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Abstract: - Structural optimization using computational tools has become a major research field in recent years. 
The paper deals with a sizing optimization analysis of laminated circular cylindrical shell. For thin-walled shells, 
the classical shell theory is capable of accurately predicting the shell behavior. The weight minimization 
subjected to displacement constraint within the numerical optimization of the circular cylindrical shell is done. 
The thickness of the shell laminate roof under constant pressure loading is being searched in the optimization 
process. The boundary conditions of the shell laminate roof are assumed to be a fully pin support. Within the 
general optimization process, the Modified Feasible Direction method is used. The performance of the 
composite structural system is evaluated through finite element analysis of shell elements carried out 
using COSMOS/M. 
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1 Introduction  
Structural designers seek the best possible design, be 
it a vehicle structure or space structure while using 
the least amount of resources. The quality of a 
design depends on the application, typically related 
to strength or stiffness, while resources are measured 
in terms of weight or cost. Therefore, the best design 
often means the lowest weight or cost with 
limitations on the strength or stiffness properties. 
Engineers have relied on experience to achieve such 
design. 
Over past decades, mathematical optimization, 
which deals with either the maximization or 
minimization of an objective function subject to 
constraint functions, has emerged as a powerful tool 
for structural design. The use of mathematical 
optimization of design transforms the design process 
into a systematic well-organized activity. 
For many years, designers have investigated 
optimization problems involving composite 
materials. Using composite materials in structural 
design [1,2] has gained popularity, because of 
several advantages that these materials offer. The 
directionality of fiber composites requires the 
optimization in the process of design of these 
materials. Many works have been done on 
optimization of cylindrical shells, for example, Park 
et al. [3] used optimization of laminate stacking 
sequence to maximize the strength. Adali and 
Verijenko [4] optimized the stacking sequence 

design for hybrid laminates. Soremekun et al. [5] 
used optimization algorithm for stacking sequence 
blending of multiple composite laminates to 
minimize the weight and the cost of the panels. 
Weaver [6] used computational study for designing 
the laminate composite cylindrical shells under axial 
compression to minimize the mass with local and 
global constraints. 
Many works have treated the optimization of circular 
cylindrical shells. Lam and Loy [7] investigated the 
influence of boundary conditions for rotating 
cylindrical shell made of thin laminate. Duvaut et al. 
[8] developed a finite element method for 
determining the optimal direction and the fiber 
volume fraction at each point of a structure to 
minimize the weight. Numerical simulation of fiber 
reinforced composites has been done in 3D [9]. Hu 
and Ou [10] used a sequential linear programming 
method (SLP) for the maximization of the 
fundamental frequency of truncated conical 
laminated shells with respect to the orientations of 
fibers.  
The paper is organized as follows. In Section 2 the 
Mori-Tanaka (MT) method [11] is expressed, that 
has applications in a variety of engineering works. 
The classical theory for a circular cylindrical shell 
[12] using Love´s first approximation is discussed in 
Section 3. In Section 4 we introduced the Finite 
Element Method (FEM) [13,14,15] into the problem. 
The Sizing Optimization Problem [16] as an iterative 
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process of engineering design is given in Section 5. 
Homogenization of fiber reinforced composite 
material [17,18,19] and Optimization [20,21,22,23, 
24] of the shell roof fabricated from fiber reinforced 
composite laminate is explained in Section 6. 
Finally, we have collected some concluding remarks 
in Section 7.  
 
 
2 Mori-Tanaka method 
As an alternative to the experimental determination 
of material properties of fiber matrix composite 
material is the usage of various homogenization 
techniques. Many analytical homogenization 
techniques are based on the equivalent eingenstrain 
method, which considers the problem of a single 
inclusion embedded in an infinite elastic medium. 
Homogenization has been accomplished by using 
various techniques including the Fourier series 
technique, variational principles etc. Most fiber 
matrix composites have a random arrangement of the 
fibers (Fig. 1).  
In the last decade, effective media theories, widely 
used in classical continuum micro mechanics, have 
been recognized as an attractive alternative to FE 
based methods. Since its introduction, the Mori-
Tanaka method has enjoyed a considerable interest 
in a variety of engineering applications. These 
include classical fiber matrix composites too [11]. 
 

 
 

Fig. 1 Randomly distributed fibers 
 

General description of the Mori-Tanaka method in 
the framework of elasticity is treated in this section. 
The Mori-Tanaka method takes into account the 
effect of phase interactions on the local stresses by 
assuming an approximation in which the stress in 
each phase is equal to that of a single inclusion 
embedded into an unbounded matrix subjected to as 
yet unknown average matrix strain or stress.  
The constitutive equation εσ C=  we can write in 
the following form:  
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Material characteristics we can solve from the 
following equations   

( ) 1
11
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    2 2
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3 Classical Shell Theory  
Thin-walled laminate shells can be also modeled as 
two-dimensional structural elements but with single 
or double curved reference surfaces (Fig. 2). 
 
 

 
 

 
 
 
 
 
 
 
 

 
Fig. 2 Double curved laminated shell and layout of 

layers [25] 
 
The modeling and analysis of laminate circular 
cylindrical shells fabricated from fiber composite 
material depend on the radius/thickness ratio (Fig. 
3).  

 
 

Fig. 3 Circular cylindrical shell under general 
loading [26] 
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The strain displacement relations for a circular 
cylindrical shell using Love´s first approximation are 
given by 
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The total strains at an arbitrary distance z of the 
middle surface are written by 

                                   zxxx κεε += ,     

                                   zsss κεε += ,     

                                  zxsxsxs κεε += .                 (2) 

Each individual layer is assumed to be in a state of 
generalized plane stress, the Hooke´s law yields 

                  jij
n

i
n E εσ = ,   i, j = (x, s, xs),               (3) 

where n is a number of one layer and Eij is a 
component of elasticity matrix defined in [12]. 
The force and moment resultants (Fig. 4) are defined 
by 
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The constitutive equations are written in the matrix 
form 
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where A is the extension matrix, B is the bending-
extension coupling matrix, D is the bending matrix. 
The components of A, B, D matrix are 
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where N stands for number of layers. 
The equilibrium equations for differential shell 
element on Fig. 4 are given by 
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Fig. 4 Force and bending moment resultants of the 
differential shell element 

 
Substituting the constitutive equations into the 
equilibrium equations yields a set of three coupled 
partial differential equations for the three 
displacements u, v, w  which can be written in matrix 
form  
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The governing equations are solved with the help of 
Finite Element Method. 
 
 
4 Finite Element Analysis 
The basic idea of the FEM is a discretisation of the 
continuous structure. The discretisation is defined by 
a finite element mesh made out of elements nodes. 
The starting point for elastostatic problems is the 
total potential energy. In accordance with the Ritz 
method, the approximation is used for displacement 
field vector by notation 

                                    vxNu )()(~ =x ,                  (9) 

where N(x) is the matrix of the shape functions, that 
are functions of the position vector ( )z,s,x=x  and v 
is the element displacement vector. 
For the stresses and strains, we obtain from Eq. (9) 
the Eqs. (10) 

                         vxEDNxEx )()()( == εσ ,  

                     ( ) ( ) ( ) ( )vxBvxDNxDux ===ε .  (10)  

With the approximation (Eq. 9) the total potential 
energy is a function of all the nodal displacement 
components arranged in the element displacement 
vector v. The variation of the total potential energy  
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where p, q are volume and surface loadings, 
respectively and K is the symmetric stiffness matrix 
given by 
                                  ∫=

V
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The vectors of the volume and the surface forces are 
written by 
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T
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If the components of vδ are independent of each 
other, we obtain from Eq. (12) the system of linear 
equations 

fKv = , 
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All equations considered above are valid for a single 
finite element and they should have an additional 
index E. We have the inner element energy 

            
EE

T
E

V
E

TT
EE

E

dVU vKvvEBBv
2
1

2
1

== ∫ ,       (16) 

with the element stiffness matrix 
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where E is the elasticity matrix obtained with 
suitable transformations in two stages, firstly from 
the principal material directions to the element local 
directions and secondly to the global directions. B is 
the strain matrix, βn  is fiber orientation angle of 
layer, T is the transformation matrix with 

        ( ) ( )( ) 1−= ββ TTT .                    (18) 

Because the energy is a scalar quantity, the potential 
energy of the whole structure can be obtained by 
summing the energies of single elements. By a 
Boolean matrix LE the correct position of each single 
element is determined. The element displacement 
vector vE is positioned into the system displacement 
vector by the equation 
                                       vLv EE = ,       (19) 

then we obtain the system equation by summing over 
all elements [13] 

              ( )
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i
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i
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T
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The system stiffness matrix is also symmetric, but it 
is a singular matrix. After consideration of the 
boundary conditions of the whole system, K 
becomes a positive definite matrix and the system 
equations can be solved. 
 
 
5 Sizing Optimization Problem 
Engineering design is an iterative process. The 
design is continuously modified until it meets 
evaluation and acceptance criteria set by the 
engineer.  
Design optimization refers to the automated redesign 
process that attempts to minimize an objective 
function subject to limits or constraints on the 
response by using a rational mathematical approach 
to yield improved designs.  
An optimum design is defined as a point in the 
design space for which the objective function is 
minimized or maximized and the design is feasible. 
The basic problem is the minimization of a function 
subject to inequality constraints: 
Minimize objective function 

                      Z = F(X) → min,                             (21) 

subject to constraints                   

        
U
ii

L
i XXX ≤≤       i = 1,2, ..., Nd,                 (22) 

         gj (X) ≤ 0              j = 1,2, ..., Nc,                  (23) 

where iX  is a design variable. 
We make use of the existing response at a number of 
points in the design space to construct a polynomial 
approximation to the response at other points. The 
optimization process is applied to the approximate 
problem represented by the polynomial 
approximation  
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where dN  is the number of design variables, 

iijii d,c,b,a  are coefficients to be determined by the 
least squares regression.  
When the objective function and constraints are 
approximated and their gradients with respect to the 
design variables are calculated based on chosen 
approximation, it is possible to solve the 
approximate optimization problem.  
One of the algorithms used in the optimization 
module is called the Modified Feasible Direction 
method (MFD). The solving process is iterated until 
convergence is achieved. 
 
Figure 5 shows the iterative process within the 
general optimization. 
 
 
Using the MFD the solving process is iterated until 
convergence is achieved: 
1. q = 0, mq XX = .  
 
2. q = q+1. 
 
3. Evaluate objective function and constraints. 
 
4. Identify critical and potentially critical constraints 

cN . 
 
5. Calculate gradient of objective function ( )iXF∇  
and constraints ( )ik Xg∇ , where cN,...,,k 21=  . 
 
6. Find a usable-feasible sear ch direction qS . 
 
7. Perform a one-dimensional search 

qqq SXX α+= −1 .          
 
8. Check convergence. If satisfied, make qm XX =+1 . 
Otherwise, go to 2. 
 
9. qm XX =+1 . 
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6 Optimization Example and Results 
The optimal thickness design of circular cylindrical 
shell fabricated from laminate [0/45/-45/90]S under 
constant pressure loading pz  is solved in the example 
(Fig. 6). The boundary conditions are assumed to be 
a fully pin support.  
The material characteristics are computed for a 
unidirectional composite with isotropic fibers Ef = 
230 GPa, νf = 0.3, and isotropic matrix Em = 3.2 
GPa, νm = 0.4. The material properties of each layer 
were used from homogenization techniques [11]. 
The fiber volume fraction and fiber diameter were 
found from the electron microscope digital shot (Fig. 
7). Each layer of the laminate has the same thickness 
hn . Initial values and results of the optimization 

process are listed in Table 1.  
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Fig. 6 Problem sketch and finite element model 

  

 
 

Fig. 7 Electron microscope digital shot  
 
The mathematical optimization problem can be 
written as:  
Minimize objective function   

( ) ( )hGF n=X → min   [N] 

Subject to constraints 

625.00125.0 ≤≤ hn
    [mm] 

                  -3.0 ( )≤≤ hw n 0.0  [mm]                      (25) 

where nh is the thickness of one layer. 
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Fig. 8 Normalized longitudinal modulus versus fiber 
volume fraction 
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Fig. 9 Normalized transversal modulus versus fiber 
volume fraction 

 
 

Table 1 Initial and final values of optimization 
parameters 
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Using the MFD the solving process is iterated until 
convergence is achieved. To find the search 
direction, active and violated constraints have to be 
identified. 
 
 Thickness of layer 

 
Fig. 10 Variation of the design variable values – 
thickness [mm] during the optimization process 

 
 Displacement  w 

   
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 

 
Fig. 11 Variation of the constraint values – 

displacement w [mm] during the optimization 
process 
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Fig. 12 Displacements w [mm] after optimization 
process 

 
Convergence to the optimum is checked by criteria 
of maximum iterations and criteria changes of 
objective function. Besides these criteria, the Kuhn-
Tucker conditions necessary for optimality must be 
satisfied by using the Lagrangian multiplier method. 
The Kuhn-Tucker conditions are sufficient for 
optimality when the number of active constraints is 
equal to the number of design variables and if 
objective function and all of the constraints are 
convex. Otherwise, sufficient conditions require the 
second derivatives of the objective function and 
constraints. Convergence or termination checks are 
performed at the end of each optimization loop. The 
optimization process continues until either 
convergence or termination occurs. 
The general optimization contains: 
1. Initial analysis with input data (Tab. 1). 
2. Mathematical optimization problem (25). 
3. Linear approximation problem. 
4. The algorithm of MFD method with convergence 
criteria. 
5. Convergence or termination checks of general 
optimization.  
 
 
7 Concluding Remarks 
The proceeding deals with a numerical approach of 
modeling of circular cylindrical shell fabricated from 
fiber reinforced composite material. The theory of 
cylindrical shells is described in the frame of 
classical shell theory. In the paper, there are involved 
the strain displacement relations, constitutive 
equations, and differential equilibrium equations.  
The homogenization of fiber reinforced composite 
(Fig. 7) was used for calculating the material 
characteristics of the composite. In the Figs. 8 and 9 
can be seen normalized longitudinal and transversal 
material modulus versus fiber volume fraction, 
respectively. 

Optimization 
parameters 

Initial 
values 

Final 
values 

Tolerance 

Design variables 
- thickness  
of one layer 
[mm] 

0.25 0.1619 1∙10-3 

Objective 
function 
- weight [N] 

4.4064 2.8532 0.01 

Constraint  
- displacement  
w [mm] 

-1.2478 -3.0296 0.03 
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Within the numerical optimization, the minimization 
of weight subject to displacement constraint was 
made. Design variable is the thickness of layers of 
laminate cylindrical shell. The initial and final values 
of design variables, constraints and the objective 
function are shown in Table 1. 
The maximum number of iterations of MFD was 
100. The general optimization process was stopped 
after 10 design sets (Fig. 10, Fig. 11), because the 
difference between the current value and the one or 
two previous designs was less than tolerance 
specified in Table 1.  
The final value of design variable is 

mm16187.0=hn
 (Fig. 10). The total thickness of 

the laminate circular cylindrical shell is 
318 .hn = mm. Figure 11 shows the feasible and 

infeasible domain in the usable design space.  
Contour plot of displacements w after optimization 
process can be seen in Fig. 12. 
The optimization is a very useful way for the design 
of laminate structural elements including circular 
cylindrical shells. 
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