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Abstract: - The lines adequacy of the network is necessary to provide load demands when the network is 
expanding, because its lack caused by load interruption. In this paper, in order to take the transmission lines 
condition after expansion into account from the line loading view points, the adequacy of the transmission 
network is considered for the solution of the STNEP problem. To obtain the optimal network arrangement, a 
discrete particle swarm optimization (DPSO) algorithm is being used for minimizing the network construction 
and operational cost and compared with genetic algorithm (GA). The particle swarm optimization is a recently 
developed evolutionary algorithm based on the swarm behavior in the nature and has a strong ability to find the 
most optimistic results. The motivation for using the DPSO technique is to reduce design effort and find an 
optimum planning network. The effectiveness of the proposed idea is tested on the Garver's six-bus network 
and an actual transmission network of the Azerbaijan regional electric company in Iran. The evaluation results 
evaluation reveals that the annual worth of the network adequacy has a considerable effect on the network 
arrangement. In addition, the obtained network, based on the DPSO algorithm, has lower investment cost and 
higher adequacy rate. To verify the results, expansion cost index on adequacy rate for IEEE Garvers network 
has been compared with GA results.   
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1 Introduction 
The main task of the transmission network 
expansion planning (TNEP) is the minimization of 
the network expansion and operational costs and 
providing required adequacy of lines during the 
planning horizon, while meeting the technical, 
economic and security constraints [1, 2]. The long-
term TNEP is a hard, large-scale and highly non-
linear combinatorial optimization problem that 
generally, can be classified as static or dynamic. 
Static expansion determines where and how many 
new transmission lines should be added to the 
network up to the planning horizon. If in the static 
expansion the planning horizon is categorized in 
several stages, we will have dynamic planning [3-4]. 
The static TNEP (STNEP) problem acquires a 
principal role in the power system planning and 

should be evaluated carefully. Because, any effort to 
reduce the transmission system expansion cost 
significantly improves the cost saving. The 
electricity companies had capable engineering 
planning groups that planned the lines and the 
earlier lines (in the 1970s) were well designed to 
meet the loads. But, there was typically little or no 
external consultation or discussion about building 
the lines [5].  

After Garver’s paper that was published in 1970 
[6], much research has been done on the field of the 
TNEP problem. Some of them such as [7-16] are 
related to the problem solution method. Some 
others, have been proposed different approaches for 
the solution of this problem considering various 
parameters such as uncertainty [3, 17], reliability 
criteria [18-20] and economic factors [21]. Also, 
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some of them investigated this problem and 
generation expansion planning together [22, 23]. 

Recently, global optimization techniques like 
genetic algorithm [9, 13-14], simulated annealing 
[11, 15], Tabu search [10] and decimal coded 
genetic algorithm (DCGA) [24, 25] have been 
proposed for the solution of the STNEP problem. 
These evolutionary algorithms are heuristic 
population-based search procedures that incorporate 
random variation and selection operators. Although, 
these methods seem to be good methods for the 
solution of the TNEP problem, however, when the 
system has a highly epistatic objective function (i.e. 
where parameters being optimized are highly 
correlated), and number of parameters to be 
optimized is large, then they have degraded 
efficiency to obtain global optimum solution and 
also simulation process takes a lot of computing 
time. Moreover, in all of them, the network 
adequacy in the transmission expansion planning 
has not been studied. The network adequacy is 
necessary to provide load demands when the 
network is expanding because of its lack (i.e. lines 
overloading) caused by load interrupting. In Ref. 
[16], STNEP problem by considering both the 
network losses and construction cost of the lines has 
been solved by discrete particle swarm optimization, 
but the network adequacy has not been studied. In 
Ref. [26], the voltage level of transmission lines has 
been considered as a subsidiary factor, but its 
objective function only includes expansion and 
generation costs and one of the reliability criteria 
i.e.: power not supplied energy. Moreover, 
expansion planning has been studied as a dynamic 
type and the lines adequacy has not been 
considered. In Ref. [7], authors proposed a neural 
network based method for the solution of the TNEP 
problem by considering both the network losses and 
construction cost of the lines. But the adequacy rate 
of transmission lines has not been investigated in 
this study. Also, in Ref. [27], the effect of losses 
coefficient on static transmission network expansion 
planning has been studied using the decimal 
codification based genetic algorithm. It was showed 
that this coefficient has not any role in determining 
of network configuration and arrangement. 
However, considering its effect in expansion 
planning of transmission networks with various 
voltage levels is caused the total cost of the network 
(expansion and losses costs) is reduced considerably 
and therefore the STNEP problem is solved more 
exactly and correctly. But, the network adequacy in 
the transmission expansion planning has not been 
studied in this research. Finally, in Ref. [28] the 
bundle lines effect on network losses has been 

investigated in STNEP problem and indicated that 
these lines have important role in reduction of 
network losses and subsequent operational costs. 
However, the network adequacy effect has not been 
studied. It should be noted that the lines adequacy of 
the transmission network is proportional to the 
investment cost. In fact, the lines adequacy is 
increased by increasing the investment cost and 
using the exact planning and the proper solution 
method. On the other hand, with a low costing, the 
network operates weakly to support load demand 
and becomes overloaded early. Thus, by 
compromising between two parameters, i.e. 
investment cost and network adequacy rate and 
finally defining a total index, static transmission 
network expansion planning can be implemented in 
order to have a network with maximum efficiency 
technically and economically. In order to overcome 
these drawbacks and considering the network 
adequacy, expansion planning has been investigated 
by including adequacy parameter in the fitness 
function of the STNEP problem using discrete 
particle swarm optimization (PSO) algorithm in this 
paper. PSO is a novel population based 
metaheuristic, which utilizes the swarm intelligence 
generated by the cooperation and competition 
between the particles in a swarm and has emerged 
as a useful tool for the engineering optimization [28-
29]. Unlike the other heuristic techniques, it has a 
flexible and well-balanced mechanism to enhance 
the global and local exploration abilities. Also, it 
suffices to specify the fitness function and to place 
finite bounds on the optimized parameters. 

The proposed DPSO method is tested on the 
Garver's 6-bus system and a real transmission 
network of the Azerbaijan regional electric company 
in order to demonstrate its effectiveness for the 
solution of the desired STNEP problem. The best 
solution obtained from the DPSO is the 
configuration for network expansion which has a 
lower cost and higher adequacy that will be lately 
overloaded. Meanwhile the annual worth of network 
adequacy has a considerable effect on the obtained 
result. For this purpose, in the case studies, various 
values of this parameter is investigated. Also, 
performance of DPSO for solution of desired 
STNEP problem is compared with GA. 
 
 

2 Fitness Function and the Solution 

Method for the Problem 
The STNEP problem is a mixed-integer nonlinear 
optimization problem. Due to consideration of the 
transmission lines condition after expansion from 
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the loading viewpoint, the adequacy of the 
transmission network is included in the STNEP 
fitness function. Thus, the proposed fitness function 
could be defined as follows: 
 

1 2
,

( )
ij ij ij A A

i j

Fitness K C C n C T
∈Ω

= + + × −∑    (1) 

Where: 
C1ij: Construction cost of each 230 kV line in branch 
i-j. 
C2ij: Construction cost of each 400 kV line in branch 
i-j.  
nij: Number of new circuits in corridor i-j. 
TA: Required time for missing the expanded network 
adequacy (year). 
CA: Annual worth of the transmission network 
adequacy ($/year). Determination of this parameter 
is based on the importance of network adequacy for 
network owners. Naturally, its high quantities lead 
to have a network with high adequacy and of course 
expensive configuration for the expansion. 
K: A constant parameter that is large enough to 
prevent obtaining negative values of the objective 
function.  
Ω: Set of all corridors.  

It should be mentioned that by performing DC 
load flow to load growth for years after expansion, 
in each year that only one line of the network is 
overloaded, network adequacy is missed. 

Several restrictions have to be modeled in a 
mathematical representation to ensure that the 
mathematical solutions are in line with the planning 
requirements. These constraints are as follows (see 
Refs. [25, 26] for more details): 

0=−+ dgSf                                                 (2) 

0))(( 0 =−+− jiijijijij nnf θθγ                           (3) 

ijijijij fnnf )( 0 +≤                                                 (4) 

ijij nn ≤≤0                                                            (5) 

N-1 Safe Criterion                                                  (6) 

Where, Ω∈),( ji  and: 

S: Branch-node incidence matrix. 
 f: Active power matrix in each corridor.             
 g: Generation vector. 
d: Demand vector. 
θ: Phase angle of each bus. 
γij: Total susceptance of circuits in corridor i-j.   

0

ijn : Number of initial circuits in corridor i-j. 

ijn : Maximum number of constructible circuits in 

corridor i-j. 

ijf : Maximum of transmissible active power 

through corridor i-j. 
In this study, the objective function is different 

from those which are mentioned in [1-4, 6-14, 15-
21, 23-25] and in part of the problem constraints, 

ijf  

has been considered as a new condition. The goal is 
obtaining the number of required circuits for adding 
to the existed network so that it will have maximum 
adequacy and minimum investment cost during the 
specified horizon year. Thus, the problem 
parameters are discrete time type and consequently 
the optimization problem is an integer programming 
problem. For the solution of this problem, there are 
various methods such as classic, non-classic and 
heuristic methods [1-3, 5-7, 9-18]. In this study, the 
discrete particle swarm optimization algorithm is 
used for the solution of the STNEP problem due to 
the flexibility and simple implementation. 
 
 

3 DPSO Algorithm 
Particle swarm optimization algorithm, which is 
tailored for optimizing difficult numerical functions 
and is based on the metaphor of human social 
interaction, is capable of mimicking the ability of 
human societies to process knowledge [28]. It has 
roots in two main component methodologies: 
artificial life (such as bird flocking, fish schooling 
and swarming); and, evolutionary computation. Its 
key concept is that the potential solutions are flown 
through hyperspace and are accelerated towards 
better or more optimum solutions. Its paradigm can 
be implemented in simple form of the computer 
codes and is computationally inexpensive in terms 
of both memory requirements and speed. It lies 
somewhere in between evolutionary programming 
and the genetic algorithms. As in evolutionary 
computation paradigms, the concept of fitness is 
employed and candidate solutions to the problem 
are termed particles or sometimes individuals, each 
of which adjusts its flying based on the flying 
experiences of itself and its companion. It keeps 
track of its coordinates in hyperspace which are 
associated with its previous best fitness solution, 
and also of its counterpart corresponding to the 
overall best value acquired thus far by any other 
particle in the population. Vectors are taken as 
presentation of the particles since most optimization 
problems are convenient for such variable 
presentations. In fact, the fundamental principles of 
the swarm intelligence are adaptability, diverse 
response, proximity, quality, and stability [30]. It is 
adaptive corresponding to the change of the best 
group value. The allocation of responses between 
the individual and group values ensures a diversity 
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of the response. The higher dimensional space 
calculations of the PSO concept are performed over 
a series of time steps. The population is responding 
to the quality factors of the previous best individual 
values and the previous best group values. The 
principle of the stability is adhered, since the 
population changes its state if and only if the best 
group value changes. As it is reported in [28], this 
optimization technique can be used to solve many of 
the same kinds of problems as GA and does not 
suffer from some of GAs difficulties. 

It has also been found to be robust in solving 
problems featuring non-linearity, non-
differentiability and high-dimensionality. It is the 
search method to improve the speed of convergence 
and find the global optimum value of the fitness 
function. 

PSO starts with a population of random solutions 
‘‘particles’’ in a D-dimension space. The ith particle 
is represented by Xi = (xi1, xi2, . . . ,xiD). Each particle 
keeps track of its coordinates in hyperspace, which 
are associated with the fittest solution it has 
achieved so far. The value of the fitness for particle 
i is stored as Pi = (pi1, pi2, . . . ,piD) that its best value 
is represented by (pbest). The global version of the 
PSO keeps track of the overall best value (gbest), 
and its location, obtained thus far by any particle in 
the population. PSO consists of, at each step, 
changing the velocity of each particle toward its 
pbest and gbest according to Eq. (7). The velocity of 
particle i is represented as Vi= (vi1, vi2. . . viD). 
Acceleration is weighted by a random term, with 
separate random numbers being generated for 
acceleration toward pbest and gbest. The position of 
the ith particle is then updated according to Eq. (8) 
[28, 30]: 

))(())(()()1( 2211 txPrctxPrctvtv idgdidididid −+−+×=+ ω (7) 

)1()()1( ++=+ tcvtxtx ididid
                                  (8) 

Where, Pid and Pgd are pbest and gbest. It is 
concluded that the gbest version performs best in 
terms of median number of iterations to converge. 
However, pbest version with neighborhoods of two 
is most resistant to the local minima. The results of 
past experiments about PSO show that ω was not 
considered at an early stage of the PSO algorithm. 
However, ω affects the iteration number to find an 
optimal solution. If the value of ω is low, the 
convergence will be fast, but the solution will fall 
into the local minimum. On the other hand, if the 
value will increase, the iteration number will also 
increase and therefore the convergence will be slow. 
Usually, for running the PSO algorithm, value of 
inertia weight is adjusted by training process. It was 

shown that the PSO algorithm is further improved 
by using a time decreasing inertia weight, which 
leads to a reduction in the number of iterations [30]. 
In Eq. (7), term c1r1 (Pid - xid (t)) represents the 
individual movement and term of c2r2 (Pgd - xid (t)) 
represents the social behavior in finding the global 
best solution. 

Regarding the fact that parameters of the TNEP 
problem are discrete time type and the performance 
of the standard PSO is based on the real numbers, 
this algorithm can not be used directly for the 
solution of the STNEP problem. There are two 
methods for solving the transmission expansion 
planning problem based on the PSO technique [16]: 

1) Binary particle swarm optimization (BPSO). 
2) Discrete particle swarm optimization (DPSO). 
Here, the second method has been used to avoid 

difficulties which are happened at coding and 
decoding problems, increasing convergence speed 
and simplification. In this method, each particle is 
represented by three arrays: start bus ID, end bus ID 
and number of transmission circuits (the both of 
constructed and new circuits) at each corridor. In the 
DPSO iteration procedure, only number of 
transmission circuits needs to be changed, while 
start bus ID and end bus ID are unchanged in the 
calculation, so the particle can omit the start and end 
bus ID. Thus, particle can be represented by one 
array. A typical particle with 12 corridors is shown 
in Fig. 1. 

 

Xtypical = (1, 2, 3, 1, 0, 2, 1, 0, 0, 1, 1, 2) 

Fig. 1 A typical particle 
 

In Fig. 1, in the first, second, third corridor and 
finally 12th corridor, one, two, three and two 
transmission circuits have been predicted, 
respectively. Also, the particle’s velocity is 
represented by circuit’s change of each corridor. ω 
is considered as a time decreasing inertia weight 
which its value is determined by Eq. (9). 

tln

1
=ω                                                                           (9) 

Finally, position and velocity of each particle is 
updated by the following equations: 

))](())(()([)1( 2211 txPrctxPrctvFixtv idgdidididid −+−+×=+ ω (10) 

)1()()1( ++=+ tvtxtx ididid
                                  (11) 

Where, t is the number of algorithm iterations, 
vmin ≤ vid ≤ vmax, and fix (.) is getting the integer part 
of f. When vid is bigger and smaller than vmax and 
vmin, make vid  = vmax and vid  = vmin, respectively. 
While, xid is bigger than upper bound of circuit 
number allowed to be added to a candidate corridor 
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for the expansion, then make xid equal the upper 
bound. While xid < 0, make xid  = 0. The other 
variables are the same Eqs. (7) and (8). The 
flowchart of the proposed algorithm is shown in Fig. 
2. In this study, in order to acquire better 
performance and fast convergence of the proposed 
algorithm, parameters which are used in DPSO 
algorithm have been initialized according to the 
Table 1.  

 
Table 1-Value of Parameters for the DPSO 

Algorithm 

Value 

Parameter Garver's 
network 

Azerbaijan 
network 

Problem dimension 15 153 

Number of particles 30 100 

Number of iterations 500 500 

C1 1.7 1.7 

C2 2.3 2.3 

vmax 3 3 

vmin -3 -3 

 
 

 
Fig. 2 Flowchart of the DPSO algorithm 

It should be noted that PSO algorithm is run 
several times and then optimal results is selected. 

 
 

4 Genetic Algorithm 
Genetic algorithm is a random search method that 
can be used to solve non-linear system of equations 
and optimize complex problems. The base of this 
algorithm is the selection of individuals. It doesn’t 
need a good initial estimation for sake of problem 
solution, In other words, the solution of a complex 
problem can be started with weak initial estimations 
and then be corrected in evolutionary process of 
fitness. The genetic algorithm manipulates the 
binary strings which may be the solutions of the 
problem. This algorithm can be used to solve many 
practical problems such as transmission network 
expansion planning. The genetic algorithm generally 
includes the three fundamental genetic operators of 
reproduction, crossover and mutation. These 
operators conduct the chromosomes toward better 
fitness. A new idea has been applied in the solution 
whose parameters are integer number for creating 
the chromosomes and operators performance that 
caused to increasing convergence speed and 
simplification. According to this idea, each 
chromosome is a set of non-minus integer numbers. 

Selection operator selects the chromosome in the 
population for reproduction. The more fit the 
chromosome, the higher its probability of being 
selected for reproduction. Thus, selection is based 
on the survival-of-the-fittest strategy, but the key 
idea is to select the better individuals of the 
population, as in tournament selection, where the 
participants compete with each other to remain in 
the population. The most commonly used strategy to 
select pairs of individuals that has applied in this 
paper is the method of roulette-wheel selection. 
After selection of the pairs of parent strings, the 
crossover operator is applied to each of these pairs. 

The crossover operator involves the swapping of 
genetic material (bit-values) between the two parent 
strings. Based on predefined probability, known as 
crossover probability, an even number of 
chromosomes are chosen randomly. A random 
position is then chosen for each pair of the chosen 
chromosomes. The two chromosomes of each pair 
swap their genes after that random position. 
Crossover may be applied at a single position or at 
multiple positions. In this work, because of 
choosing smaller population multiple position 
crossover is used with probability of 0.9.  

Each individuals (children) resulting from each 
crossover operation will now be subjected to the 
mutation operator in the final step to forming the 

Start 

The fitness function is defined 
and related variables of DPSO 

are selected. 

Positions and velocities of 

particles are generated randomly. 

New velocities and positions of the 
particles for calculating the next 

fitness function value are calculated 
from (10) and (11). 

Fitness function is calculated. 

End 

Is end condition 
satisfied? 

No 

pbest and gbest are determined. 

ω is specified according to (9). 

Yes 
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new generation. The mutation operator enhances the 
ability of the GA to find a near optimal solution to a 
given problem by maintaining a sufficient level of 
genetic variety in the population, which is needed to 
make sure that the entire solution space is used in 
the search for the best solution. In a sense, it serves 
as an insurance policy; it helps prevent the loss of 
genetic material. This operator randomly flips or 
alters one or more bit values usually with very small 
probability known as a mutation probability 
(typically between 0.001 and 0.01). In a binary 
coded GA, it is simply done by changing the gene 
from 1 to 0 or vice versa. In DCGA, as in this study, 
the gene value is randomly increased or decreased 
by 1 providing not to cross its limits. Practical 
experience has shown that in the transmission 
expansion planning application the rate of mutation 
has to be larger than ones reported in the literature 
for other application of the GA. In this work 
mutation is used with probability of 0.1 per bit. 

After mutation, the production of new generation 
is completed and it is ready to start the process all 
over again with fitness evaluation of each 
chromosome. The process continues and it is 
terminated by either setting a target value for the 
fitness function to be achieved, or by setting a 
definite number of generations to be produced. In 
this study, a more suitable criteria termination has 
accomplished that is production of predefined 
generations after obtaining the best fitness and 
finding no better solution. In this work a maximum 
number of 2000 generations has chosen.  

 
 

5 Results and Discussion 
To confirm the validity of the proposed planning 
technique, it was applied to the two test networks. 
First case is the IEEE Garver's 6-bus system and 
second case is transmission network of the 
Azerbaijan regional electric company, Iran. The 
planning horizon year and load growth rate for both 
case study systems is considered 2016 (5 years 
ahead) and 10%, respectively. In following, results 
of the proposed algorithm on these networks will be 
described. 

 

5.1 Garver's network 
First studied network is Garver's 6-bus system 
which its configuration before expansion is shown 
in Fig. 3. In this network, existed lines are 230 kV 
with capacity 400 MW. The construction cost of 
230 kV lines has been given in [1]. Resistance and 
leakage reactance per kilometer of each line are 
0.00012 and 0.0004, respectively. The generation 
and loads data have also given in [25]. 

 
 

Fig. 3 Garver's 6-bus network 

 
As mentioned, because of the importance of the 

network adequacy worth (CA), the DPSO based 
proposed method is carried out for different values 
of this parameter. The optimal planning networks 
for different values of CA (million $/year) are 
shown in Figs 4-7 (the dash lines into figures are 
number of required circuits for adding to the 
network until planning horizon year). Also, 
expansion cost and year of missing the network 
adequacy for the above obtained configurations are 
given in Table 2. It can be seen that network 
expansion cost has a nonlinear relationship with the 
network adequacy. Thus, a parameter, named 
expansion cost index on adequacy rate, is defined 
for obtaining best design according to the expansion 
cost and the network adequacy. This parameter is 
the expansion cost per the network adequacy rate 
(year). It is worth mentioning that the lower the 
value of this index is, the better the system 
configuration.  

 

 

Fig. 4 The Proposed configuration using DPSO for 
CA=1 

 

 
Fig. 5 The Proposed configuration using DPSO for 

CA=2 
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Fig. 6 The Proposed configuration using DPSO for 
CA=4 

 

 

Fig. 7 The Proposed configuration using DPSO for 
CA=5 

 

 

Table 2-Expansion costs and year of missing 
the network adequacy for CA=1-5 (M$/year) 

TA 
Expansion 

Cost (M$US) 
CA 

5 years after horizon (2021) 16.42 1 

7 years after horizon (2023) 18.79 2 

9 years after horizon (2025) 23.93 3 

12 years after horizon (2028) 35.58 4 

15 years after horizon (2031) 66.78 5 
 

 
Fig. 8 The curve of the expansion cost index on 
adequacy rate versus CA for Garver's network 

As shown in Fig. 8, this index has been acquired 
according to the various expansion costs listed in 
Table 2.  It can be seen that the index obtained by 
DPSO is lower than GA for CAs. The fact shows 
that expansion costs and network adequacy 
proposed by DPSO are lower and higher than ones 
proposed by GA. In simple words, it can be 
concluded that the performance of PSO for finding 
the best solution is better than GA in solution of 
STNEP problem considering network adequacy. 
Also, from this figure, it can be seen that CA=3 
relatively give a better solution from the technical 
(network adequacy) and economical (expansion 
cost) viewpoints. Regarding the efficiency and 
robustness of PSO in comparison with GA, DPSO 
method is used for implementation of the proposed 
model on the real case study. In following, the 
details of this actual system and its results are 
described.    
 

5.2 Transmission network of the Azerbaijan 

regional electric company 
Second studied network is transmission network of 
the Azerbaijan regional electric company. This 
actual network has been located in northwest of Iran 
and is shown in Fig. 9. All details of the network are 
given in [31]. In this network, 400 kV lines are with 
capacity 750 MW. Resistance and leakage reactance 
per kilometer of each  400 kV line are 0.000035 and 
0.000124, respectively. It should be noted that 
characteristics of 230 kV lines are similar to 
Garver's network.  

 

Fig. 9 Transmission network of the Azerbaijan 
regional electric company 
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The proposed DPSO method is applied to this 
case study system for finding the optimal planning 
networks under different values of CA (million 
$/year) and the results are shown in Figs. 10 and 11 
and Table 3. 

 

 

Fig. 10 Proposed arrangement for CA=1 
 

 

Fig. 11 Proposed arrangement for CA=2 
 

Also, the expansion costs and year of missing the 
network adequacy (TA) is given in Table 4. 
According to expansion cost index on adequacy, as 
shown in Fig. 12, CA=2 relatively give a better 
solution from the technical and economical 
viewpoints. Due to the evaluation results of both 
case study systems, it can be seen that increasing the 

annual worth of network adequacy is caused more 
lines added to the network for expansion and 
subsequent the network satisfies the requirement of 
delivering electric power more safely and reliably to 
the load centers. 

 
Table 3. Proposed arrangements with respect to 

CA=3 and 4 (M$/year) 

CA=4 CA=3 

Number of 
Circuits 

Corridor 
Number of 

Circuits 
Corridor 

2 1-2 2 1-2 

1 1-11 1 1-9 

1 1-18 1 2-5 

1 2-6 2 2-9 

1 5-10 1 2-17 

1 6-13 1 3-8 

1 6-17 1 4-6 

1 6-18 1 4-13 

1 7-10 1 4-14 

1 7-12 1 4-16 

1 7-16 1 4-18 

1 7-17 1 5-13 

2 8-12 1 7-16 

1 9-16 1 7-17 

 

Table 4. Expansion costs and TA with respect to 
CA=1-4  (M $/year) 

TA 
Expansion 

Cost (M$US) 
CA 

6 years after horizon (2022) 50.48 1 

8 years after horizon (2024) 57.34 2 

11 years after horizon (2027) 85.71 3 

14 years after horizon (2030) 107.65 4 
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Fig. 12 The curve of the expansion cost index on 
adequacy rate versus CA for Azerbaijan network 
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Generally, it can be concluded that there should 
be a trade-off between the desired level of adequacy 
and capital investment of network owners. But it 
seems that relatively lower investment cost can be 
given a reasonable adequacy for transmission 
network. 
 

 

6 Conclusion 
By including the transmission network adequacy in 
the fitness function of the STNEP problem, an 
optimized network arrangement is acquired for the 
network expansion using discrete particle swarm 
optimization algorithm. The proposed arrangement 
satisfies a maximum adequacy for the feeding of 
loads in the network with minimum expansion cost. 
The solution of the STNEP problem using the 
DPSO method for various quantities of network 
adequacy worth shows that the annual worth of 
network adequacy has a nonlinear relationship with 
network expansion cost and therefore, a trade-off 
between the desired level of network adequacy and 
capital investment of network owners is required. 
Also, the system performance characteristics in 
terms of ‘the expansion cost per the network 
adequacy rate’ index reveals that the solution of 
TNEP problem by relatively lower investment cost 
can lead to an expansion design with a reasonable 
network adequacy.  
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