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Abstract:- Design of power system stabilizer for enhancement power system stability is proposed. The effect
of the proposed PSS on the synchronizing and damping torque coefficients is proved. To study the
effectiveness of the proposed linear quadratic regulator (LQR) power system stabilizer, a sample power system
in a linearized model is simulated and subjected to different operating conditions. The Linear Quadratic
Gaussian (LQG) power system stabilizer is proposed. The power system dynamic responses after applying a
variety of operating points with the proposed LQG-PSS stabilizer are plotted. The output of such stabilizer is
fed directly to the automatic voltage regulator (AVR) of the synchronous machine. The input to such stabilizer
are four state variables, two are accessible which are the deviation of the speed (Aw) and rotor angle (Ad).
The other two inaccessible states that are the deviation of the Voltage proportional to g-axis flux linkage.

(AE;) and the Generator field voltage (AE,, ). An observer has been designed to access the two inaccessible

states. Further, the effect of connecting the proposed power system stabilizer on synchronizing and damping
torque coefficients is tabulated. A comparison between the effect of the power system stabilizer based on either
LQR approach, the proposed LQG stabilizer in terms of either power system responses or its eigenvalues due
to different load condition is reported.
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X Is the state variables

List of symbols: B Isthe input matrix
Ad  Isthe rotor angle (Rad.)
Aew 1S the rotor speed (pu.) 1 Introduction
P,. Isthe mechanical power (pu.)
D Is the self damping coefficient Improved dynamic stability of power system can be
(pu.) o ) achieved through utilization of supplementary
M Isthe inertia constant in (s) excitation control signal
ae, Is the quadrature axis [1-4] . The controller which generates this
voltage(pu.) supplementary signal is called power system
& Epy Is the excitation voltage (pu.) stabilizer PSS .The conventional lead-lag power
X3 Isthe direct axis reactance (pu) system stabilizer PSS is widely used . Other types
X:i Is the transient direct axis such as proportional-integral and proportional-
reactance (pu) integral-derivative PSSs have been proposed [5-6] .
T:;r.: Is the direct axis short circuit However, the gain settings of these stabilizer are
time constant (s) determined based on the linearized model of the
T, Isthe exciter time constant (s) power system around a nominal operating point to
K. Isthe exciter gain (pu.) provide optimal performance at this point. While the
K Is the optimal control gain power systems are highly non-linear and the
A Is the system matrix operating conditions can vary over a wide range as a
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result of load changes , line outages, and
unpredictable major disturbances such as three-
phase faults. Consequently , these stabilizers no
longer ensure the optimal performance . Alternative
adaptive control techniques have been proposed to
overcome such problems [7-10] .

However, most adaptive controllers are

designed on the basis of a linear model and
parameter identification of the system model in real-
time which is a time consuming task. The
phenomenon of stability of synchronous machine
has received a great deal of attention in the past and
will receive increasing attention in the future Small
signal stability analysis of power systems becomes
more  important  nowadays. Under  small
perturbations, this analysis is to predict the low
frequency electromechanical oscillations resulting
from poorly damped rotor oscillations. These
oscillations stability becomes a very important issue
as reported in [11]. The operating conditions of the
power system are change with time due to the
dynamic nature, so it is need to track the system
stability on-line. To track the system, some stability
indicators will be estimated from given data and
these indicators will be updated as new data
received.
Synchronizing torque coefficients Ks and damping
torque coefficients Kd are used as stability
indicators. To achieve stable operation of the
machine, both Ks and Kd must be positive
[12,16].Certain techniques have been proposed to
estimate the value of Ks and Kd which involved
optimization technique. Some techniques have been
explored by means of frequency response analysis
decomposes the change in electromagnetic torque
into two orthogonal components in the frequency
domain. The two equations are expressed in terms
of the load angle deviation then solved directly.

The present paper uses LQR and LQG
control approach to design a  power system
stabilizer[9]. An expression for synchronizing and
damping torque coefficients with robust controller
is established.

2 Studied Power System Modeling

The linearized model of the studied power system
consisted of synchronous machine connected to
infinite bus bar through transmission line is
represented in a block diagram as shown in Fig.1.
Its state space formulation can be expressed as
follows [10]:
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AS:wOAw (1)
A&):ﬁ(—KlAé—DAw—KZAE'q) 2)
.1 AE'q
AEq = ﬂ(—KAAé‘ - K3 + EFD) (3)
AE 1(KKA5 K,K.AE'q
Fp=—(— —
TA A'Y5 A'Y6 (4)
—-AE +K,u)
In a matrix form as follows:
X (t) = AX (t) + Bu(t) )
where,
[0 o, 0 0 |
-k, -D -k, 0
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-k ks 0 - KK -1
L TA TA TA _
Power System Stahilizer (PS5)
r-———————-———--—-|
| - ﬁa -
ATm | 1 HI |
—'? —_
Synch. o — |
Y=
! Aw i |
U |Mochine| ' Y3=AFq [ |
| ghse H3—— |
| |
‘ |
U |
|
|
| |
L o L __ -

Fig. 1: Block diagram of power system
under study
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A AEgp
L TA _

The parameters and coefficients of A matrix and B
vector are defined in ref. [10 ]. The implementation
of the state feedback control law for the infinite bus
synchronous machine connected to power system
stabilizer PSS and reduced-order observer is shown
in Fig. 2

3 Reduced- Order Observer Design

|K_1|L
ng _ﬂ._Te
N } 1 AW Wo Ad
E( MS+D 5
+ .
ATe
s |
[ [ xs
+
Vi
he” K3 —K A
1 I+E45Tdo 1+5T
4
-

Fig.2: Block diagram of the synchronous
machine connected to the power system stabilizer

The reduced-order observer feedback and gain
parameters which are the F, Gand H matrices are
calculated for the given power system as follows
[13]

X = AX + BU

- 2o

Where;

(")
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0 g 0 0
M1 =| K -D Ay -K, ol
M M M
K g 11
— TC;O KSTdIO Td’O
AZl _KAKS 0 , A22 _KAKG __1
TA TA TA
and
0
0
B, :{ } and B, =|Ka
0 T
A

The observer gains depends upon the above system
and can be written as

Lr — |:Lll L12:|

I—21 I—22
The observer feedback and gain are :
F=A,-LA, (8)
G=FL,-LA,+A, 9)
H=B,-L,B,; (10)

Substituted by the values of Ay ,An , Ay and Ay,
in Eq.(8), then calculate the matrix F as follows:

Ll Kok 1

F_| KT M T, =[fll flz}
(K K _KLZZ) _i f21 fzz
T, M T,

(11)
Also, substitute by F, L, , A in Egn.(9) to find G as
follows:

G, G
G ={ 1 12} , Where;
GZl 22
( 12) 21 L12K1 _ﬁ
= K Tdo M Tdo M T,
12
= — (D
12 12( KsTdO M ) Tdo 11
G. =-L (KAKs _ Kz'—zz _ﬁ L22K1 _ KSKA
2 T M TA M T,
K, K
G, = —Ly( A S _ 22) L0,
TA M A

Similarly, substitute by B, L in Eq.(10) to find H as:

72
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The reduced-order observer differential equations
are:

Z=FZ+GY +Hu
. (13)
X=LY+Z

Equation (13) is rewritten as follows:
71
Z2

Also, the estimator of the observer equation can be

21 22 Y2 2

X3
Xa
The Observer Gain Feedback
Aobs = A-zrg ’ Bobs = A;rg
and using Matlab function [ PLACE ] to calculate
observer gain feedback [ L, ], where,

Lr = place(Aobs’ Bobs' Pobs) (14)

4 LQR Power System Stabilizer

The feedback gain of the closed loop system
design by The design of the power system stabilizer
based on linear-quadratic regulator LQR control for
continuous-time systems as follow:
[K,S,E]=1gr(AB,Q,R,N) (15)
calculates the optimal gain matrix K such that the
state-feedback law u=-Kx minimizes the cost
function

J =Integral (X QX +uRu+2X Nu)dt
Subject to the state dynamics

X = AX + Bu.
The matrix N is set to zero when omitted. Also
returned are the Riccati equation solution S and the
closed-loop eigenvalues E:

SA+AS—-(SB+N)R™ (BS+N) +Q=0,
(16)
E = EIG (A— B*K)

K=[H; H, H; Hs].
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5 LQG Power System Stabilizer

The optimal control technique was presented
for designing linear regulator that minimized a
quadratic objective function. Using a separation
principle, we can combine the optimal regulator
with the optimal observer (the kalman filter ), result
the LQG compensator. In other words, if LQR
control and the observer using Kalman filter are
designed, the resulting system is referred to as
Linear Quadratic Gaussian (LQG) Control or LQG-
compensator. In short, the optimal compensator
design process is the following [14,15]:

a- Design an optimal regulator for a linear
plant using full-state feedback. The
regulator is designed to generate a control
input, u(t), based upon the measured state-
vector, X.

b- Design a Kalman filter for the plant
assuming a known control input, u(t), a
measured output, y(t), and white noises, V
& Z . The Kalman filter is designed to
provide an optimal estimate of the state
vector, X.

c- Combine the separately designed optimal
regulator and Kalman filter into an
optimal compensator (LQG), which
generates the input vector, u(t), based upon
the estimated state-vector, Xo ,rather than
the actual state-vector, X, and the measured
output, y(t).

Since the optimal regulator and Kalman filter are
designed separately, they can be selected to have
desirable properties that are independent of one
another. The overall closed-loop eigenvalues consist
of the regulator eigenvalues and the kalman filter
eigenvalues, (i.e. for the 4™ order system, there is 8
closed-loop eigenvalues, and for the 6" order
system, there is 12 closed-loop eigenvalues.). The
closed-loop system's performance can be obtained
as desired by suitably selecting the optimal
regulator's weighting matrices Q & R, and the
kalman filter's spectral noise densities, V & Z.
Hence, the matrices Q ,R ,V , and Z are the design
parameters for the closed-loop system with an
optimal compensator. For the noisy plant with the
following state-space representation :

X = AX +BU +V

Y=CX+DU+Z
Where; A is a system matrix, B is the input vector ,
C is the output vector , V is the process noise
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spectral density matrix, and Z is the measurement
noise spectral density matrix, the state-space
realization of the optimal compensator is given by
the following state and output equations as in [11] :

X0 = (A~ BK — LC + LDK)X, + LY
U =KX,

Where:

K and L are the optimal regulator and Kalman
filter gain matrices, respectively, and Xo is the
estimated state vector. Figure 3 shows the block
diagram of the optimal LQG-compensator

— ¥ -AX+BUV

Kalman filter ‘J +
with gain L * i

SYSC

syscl

Fig. 3: Block diagram of the optimal LQG-
compensator.

Using MATLAB's Control System Toolbox, a
state-space model of the regulating closed-loop
system, syscl ,can be constructed as follows :

[L,P,E]=Iqge(A F,C,V,2Z)
sysp =ss(A, B,C,D)
sysc = ss(A—BK - LC + LDK,
L, K, zeros (size(D"))) ()

syscl = feedback(sysp, sysc)

Where :
sysp : is the state-space model of the plant,
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sysc  :is the state-space model of the LQG
compensator, and syscl : is the state-space model of
the closed loop system

6 Effect of LQR-PSS On
Synchronizing and Damping Torque
Coefficients

Fig. (1) shows the block diagram of sample
power system under study. From this figure, the
electric torque relation can be expressed as follows
[12]:

AT, =K,A8 + K,AE, (18)
where;
c K3 -~ B
AE, _1+ST{ K,A8 — AEg | (19)
T=K;Tg

By adding the LQR control signal defined in
equation (15), the feedback gain K defiend as:

K= [H1 H, H, H4]
Using thyristor type excitation, where, its transfer
function can be expressed by
K
G, = A
1+ ST,
where; K, is the excitation gain , Ta is time constant

of excitation system
The following equation is obtained

AEg =G, (KsAS + KgAE, +U)

Substituting u by equation (9) yields the following
K, |KsAS+KGAE,+H A5+
1+ST, |H,Aw+H,AE, +H,AE
(20)

fd

After some algebraic manipulation the following
equation is obtained

KA {(K5+H1)A5+(K6+H3)AEq +H2Aa)

K H
/ L ata
[ 1+ST,

(21)
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and by substituting in equation (19), the following
yields :

. K3
AE | = *
1+ ST
K o (K5+H1)A6+(K6+H3)AE;1+H2Aa)
—K4A5—
1+STA (l,KAH4
14Ty
. K K
AEq{L+ Af= ——3- K, A5 - —3-*
14T 14T
Ka
14T
A {(Kg + HAS + H yAo)
K AH
AHg
a--A4
14Ty
Ka
K3 1+STA
where; A= * *(Kg +Hj)
1+ ST KAH4
1+5ST,
then,
. K K
AEq = (- K 4AS — —o
1+ ST 1+ ST
Ka
1+ ST
A
Ke +H)AS+HAw () 1+ A
< {(Kg +HAS + H a0/ 1+ A)
-
1+5T,

22
Substitute Aw =SAS . Where, S is tile )Laplace
transform factor . The relation between AE('] and
Ao can be estimated
Substitute the value of AEL'q in equation (18), the

deviation of the electrical torque as a function of
delta deviation can be obtained as follows:

AT, =K, - ao+§a1
(by +b,S7)+Shby

where;

a, = KzKa(K4 + KSKA - K4KAH4 + KAHl)
a, = KZKS(K4TA + KAHZ)
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b, =01+ K,K,K, -K,H, +K,K,H,)
b=T+T,-TK,H,
b,=TT,

To determine the damping and synchronizing torque
coefficient , the s factor is substituted by jw

AT, =Ky —— o TIEL_ as
(bo - bZW )+ w bl

. 2 2
AT, = Kl_ao(bo b,w?)+w*"a,b, AS 4
(b, —b,w?)? +w’b?

aobl _al(bo —bZWZ) ij5
(b, —b,w?)? + w?b?

AT, =Kg A3+Ky Aw

where;
Ks is a synchronizing torque coeffecient.
Ky is a damping torque coeffecient.

To evaluate the Ks and Ky over a wide range of
input frequency oscillation, the following analysis is
obtained.

6.1 Ksand Ky at lower frequency wt <<1:

The synchronizing torque coefficient with
LQR control can be expressed by the following
equation:

a
K=K, -2
b,

1
A+ KgKgK o =K gHy + KgK A Hg)

(23)
While the synchronizing torque coefficient without
proposed LQR controller can be found by putting
the H's equal zero .The following equation gives the
synchronizing torque coefficient .
K. =K. — KzKe(K4 + KSKA)

o 1+ KKK,
Moreover, the damping torque coefficient can be
calculated with proposed LQR controller as follows:

b, —a,b
Kd =a0 1b2al 0

0

(24)
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KoKg

K =
d

(25)

Without LQR controller, the damping torque
coefficient can be written as follows:

KoK (Kg +KAKe )T +Tp)
Kq = 273 { 4 A™5 A AR

(26)
6.2 Ksand Ky at higher frequency wt >>1:

The synchronizing torque coefficient at higher
frequency with LQR controller can be calculated as

1 a,b
K=K, +——(a, - =+
S 1 a)zbz( ¢} b2 )
Without LQR controller, the Kg is determined by
putting H's equal zero and the results can be
obtained by

Ks =K, -

K,K;K,

a)ZT 2
Moreover, the damping torque coefficient Ky with
LQR controller is obtained as

& K K5 (K T +KiHy)

w’h, o TT,
Without LQR controller, the Ky is expressed by

K, =-

K, K K,
®°T

7 Digital Simulation Results

Ky =

Choosing the machine parameters at nominal
operating point as

Xy =16;X,=155X,=032X,=04pu
M =10;w, =377, T,,'=6;,D =0;
P=1pu.;Q=0.25pu,; K, =25T, =0.06s

The design of the proposed LQR PSS is established
as follows,
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The nominal A matrix given in eqgn.(6) is evaluated
as:

0 377 0 0
~1317 0 -.1104 0
"T1_-2356 0 —.463 .1667

1547 0 -19481 -16.667

and also vector B is obtained as follows

B=[0 0 0 25/0.06]

Referred to Eq.(14), the observer gains is calculated
as follows after choosing the eigenvalues of
reduced-order observer Pgs = [-8+j6 , -8+j6], then
calculate the observer gains L, as follows:

- 0 0
" 1102 -42727

After calculates observer gain the L., then
substituted in Eq.(8), Eq.(9) and Eq.(10)

- _[ 06667 0.1667
| -66656 —-16.667]

1 -705

G = ,and
|- 547 64392}

0

H=

_416.667}

The assumption in Eqn.(15) are matrix N=0 and
matrix R=50, and Q as follow:

1 00 O
. 010 O
matrix Q = 00 1 0 |
0 0 0 .001

Solving Eqgn. (15), the Riccati equation Siis:

1.8 0 1.5
0 5329 -344
15 -344 19

0 0 0

The matrix S is a positive definite
Also, the optimal gain matrix K is calculated as:

o O O o

K:[ Hl Hz H3 H4]

K=[0.1217 -0.1090 0.1292 0.0015] (27)

Issue 2, Volume 7, April 2012



WSEAS TRANSACTIONS on POWER SYSTEMS

From LQG design assume the V=173 e+7 and
Z=0.01. The output LQG Kalman gain vector
L=10’[0 0 -0.0065 -1.05]'. Fig.4 depicts the power
system model in a block diagram with different
power system stabilizers for comparison. Using the
value of feedback gain vector K obtained in
equation (27) , the dynamic stability of the
linearized studied power system subjected to load
disturbances is simulated on the computer using
Matlab program Package.

Figs. 56,7 and 8 show the speed deviation
responses due to load disturbances of 0.1 p.u.
without and with PSSs ( either based on
conventional LQR approach and proposed LQG -
PSS at different operating points. To validate the
effectiveness of the proposed LQR- PSS. The digital
simulation results prove the robustness of the
proposed PSS in terms of fast damping with system
uncertainties defined in parameter and operating
point changes. Table 1 displays the synchronizing
and damping torque with and without LQR
Controller at low frequency wt <<1. Also, Table 2
depicts the synchronizing and damping torque with
and without LQR Controller at high frequency wt
>>1. Table 3 display the eigenvalues analysis at

different controller and different operating
conditions.
Vt transmission line V]-_“_{
short
circuit test
power system A i)
.1\
+
stahilizers

open

Fig. 4:Schematic diagram of power system model
with different power system stabilizers

E-ISSN: 2224-350X

Ali M. Yousef, Ahmed M. Kassem

Rotor Speed dev. response in pu. at (P=1,Q=.25 pu.)
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©
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Fig. 5: speed deviation responses due to 0.1 p.u load
disturbances with and without PSSs. At normal

x 10" Rotor Speed dev. response in pu. at (P=1,Q=.8 pu.)
6 14 14 13

4 VL e
i

—#— LQR-control

% u l—-— LQG - CONTRO,L\ I
i

I

U

I

Rotor Speed dev. in pu.
)

time in Sec.

load (P=1, Q=0.25 pu.)

Fig. 6: speed deviation responses due to 0.1 p.u load
disturbances with and without PSSs. At heavy load
(P=1, Q=0.8 pu.)
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10'3 Rotor Speed dev. response in pu. at (P=1,Q= -.25 pu.)

| T
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M

Fig. 7: speed deviation responses due to 0.1 p.u load
disturbances with and without PSSs. At lead power

factor load (P=1, Q=-0.25 pu.)

Rotor Speed dev. response in pu. at (P=1,Q= -.8 pu.)
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Fig. 8: speed deviation responses due to 0.1 p.u load
disturbances with and without PSSs. At heavy lead

1 2

3 4 5

6

time in Sec.

power factor load (P=1, Q=-0.8 pu.)

Table 1: Synchronizing And Damping Torque With

And Without LQR Controller at wt<<1

load KS Kd
Without With Without With
control LQR control LQR
P=1, Q=0.25 1.27 1.09 0.0093 0.23
pu
P=1, Q=0.8 1.619 1.48 0.0026 0.16
pu
P=1,Q=-25 1.206 0.905 -0.07 0.32
pu (un-stable)
P=1,Q=-8 1.86 0.99 -1.346 0.07
pu (un-stable)
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Table 2: Synchronizing And Damping Torque With
And Without LQR Controller at wt>>1

load KS Kd
Without With Without With LQR
control LQR control
P=1, Q=0.25 1.316 1.96 0.0012 0.036
pu
P=1, Q=0.8 1.62 2.123 -0.0067 0.027
pu
P=1, Q=-.25 1.03 1.832 -0.0017 0.045
pu (un-stable)
P=1,Q=-8 0.38 1.18 -0.0017 -0.040
pu (un-stable) | (un-stable)
Table 3

The Eigenvalues Analysis At Different Controller
With The Different Operating Point.

Without control With LOR With LQG

control control

P=1, -14.2951 -14.3968 -14.5723
Q=0.25 -0.0363 + 7.074i -0.2429 + 7.0208i -0.5581 + 7.0172i
pu -0.0363 - 7.0074i -0.2429 - 7.0208i -0.5581 - 7.0172i

Normal -2.7619 -2.8719 -3.0487
load -34.2895 +58.433i
-34.2895 -58.433i

-67.7134

-0.0058

P=1, -0.0146 + 7.8306i -14.0302 -14.1276
Q=0.8 pu -0.0146 - 7.8306i -0.1384 + 7.8436i -0.3253 + 7.8429i
Heavy -13.9757 -0.1384 - 7.8436i -0.3253 - 7.8429i

load -3.1246 -3.4475 -3.9630
-31.2950 +53.363i
-31.2950 -53.363i

-61.7440

-0.0098

P=1, Q=- -14.9002 -15.0445 -15.2866
0.25 pu +0.1021 + 6.32i -0.2068 + 6.3348i -0.6861 + 6.3549i
Lead +0.1021 - 6.327i -0.2068 - 6.3348i -0.6861 - 6.3549i

power -2.4336 -2.2966 -2.0754
factor (un-stable) -36.6306 +62.376i
load -36.6306 -62.376i

-72.3842

-0.0041

P=1, Q=- -15.7698 -15.9354 -16.2105
0.8 pu +1.0279 + 4.64i +0.5611 + 4.50i -0.3181 + 4.3091i
Lead +1.0279 - 4.64i +0.5611 - 4.50i -0.3181 - 4.3091i

power -3.4157 -2.9415 -1.8868
factor (un-stable) (un-stable) -36.6386 +62.10i
and -36.6386 -62.10i

heavy -72.3925

load -0.0055

8 Discussions

From table 3 it is clear that system after
adding stabilizers model that taken under study be
more stable especially at normal, heavy and lead
power factor load. These eigenvalues results are
confirmed after obtaining figures which express the
effect of stabilizers on synchronizing and damping
torques, and this effect clear by obtaining positive
damping torques after adding stabilizer. Tables 1,2
describe the synchronizing and damping torque
coefficient with and without optimal LQR control.
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At the load (P=1, Q= -0.8 pu.) , the damping torque
is negative with the mean that the system with and
without optimal control is unstable. Also, figure 8
shows this unstable system in both with and without
LQR control but the system is stable with robust
LQG controller.

9 Conclusions

Design of power system stabilizer PSS
based on LQR control is introduced. The proposed
LQG-PSS has robustness control property with
power system operating points change, parameters
variation and uncertainty. Moreover, an expression
for both the synchronizing and damping torque
coefficients of the studied power system with and
without proposed LQR- PSS are derived and
obtained. To validate the effectiveness of the
proposed LQG-PSS, a simple power system
consisting of synchronous generator connected to
infinite bus through transmission line subjected to
different input disturbances is simulated. A
comparison between the dynamic power system
responses using conventional LQR control and
proposed LQG- PSS is reported. The digital results
show the power of the proposed LQG-PSS in terms
of improvement of damping of the power system
oscillations. Also, improvement of eigenvalues of
the system. The synchronizing and damping torque
coefficients is improved with LQR control than the
system without controller.
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