 

 

W/O -CONTROL

LQR-control

LQG - CONTROL

0 1 2 3 4 5 6 7 8 9 10
-8

-6

-4

-2

0

2

4

6
x 10

-4

time in Sec.

R
o
to

r 
S

p
e
e
d
 d

e
v
. 

in
  

p
u
.

 Rotor Speed dev. response in pu. at (P=1,Q=.8 pu.)

 

 

W/O -CONTROL

LQR-control

LQG - CONTROL

WSEAS TRANSACTIONS on POWER SYSTEMS Ali M. Yousef, Ahmed M. Kassem

E-ISSN: 2224-350X 77 Issue 2, Volume 7, April 2012



 
 

  

 

Fig. 7: speed deviation responses due to 0.1 p.u load 

disturbances  with and without PSSs. At lead power 

factor load (P=1, Q= - 0.25 pu.) 

 

 

 

Fig. 8: speed deviation responses due to 0.1 p.u load 

disturbances  with and without PSSs. At heavy lead 

power factor load (P=1, Q= - 0.8 pu.) 

 

Table 1:  Synchronizing And Damping Torque With 

And Without LQR Controller  at wt<<1 

 
load KS Kd 

Without 

control 

With 

LQR 

Without 

control 

With 

LQR 

P=1, Q=0.25 

pu 

1.27 1.09 0.0093 0.23 

P=1, Q=0.8 

pu 

1.619 1.48 0.0026 0.16 

P=1, Q=-.25 

pu 

1.206 0.905 -0.07 

(un-stable) 

0.32 

P=1, Q=-.8 

pu 

1.86 0.99 -1.346 

(un-stable) 

0.07 

 

 

Table 2: Synchronizing And Damping Torque With 

And Without LQR Controller  at wt>>1 

 
load KS Kd 

Without 

control 

With 

LQR 

Without 

control 

With LQR 

P=1, Q=0.25 

pu 

1.316 1.96 0.0012 0.036 

P=1, Q=0.8 

pu 

1.62 2.123 -0.0067 0.027 

P=1, Q=-.25 

pu 

1.03 1.832 -0.0017 

(un-stable) 

0.045 

P=1, Q=-.8 

pu 

0.38 1.18 -0.0017 

(un-stable) 

-0.040 

(un-stable) 

 

 

Table 3 

 The Eigenvalues Analysis At Different Controller 

With The Different Operating Point. 
 Without control With LQR 

control 

With LQG 

control 

 
P=1, 

Q=0.25 

pu 

Normal 

load 

-14.2951           

  -0.0363 + 7.074i 

  -0.0363 - 7.0074i 

  -2.7619 

 -14.3968           

  -0.2429 + 7.0208i 

  -0.2429 - 7.0208i 

  -2.8719      

-14.5723           

  -0.5581 + 7.0172i 

  -0.5581 - 7.0172i 

  -3.0487  

-34.2895 +58.433i 

 -34.2895 -58.433i 

 -67.7134   

  -0.0058                   

P=1, 

Q=0.8 pu 

Heavy 

load 

-0.0146 + 7.8306i 

  -0.0146 - 7.8306i 

 -13.9757           

  -3.1246           

-14.0302           

  -0.1384 + 7.8436i 

  -0.1384 - 7.8436i 

  -3.4475   

  -14.1276 

 -0.3253 + 7.8429i 

  -0.3253 - 7.8429i 

  -3.9630           

-31.2950 +53.363i 

 -31.2950 -53.363i 

 -61.7440    

  -0.0098              

P=1, Q= -

0.25 pu 

Lead 

power 

factor 

load 

-14.9002           

   +0.1021 + 6.32i 

   +0.1021 - 6.327i 

  -2.4336      

(un-stable)  

-15.0445           

  -0.2068 + 6.3348i 

  -0.2068 - 6.3348i 

  -2.2966       

-15.2866           

  -0.6861 + 6.3549i 

  -0.6861 - 6.3549i 

  -2.0754 

-36.6306 +62.376i 

 -36.6306 -62.376i 

 -72.3842  

  -0.0041                  

P=1, Q= -

0.8 pu 

Lead 

power 

factor  

and 

heavy 

load 

-15.7698           

  + 1.0279 + 4.64i 

  +1.0279 - 4.64i 

  -3.4157 

(un-stable) 

-15.9354           

  + 0.5611 + 4.50i 

  +0.5611 - 4.50i 

  -2.9415   

(un-stable)   

-16.2105           

  -0.3181 + 4.3091i 

  -0.3181 - 4.3091i 

  -1.8868    

-36.6386 +62.10i 

 -36.6386 -62.10i 

 -72.3925  

  -0.0055                    

 

 

 

8  Discussions 

From table 3 it is clear that system after 

adding stabilizers model that taken under study be 

more stable especially at  normal,  heavy and lead 

power factor load. These eigenvalues results are 

confirmed after obtaining figures which express the 

effect of stabilizers on synchronizing and damping 

torques, and this effect clear by obtaining positive 

damping torques after adding stabilizer. Tables 1,2 

describe the synchronizing and damping torque 

coefficient with and without optimal LQR control. 
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At the load (P=1, Q= -0.8 pu.) , the damping torque 

is negative with the mean that the system with and 

without optimal control is unstable. Also, figure 8 

shows this unstable system in both with and without 

LQR control but the system is stable with robust 

LQG controller.  

 

9  Conclusions 
 

Design of power system stabilizer PSS 

based on  LQR control is introduced. The proposed  

LQG-PSS has robustness control property with 

power system operating points change, parameters 

variation and uncertainty. Moreover, an expression 

for both  the synchronizing and damping torque 

coefficients of the studied power system with and 

without proposed LQR- PSS are derived and 

obtained. To validate the effectiveness of the 

proposed LQG-PSS, a simple power system 

consisting of synchronous generator connected to 

infinite bus through transmission line subjected to 

different input disturbances is simulated. A 

comparison between the dynamic power system 

responses using conventional LQR control and 

proposed LQG- PSS is reported. The digital results 

show the power of the proposed LQG-PSS in terms 

of improvement of damping of the power system 

oscillations. Also, improvement of eigenvalues of 

the system. The synchronizing and damping torque 

coefficients is improved with LQR control than the 

system without controller.  
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