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Abstract: - An infinite elastic medium with a planar crack is considered. The crack is subjected to the pressure 
of fluid injected at a point on the crack surface. Description of the crack growth is based on the lubrication 
equation (balance of the injected fluid and the crack volume), the equation for crack opening caused by fluid 
pressure on the crack surface, the Poiseuille equation related local fluid flux with crack opening and pressure 
gradient, and the criterion of crack propagation of linear fracture mechanics. The crack growth is simulated by 
a discrete process consisting of three basic stages: increasing the crack volume for a constant crack size, jump 
to a new size defined by the fracture criterion, and filling the new crack configuration by the fluid. First, an 
isotropic medium with a penny-shaped crack is considered. Dependencies of the crack radius, opening, and 
pressure distributions on the crack surface on time, fluid viscosity, and fracture toughness of the medium are 
studied. It is shown that for small fluid viscosity and low injection rates, the pressure distribution can be 
approximated by a three-parameter model that simplifies substantially the numerical solution. Then, the three-
parameter model is applied to the case of heterogeneous media; in this case, the crack shape may be non-
circular in the process of hydraulic fracture. Examples of hydraulic fracture crack growth in layered media are 
presented.  
 
Key-Words: - Fracture mechanics, hydraulic fracture, penny-shape crack, crack in heterogeneous media.  
 
1 Introduction 
For importance in gas and petroleum industry, the 
process of hydraulic fracture has been the object of 
intense theoretical and experimental studies for 
about sixty years. The number of publications 
dedicated to this problem is huge. Publications 
before 21-st century can be found in the books [1], 
[2]. More recent publications are mentioned, e.g., in 
[3], [4], [5]. Mathematically, the problem is reduced 
to a system of non-linear integro-differential 
equations in a region with moving boundary. 
Analytical solutions of this system do not exist even 
in the simplest cases, and only numerical methods 
are efficient. By application of conventional 
numerical methods, the original integro-differential 
equations are discretized with respect to time and 
space variables, and then, hydraulic fracture crack 
geometry should be reconstructed at each discrete 
time step. The principal unknown of the problem is 

the pressure distribution on the crack surface. It 
turns out that construction of this distribution is an 
ill-posed problem. Application of conventional 
numerical methods for solution of ill-posed 
problems can result substantial numerical errors, 
and only specific methods are efficient [6]. Because 
the ill-posed problem should be solved at each time 
step of the crack growth, the errors accumulate, and 
reliable solution can be lost. In addition to non-
linearity and moving boundary, this is another 
difficulty in numerical solution of the hydraulic 
fracture problem.  
In the present work, growth of a planar crack in an 
elastic medium is considered. First, the medium is 
assumed to be isotropic and homogeneous. In this 
case, the crack is penny-shape, and fluid is injected 
in the crack center with a positive injection rate. 
Description of the crack growth is based on the 
lubrication equation (balance of the injected fluid 
and the crack volume), the equation for crack 
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opening in elastic media caused by fluid pressure 
distributed on the crack surface, the Poiseuille 
equation related local fluid flux with the crack 
opening, the pressure gradient, and the classical 
criterion of crack propagation of linear fracture 
mechanics. Time discretization of these equations is 
interpreted as an actual process that consists of three 
stages: growth of the crack volume for a constant 
crack radius, an instant crack jump to a new radius, 
and filling the new crack configuration by fluid. For 
the solution of the ill-posed problem of 
reconstruction of the pressure distribution at each 
time step of crack growth, a specific class of 
approximating functions is used. These positive, 
monotonically decreasing functions are appropriate 
for approximation of actual pressure distributions 
and allow one to solve the ill-posed problem with 
sufficient accuracy. It is shown that for fluids with 
small viscosity and low injection rates, the pressure 
distribution on the crack surface can be 
approximated by a three-parameter model. This 
model simplifies numerical solution of the problem. 
The model can be extended to the case of hydraulic 
fracture crack growth in heterogeneous media. 
Examples of application of the model to 
heterogeneous layered media with varying fracture 
toughness and elastic moduli are presented.    
 
 
2 A Crack in Homogeneous Elastic 
Media Subjected to Fluid Injection 
Consider an infinite isotropic homogeneous elastic 
medium containing an isolated penny shape crack. 
The crack is subjected to internal pressure caused by 
the fluid injected at the crack center with given 
positive injection rate 𝑄𝑄(𝑡𝑡) (Fig.1).  

 
Fig.1 

It follows from the symmetry of the problem that 
the growing crack remains circular with increasing 
radius 𝑅𝑅(𝑡𝑡). Crack opening 𝑤𝑤(𝑟𝑟, 𝑡𝑡) and pressure 
distribution 𝑝𝑝(𝑟𝑟, 𝑡𝑡) on the crack surface are 
functions of time t and the distance r from the crack 
center. We introduce fractional crack volume 𝑣𝑣(𝑟𝑟, 𝑡𝑡) 
by the equation 

𝑣𝑣(𝑟𝑟, 𝑡𝑡) = 2𝜋𝜋 ∫ 𝑤𝑤(𝑥𝑥, 𝑡𝑡)𝑥𝑥𝑥𝑥𝑥𝑥.𝑅𝑅(𝑡𝑡)
𝑟𝑟                (1) 

Thus, 𝑣𝑣(𝑟𝑟, 𝑡𝑡) is the crack volume between the circle 
of radius r and the crack edge 𝑟𝑟 = 𝑅𝑅(𝑡𝑡). Let 𝑞𝑞(𝑟𝑟, 𝑡𝑡) 
be the fluid flux in the radial direction through the 

crack cross-section with coordinate 𝑟𝑟. For 
incompressible fluids and impermeable media, the 
equation of balance of fractional volume 𝑣𝑣(𝑟𝑟, 𝑡𝑡) and 
the injected fluid (lubrication equation) has the form  

𝜕𝜕𝑣𝑣
𝜕𝜕𝑡𝑡

= 2𝜋𝜋𝑟𝑟𝑞𝑞(𝑟𝑟, 𝑡𝑡).                          (2) 
The fluid flux 𝑞𝑞(𝑟𝑟, 𝑡𝑡), crack opening 𝑤𝑤(𝑟𝑟, 𝑡𝑡), and 
pressure 𝑝𝑝(𝑟𝑟, 𝑡𝑡) are related by the Poiseuille law [1] 

𝑞𝑞(𝑟𝑟, 𝑡𝑡) = −𝑤𝑤(𝑟𝑟 ,𝑡𝑡)3

12𝜂𝜂
𝜕𝜕𝑝𝑝 (𝑟𝑟 ,𝑡𝑡)
𝜕𝜕𝑟𝑟

 .                  (3) 
It is assumed that the fluid is Newtonian with 
constant viscosity η. From equations (2) and (3) it 
follows that the lubrication equation can be written 
in the form 

𝜕𝜕𝑣𝑣(𝜌𝜌 ,𝑡𝑡)
𝜕𝜕𝑡𝑡

= −2𝜋𝜋𝜌𝜌 𝑤𝑤(𝜌𝜌 ,𝑡𝑡)3

12𝜂𝜂
𝜕𝜕𝑝𝑝 (𝜌𝜌 ,𝑡𝑡)
𝜕𝜕𝜌𝜌

.               (4) 
Here dimensionless radial coordinate 𝜌𝜌 = 𝑟𝑟/𝑅𝑅(𝑡𝑡) is 
introduced. For an isotropic elastic medium and 
radially symmetric pressure distribution 𝑝𝑝(𝜌𝜌, 𝑡𝑡), 
crack opening 𝑤𝑤(𝜌𝜌, 𝑡𝑡) and fractional volume 𝑣𝑣(𝜌𝜌, 𝑡𝑡) 
of a penny-shape crack of radius 𝑅𝑅 are defined by 
the equations [7], [8]  

𝑤𝑤(𝜌𝜌, 𝑡𝑡) = 𝑅𝑅(𝑡𝑡)
𝜋𝜋𝜋𝜋 ´ ∫ 𝐺𝐺(𝜌𝜌, 𝜍𝜍)𝑝𝑝(𝜍𝜍, 𝑡𝑡)𝑥𝑥𝜍𝜍1

0 ,           (5) 

𝑣𝑣(𝜌𝜌, 𝑡𝑡) = 𝑅𝑅(𝑡𝑡)3

𝜋𝜋𝜋𝜋 ′ ∫ 𝐾𝐾(𝜌𝜌, 𝜍𝜍)𝑝𝑝(𝜍𝜍, 𝑡𝑡)𝑥𝑥𝜍𝜍1
0 .          (6) 

Here 𝜋𝜋′ = 𝜋𝜋
4(1−𝜈𝜈)

, and 𝜋𝜋, 𝜈𝜈 are shear modulus and 
Poisson ratio of the medium. The kernel 𝐺𝐺(𝜉𝜉, 𝜍𝜍) has 
the form 

𝐺𝐺(𝜉𝜉, 𝜍𝜍) = �

𝜍𝜍
𝜌𝜌
𝐹𝐹(sin−1(𝜅𝜅), 𝜍𝜍

𝜉𝜉
),    𝜍𝜍 < 𝜉𝜉

𝐹𝐹(sin−1(𝜅𝜅−1), 𝜉𝜉
𝜁𝜁
),    𝜍𝜍 > 𝜉𝜉 ,

�        (7) 

where  

𝐹𝐹(𝜙𝜙,𝑚𝑚) = ∫ 𝑥𝑥𝑑𝑑
�1−(𝑚𝑚 sin𝑑𝑑)2

𝜙𝜙
0 , 𝜅𝜅 = �1−𝜉𝜉2

1−𝜍𝜍2 .       (8) 

The kernel 𝐾𝐾(𝜌𝜌, 𝜍𝜍) is expressed in terms of  𝐺𝐺(𝜉𝜉, 𝜍𝜍) 
𝐾𝐾(𝜌𝜌, 𝜍𝜍) = 2𝜋𝜋 ∫ 𝐺𝐺(𝜉𝜉, 𝜍𝜍)𝜉𝜉1

𝜌𝜌 𝑥𝑥𝜉𝜉,                (9) 
and it is a smooth integrable function of the 
variables (𝜌𝜌, 𝜍𝜍). The integral operators with kernels 
𝐺𝐺(𝜌𝜌, 𝜍𝜍) and 𝐾𝐾(𝜌𝜌, 𝜍𝜍) have the following remarkable 
properties. Actions of these operators on polynomial 
functions of 𝜌𝜌 with even exponents  

𝑝𝑝(𝜌𝜌) = 𝑎𝑎₀ + 𝑎𝑎₁𝜌𝜌² + 𝑎𝑎₂𝜌𝜌⁴+. . . +𝑎𝑎𝑛𝑛𝜌𝜌²ⁿ       (10) 
are polynomials of the same power 2𝑛𝑛 multiplied by 
(1 − 𝜌𝜌2)

1
2 (for the G-kernel) and (1 − 𝜌𝜌2)

3
2 (for the 

K-kernel). Coefficients of these polynomials are 
expressed in terms of the coefficients 𝑎𝑎0,𝑎𝑎1, . . ,𝑎𝑎𝑛𝑛  
in equation (10) in explicit analytical forms [8].  
   Note that calculation of pressure distributions 
𝑝𝑝(𝜌𝜌, 𝑡𝑡) from equation (6) with given left hand side 
𝑣𝑣(𝜌𝜌, 𝑡𝑡) is in fact solution of Fredgholm integral 
equation of the first kind with integrable kernel 
𝐾𝐾(𝜌𝜌, 𝜍𝜍). It is a well-known ill-posed problem [6]. 
For such problems, small deviations (errors) of the 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS Sergey Kanaun, Anatoly Markov

E-ISSN: 2224-3429 148 Volume 12, 2017



 

 

left hand sides 𝑣𝑣(𝜌𝜌, 𝑡𝑡) cause large errors in the 
pressure distribution 𝑝𝑝(𝜌𝜌, 𝑡𝑡). 
For calculation of the crack radius in the hydraulic 
fracture process, the classical criterion of linear 
fracture mechanics is used. For radial pressure 
distribution 𝑝𝑝(𝜌𝜌), the stress intensity factor 𝐾𝐾𝐼𝐼 for 
the fracture mode I at the crack edge is [7] 

𝐾𝐾𝐼𝐼(𝑝𝑝,𝑅𝑅) = √2𝑅𝑅
𝜋𝜋 ∫ 𝑝𝑝(𝜌𝜌)𝜌𝜌

�1−𝜌𝜌2
1

0 𝑥𝑥𝜌𝜌,                (11) 

and the fracture criterion takes the form 
 𝐾𝐾𝐼𝐼(𝑝𝑝,𝑅𝑅) = 𝐾𝐾𝐼𝐼𝐼𝐼 ,                         (12) 

where 𝐾𝐾𝐼𝐼𝐼𝐼  is the so-called fracture toughness. This 
specific physical parameter defines resistance of the 
medium to crack propagation. 
Lubrication equation (4), equations (5) and (6), and 
fracture criterion (12) compose a complete system 
of equations for the growth of a penny-shape crack 
in a homogeneous isotropic elastic medium by fluid 
injection. A natural principal unknown of the 
problem is fluid pressure 𝑝𝑝(𝜌𝜌, 𝑡𝑡) on the crack 
surface. All other crack parameters (crack radius, 
crack opening, and fractional volume) are expressed 
in term of the pressure.  
 
 
3 Discretization of the Equations of 
Hydraulic Fracture process 
The system of equations of crack growth can only 
be solved numerically. Conventional numerical 
methods of solution of partial differential equations 
are based on (time and space) discretization 
procedure. The time discretization consists of taking 
a small finite time step 𝛥𝛥𝑡𝑡 and changing the partial 
time derivative with the finite difference. As a 
result, the lubrication equation (4) can be presented 
in the form 
𝑣𝑣(𝜌𝜌, 𝑡𝑡 + 𝛥𝛥𝑡𝑡) ≈ 𝑣𝑣(𝜌𝜌, 𝑡𝑡) − 2𝜋𝜋𝑤𝑤 ³(𝜌𝜌 ,𝑡𝑡)

12𝜂𝜂
𝜌𝜌 𝜕𝜕𝑝𝑝 (𝜌𝜌 ,𝑡𝑡)

𝜕𝜕𝜌𝜌
𝛥𝛥𝑡𝑡.  (13) 

If the right hand side of this equation is known at 
the moment t, one can calculate the function 
𝑣𝑣(𝜌𝜌, 𝑡𝑡 + Δ𝑡𝑡) at the moment 𝑡𝑡 = 𝑡𝑡 + 𝛥𝛥𝑡𝑡. The 
difficulty in carrying out this scheme is that the new 
crack radius at 𝑡𝑡 = 𝑡𝑡 + 𝛥𝛥𝑡𝑡 is unknown (the crack 
has a moving boundary). As the result, the variable 
ρ on the left hand side of (13) 𝜌𝜌 = 𝑟𝑟/𝑅𝑅(𝑡𝑡 + 𝛥𝛥𝑡𝑡) 
differs from the similar variable on the right hand 
side 𝜌𝜌 = 𝑟𝑟/𝑅𝑅(𝑡𝑡). If the time step 𝛥𝛥𝑡𝑡 is sufficiently 
small, one can accept that 𝑅𝑅(𝑡𝑡) ≈ 𝑅𝑅(𝑡𝑡 + 𝛥𝛥𝑡𝑡), 
calculate fractional volume 𝑣𝑣(𝜌𝜌, 𝑡𝑡 + 𝛥𝛥𝑡𝑡) from 
equation (13), obtain the new pressure distribution 
from equation (6), and then, find the new crack 
radius from the fracture criterion (12)  

𝐾𝐾𝐼𝐼�𝑝𝑝(𝑡𝑡 + Δ𝑡𝑡),𝑅𝑅(𝑡𝑡 + Δ𝑡𝑡)� = 𝐾𝐾𝐼𝐼𝐼𝐼  ,          (14) 
and then, go to the next time interval. 

Formal discretization of equation (4) allows the 
following physical interpretation. Let at the moment 
t the crack radius be 𝑅𝑅(𝑡𝑡), crack volume 𝑉𝑉(𝑡𝑡) =
𝑣𝑣(0, 𝑡𝑡), and pressure distribution on the crack 
surface be 𝑝𝑝(𝜌𝜌, 𝑡𝑡). For such radius and pressure 
distribution, the stress intensity factor at the crack 
edge is 𝐾𝐾𝐼𝐼(𝑝𝑝,𝑅𝑅) = 𝐾𝐾𝐼𝐼𝐼𝐼 . Suppose that the process of 
crack radius growth from 𝑅𝑅(𝑡𝑡) to 𝑅𝑅(𝑡𝑡 + ∆𝑡𝑡) consists 
of three stages (Fig.2). First, during the time interval 
𝛥𝛥𝑡𝑡, the fluid is injected inside the crack but the 
crack radius does not change. For incompressible 
fluid, balance of the injected fluid and increment of 
the crack volume (the lubrication equation (4)) 
should be satisfied, meanwhile fracture condition 
(12) is neglected. At the end of this stage, the crack 
volume increases (dashed line in Fig.2) from 𝑉𝑉(𝑡𝑡) to 
𝑉𝑉(𝑡𝑡 + ∆𝑡𝑡), and the pressure distribution is 𝑝𝑝+(𝜌𝜌, 𝑡𝑡 +
∆𝑡𝑡). For this pressure, the stress intensity factor at 
the crack edge is more than 𝐾𝐾𝐼𝐼𝐼𝐼 . At this moment, the 
crack jumps instantly to the new radius 𝑅𝑅(𝑡𝑡 + ∆𝑡𝑡) 
(second stage). Pressure on the crack surface 
changes, and we assume it is defined by the 
equation 
𝑝𝑝 � 𝑟𝑟

𝑅𝑅(𝑡𝑡+∆𝑡𝑡) , 𝑡𝑡 + ∆𝑡𝑡� = 𝛼𝛼𝑝𝑝+ � 𝑟𝑟
𝑅𝑅(𝑡𝑡+∆𝑡𝑡) , 𝑡𝑡 + ∆𝑡𝑡�,   (15) 

where coefficient 𝛼𝛼 (𝛼𝛼 < 1) is to be found from the 
fracture criterion (14). Because of an instant jump, 
the fluid inside the crack fills the new region near 
the crack edge but the total crack volume does not 
change (third stage). The new crack radius 𝑅𝑅(𝑡𝑡 +
∆𝑡𝑡) and the coefficient 𝛼𝛼 in equation (15) are to be 
found from the equations  

𝑣𝑣(𝑟𝑟/𝑅𝑅(𝑡𝑡 + ∆𝑡𝑡) , 𝑡𝑡 + ∆𝑡𝑡)|𝑟𝑟=0 = 𝑉𝑉(𝑡𝑡 + ∆𝑡𝑡);    (16) 
𝐾𝐾𝐼𝐼[𝑝𝑝(𝑟𝑟/𝑅𝑅(𝑡𝑡 + ∆𝑡𝑡) , 𝑡𝑡 + ∆𝑡𝑡),𝑅𝑅(𝑡𝑡 + ∆𝑡𝑡)] = 𝐾𝐾𝐼𝐼𝐼𝐼 .  (17) 
Left hand sides of these equations are defined in (6) 
and (11).  
At the end of the third stage, the crack volume   
𝑉𝑉(𝑡𝑡 + ∆𝑡𝑡) is filled with fluid, and the radius 
𝑅𝑅(𝑡𝑡 + ∆𝑡𝑡) and pressure 𝑝𝑝(𝑟𝑟, 𝑡𝑡 + ∆𝑡𝑡) must satisfy the 
fracture criterion (17). The total time 𝛥𝛥𝛥𝛥 of these 
three stages can be calculated from the equation 

 𝛥𝛥𝛥𝛥 = 𝑉𝑉(𝑡𝑡+∆𝑡𝑡)−𝑉𝑉(𝑡𝑡)
𝑄𝑄(𝑡𝑡)

.                     (18) 

 
Fig.2 
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4 Approximation of the pressure 
distribution and solution of ill-posed 
problem (6) 
For positive injection rate 𝑄𝑄(𝑡𝑡), the pressure 𝑝𝑝(𝜌𝜌, 𝑡𝑡) 
is a continuous function of variable ρ that 
monotonically decreases from the injection point to 
the crack edge. In addition, at the crack center, the 
following equation holds 
𝜕𝜕𝑣𝑣
𝜕𝜕𝑡𝑡

|𝑟𝑟=0 = −2𝜋𝜋𝑤𝑤3(0,𝑡𝑡)
12𝜂𝜂

lim𝜌𝜌→0 𝜌𝜌
𝜕𝜕𝑝𝑝
𝜕𝜕𝜌𝜌

= 𝑄𝑄(𝑡𝑡).       (19) 
Because crack opening at the center 𝑤𝑤(0, 𝑡𝑡) is finite, 
the limit in this equation should also be finite. It 
means that the function 𝑝𝑝(𝜌𝜌, 𝑡𝑡) has logarithmic 
asymptotics at the crack center. Therefore, the 
function 𝑝𝑝(𝜌𝜌, 𝑡𝑡) can be approximated by the 
following series 
𝑝𝑝(𝑟𝑟, 𝑡𝑡) = −𝑝𝑝0(𝑡𝑡)𝑙𝑙𝑛𝑛 𝑟𝑟

𝑅𝑅(𝑡𝑡) + ∑ 𝑝𝑝𝑛𝑛(𝑡𝑡)𝜑𝜑𝑛𝑛 �
𝑟𝑟

𝑅𝑅(𝑡𝑡)�
𝑁𝑁
𝑛𝑛=1 ,(20) 

where 𝑝𝑝𝑛𝑛(𝑡𝑡) ≥ 0 (𝑛𝑛 = 0,1,2, … ,𝑁𝑁), and 𝜑𝜑𝑛𝑛(𝜌𝜌 ) are 
monotonically decreasing functions with finite 
derivatives. For instance, the following ten functions 
𝜑𝜑𝑛𝑛(𝜌𝜌) can be used for approximation of the pressure 
distribution 
𝜑𝜑1 = 1,𝜑𝜑2 = 1 − 𝜌𝜌10,𝜑𝜑3 = 1 − 𝜌𝜌4, 
𝜑𝜑4 = 1 − 𝜌𝜌2,𝜑𝜑5 = (1 − 𝜌𝜌2)2,𝜑𝜑6 = (1 − 𝜌𝜌2)3,   
𝜑𝜑7 = (1 − 𝜌𝜌2)4,𝜑𝜑8 = (1 − 𝜌𝜌2)8,𝜑𝜑9 = (1 − 𝜌𝜌2)15, 
𝜑𝜑10 = (1 − 𝜌𝜌2)40.                                               (21) 
The graphs of these functions are presented in Fig.3. 

 
Fig.3 

Because all these functions are polynomials similar 
to (10), action of the operators G and K in equations 
(5) and (6) on these functions can be presented in 
explicit analytical forms. The crack opening 𝑤𝑤(𝜌𝜌, 𝑡𝑡) 
and fractional volume 𝑣𝑣(𝜌𝜌, 𝑡𝑡) take forms 

𝑤𝑤(𝜌𝜌, 𝑡𝑡) = 𝑅𝑅(𝑡𝑡)
𝜋𝜋𝜋𝜋 ′

∑ 𝑝𝑝𝑛𝑛(𝑡𝑡)𝑤𝑤𝑛𝑛(𝜌𝜌),𝑁𝑁
𝑛𝑛=0            (22) 

𝑣𝑣(𝜌𝜌, 𝑡𝑡) = 𝑅𝑅(𝑡𝑡)3

𝜋𝜋𝜋𝜋 ′
∑ 𝑝𝑝𝑛𝑛(𝑡𝑡)𝑣𝑣𝑛𝑛(𝜌𝜌),𝑁𝑁
𝑛𝑛=0            (23) 

where  

𝑤𝑤𝑛𝑛(𝜌𝜌) = ∫ 𝐺𝐺(𝜌𝜌, 𝜍𝜍)𝜑𝜑𝑛𝑛(𝜍𝜍)𝑥𝑥𝜍𝜍1
0 ,               (24) 

𝑣𝑣𝑛𝑛(𝜌𝜌) = ∫ 𝐾𝐾(𝜌𝜌, 𝜍𝜍)𝜑𝜑𝑛𝑛(𝜍𝜍)𝑥𝑥𝜍𝜍1
0 ,               (25) 

and 𝜑𝜑0(𝜌𝜌) = − ln𝜌𝜌. For 𝜑𝜑𝑛𝑛(𝜌𝜌) in (21), the 
functions 𝑤𝑤𝑛𝑛 (ρ) and 𝑣𝑣𝑛𝑛 (ρ) can be found in explicit 
analytical forms [8]. 
The stress intensity factor 𝐾𝐾𝐼𝐼(𝑡𝑡) at the crack edge is 

𝐾𝐾𝐼𝐼(𝑡𝑡) = �2𝑅𝑅(𝑡𝑡)
𝜋𝜋

∑ 𝑝𝑝𝑛𝑛(𝑡𝑡)𝑘𝑘𝑛𝑛 ,𝑁𝑁
𝑛𝑛=0             (26) 

𝑘𝑘𝑛𝑛 = ∫ 𝜑𝜑𝑛𝑛 (𝜌𝜌)
�1−𝜌𝜌2

1
0 𝑥𝑥𝜌𝜌.                          (27) 

If we denote the right hand side of equation (13) as 
𝑟𝑟ℎ𝑠𝑠(𝜌𝜌, 𝑡𝑡) 
𝑟𝑟ℎ𝑠𝑠(𝜌𝜌, 𝑡𝑡) = 𝑣𝑣(𝜌𝜌, 𝑡𝑡) − 2𝜋𝜋𝑤𝑤3(𝜌𝜌 ,𝑡𝑡)

12𝜂𝜂
𝜌𝜌 𝜕𝜕𝑝𝑝 (𝜌𝜌 ,𝑡𝑡)

𝜕𝜕𝜌𝜌
𝛥𝛥𝑡𝑡,    (28) 

and take into account equation (6), the lubrication 
equation (13) can be rewritten in the form 

𝑅𝑅(𝑡𝑡)³
𝜋𝜋𝜋𝜋 ′

∫ ₀¹𝐾𝐾(𝜌𝜌, 𝜍𝜍)𝑝𝑝⁺(𝜍𝜍, 𝑡𝑡 + Δ𝑡𝑡)𝑥𝑥𝜍𝜍 = 𝑟𝑟ℎ𝑠𝑠(𝜌𝜌, 𝑡𝑡).  (29) 
The function 𝑝𝑝⁺(𝜌𝜌, 𝑡𝑡 + Δ𝑡𝑡) is approximated by 
series similar to (20) 

𝑝𝑝+(𝜌𝜌, 𝑡𝑡 + Δ𝑡𝑡) = 
−𝑝𝑝0

+(𝑡𝑡 + Δ𝑡𝑡)ln⁡(𝜌𝜌) + ∑ 𝑝𝑝𝑛𝑛+(𝑡𝑡 + Δ𝑡𝑡)𝜑𝜑𝑛𝑛(𝜌𝜌)𝑁𝑁
𝑛𝑛=1 . (30) 

Substituting this approximation in (29) and 
satisfying the resulting equation at 𝑀𝑀 points 𝜌𝜌𝑘𝑘  
(nodes) homogeneously distributed along the crack 
radius 

𝜌𝜌𝑘𝑘 = (𝑘𝑘/𝑀𝑀)  (𝑘𝑘 = 0,1,2, . . . ,𝑀𝑀) 
we obtain the following system of linear algebraic 
equations for the coefficients 𝑝𝑝𝑛𝑛+(𝑡𝑡 + ∆𝑡𝑡) 

∑ 𝑆𝑆(𝑘𝑘 ,𝑛𝑛)𝑝𝑝𝑛𝑛+(𝑡𝑡 + Δ𝑡𝑡)𝑁𝑁
𝑛𝑛=0 = 𝑟𝑟ℎ𝑠𝑠(𝜌𝜌𝑘𝑘 , 𝑡𝑡),         (31) 

𝑆𝑆(𝑘𝑘,𝑛𝑛) = 4(1−𝜈𝜈)
𝜋𝜋𝜋𝜋

𝑅𝑅(𝑡𝑡)3 ∫ 𝐾𝐾(𝜌𝜌𝑘𝑘 , 𝜍𝜍)1
0 𝜑𝜑𝑛𝑛(𝜍𝜍)𝑥𝑥𝜍𝜍,     (32) 

𝑘𝑘 = 0,1,2, . . . ,𝑀𝑀. 
This system can be presented in the following 
matrix form 

𝐒𝐒 ⋅ 𝐗𝐗 = 𝐑𝐑𝐑𝐑𝐒𝐒,     𝐗𝐗 = {𝑝𝑝₀⁺,𝑝𝑝₁⁺, . . . ,𝑝𝑝𝑁𝑁⁺}𝛥𝛥 .     (33) 
Here 𝛥𝛥 is the transposition operator. According to 
the method of solution of ill-posed problems [6], the 
vector X can be found from the equation 

min𝑌𝑌‖𝐒𝐒 ⋅ 𝐘𝐘 − 𝐑𝐑𝐑𝐑𝐒𝐒‖ = ‖𝐒𝐒 ⋅ 𝐗𝐗 − 𝐑𝐑𝐑𝐑𝐒𝐒‖,       (34) 
 ‖𝒀𝒀‖ = ∑ 𝑌𝑌𝑛𝑛2𝑁𝑁

𝑛𝑛=1 .                       (35) 
The minimum in equation (34) is to be found on 
vectors Y with positive components 

𝑌𝑌₁ ≥ 0,𝑌𝑌₂ ≥ 0, . . . ,𝑌𝑌𝑁𝑁+1 ≥ 0.             (36) 
The matrix S in equation (32) can be non-square: 
the numbers of the approximating functions and the 
nodes on the crack radius can be different. In order 
to find the minimum in equation (34) with 
restrictions (36) standard methods of linear 
programming can be used. 
According to the discrete model, at the first stage of 
the (i+1)th step of crack growth, the crack radius 
remains fixed 𝑅𝑅 = 𝑅𝑅(𝑡𝑡𝑖𝑖), and pressure distribution 
𝑝𝑝⁺(𝜌𝜌, 𝑡𝑡𝑖𝑖 + Δ𝑡𝑡) is to be constructed from equations 
(30), (34) and (36). The appropriate value of the 
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time interval 𝛥𝛥𝑡𝑡 in equations (28)-(31) should be 
taken in such a way that the relative error 𝛿𝛿 of the 
solution of equation (33) 

𝛿𝛿 = ‖𝑺𝑺⋅𝑿𝑿−𝑹𝑹𝑹𝑹𝑺𝑺‖
‖𝑹𝑹𝑹𝑹𝑺𝑺‖

                           (37) 
does not exceed a prescribed tolerance (in the 
calculations, δ<0.01 was taken). Then, the new 
crack radius 𝑅𝑅(𝑡𝑡𝑖𝑖 + ∆𝑡𝑡)  and pressure distribution 
are calculated from equations (16) and (17). 
Example of evolution of the pressure distributions 
on the crack surface in the process of hydro fracture 
is shown in Fig.4-6 for the fluid with viscosity 
𝜂𝜂 = 0.01𝑃𝑃𝑎𝑎 ⋅ 𝑠𝑠𝑠𝑠𝐼𝐼, 0.1𝑃𝑃𝑎𝑎 ⋅ 𝑠𝑠𝑠𝑠𝐼𝐼, 1𝑃𝑃𝑎𝑎 ⋅ 𝑠𝑠𝑠𝑠𝐼𝐼, 𝜋𝜋 =
6.25𝐺𝐺𝑃𝑃𝑎𝑎, 𝜈𝜈 = 0.2 the material fracture toughness 
𝐾𝐾𝐼𝐼𝐼𝐼 = 1.6𝑀𝑀𝑃𝑃𝑎𝑎√𝑚𝑚 ,𝑄𝑄 = 0.1 𝑚𝑚3

𝑠𝑠𝑠𝑠𝐼𝐼
. 

 
Fig.4 

 
Fig.5 

 
Fig.6 

Dependences of the crack radius R on time and 
fracture toughness 𝐾𝐾𝐼𝐼𝐼𝐼  are shown in Fig.7 (𝜂𝜂 =

0.1𝑃𝑃𝑎𝑎 ⋅ 𝑠𝑠𝑠𝑠𝐼𝐼), and on time and fluid viscosity η in 
Fig.8 (𝐾𝐾𝐼𝐼𝐼𝐼 = 1𝑀𝑀𝑃𝑃𝑎𝑎√𝑚𝑚). Dependence of crack 
opening w(r,t) on time is shown in Fig.9 for 
𝜂𝜂 = 0.01𝑃𝑃𝑎𝑎 ⋅ 𝑠𝑠𝑠𝑠𝐼𝐼, and in Fig.10 for 𝜂𝜂 = 1𝑃𝑃𝑎𝑎 ⋅ 𝑠𝑠𝑠𝑠𝐼𝐼, 
Q=0.1m3/sec, 𝜋𝜋 = 6.25𝐺𝐺𝑃𝑃𝑎𝑎,   𝜈𝜈 = 0.2,   
𝐾𝐾𝐼𝐼𝐼𝐼 = 1𝑀𝑀𝑃𝑃𝑎𝑎√𝑚𝑚. 

 
Fig.7 

 
Fig.8 

 
Fig.9 

 
Fig.10 
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5 Three-parameter model of pressure 
distribution  
Dependences of the coefficients pn(t) in equation 
(21) for pressure distribution p(ρ,t) on time are 
presented in Figs.11-14 for fluid viscosity 𝜂𝜂 =
0.001, 0.01, 0.1, 1𝑃𝑃𝑎𝑎 ⋅ 𝑠𝑠𝑠𝑠𝐼𝐼, (𝜋𝜋 = 6.25𝐺𝐺𝑃𝑃𝑎𝑎,  
𝜈𝜈 = 0.2, 𝐾𝐾𝐼𝐼𝐼𝐼 = 1𝑀𝑀𝑃𝑃𝑎𝑎√𝑚𝑚, 𝑄𝑄 = 0.1𝑚𝑚3/𝑠𝑠𝑠𝑠𝐼𝐼). 

 
Fig.11 

 
Fig.12 

 
Fig.13 

 
Fig.14 

It is seen from these figures that for small viscosity 
(𝜂𝜂 < 0.01𝑃𝑃𝑎𝑎 ⋅ 𝑠𝑠𝑠𝑠𝐼𝐼), the coefficients 𝑝𝑝₀(𝑡𝑡) and 𝑝𝑝₁(𝑡𝑡) 
in series (21) dominate. For larger viscosity, these 
coefficients become comparable with the others in 
equation (21). Thus in the region of small viscosity, 
the pressure distribution can be approximated by the 
two first terms in series (21) 
 𝑝𝑝(𝑟𝑟, 𝑡𝑡) =  − 𝑝𝑝₀(𝑡𝑡)𝑙𝑙𝑛𝑛( 𝑟𝑟

𝑅𝑅(𝑡𝑡)
) + 𝑝𝑝₁(𝑡𝑡).        (38) 

This equation contains three unknown functions of 
time 𝑝𝑝₀(𝑡𝑡), 𝑝𝑝₁(𝑡𝑡), and 𝑅𝑅(𝑡𝑡). For the pressure 
distribution (38), the total crack volume 𝑉𝑉(𝑡𝑡) =
𝜐𝜐(0, 𝑡𝑡), crack opening at the center 𝑤𝑤(0, 𝑡𝑡), and the 
stress intensity factor at the crack edge 𝐾𝐾𝐼𝐼(𝑡𝑡) are 
𝑉𝑉(𝑡𝑡) = 2𝑅𝑅(𝑡𝑡)3

9𝜋𝜋 ′
[(4 − 3𝑙𝑙𝑛𝑛2)𝑝𝑝0(𝑡𝑡) + 3𝑝𝑝1(𝑡𝑡)],    (39) 

𝑤𝑤(0, 𝑡𝑡) = 𝑅𝑅(𝑡𝑡)
𝜋𝜋𝜋𝜋 ′

[(2 − 𝑙𝑙𝑛𝑛2)𝑝𝑝0(𝑡𝑡) + 𝑝𝑝1(𝑡𝑡)],      (40) 

𝐾𝐾𝐼𝐼(𝑡𝑡) = �2𝑅𝑅(𝑡𝑡)
𝜋𝜋

[(1 − 𝑙𝑙𝑛𝑛2)𝑝𝑝0(𝑡𝑡) + 𝑝𝑝1(𝑡𝑡)].     (41) 
The three functions 𝑝𝑝₀(𝑡𝑡), 𝑝𝑝₁(𝑡𝑡), 𝑅𝑅(𝑡𝑡) can be found 
from the condition of equivalence of crack volume 
𝑉𝑉(𝑡𝑡) and the total volume of injected fluid 

𝑉𝑉(𝑡𝑡) = ∫ 𝑄𝑄(𝜏𝜏)𝑥𝑥𝜏𝜏𝑡𝑡
0 ,                     (42) 

the fracture criterion (14), and equation (19) for 
injection rate 𝑄𝑄(𝑡𝑡) at the crack center  

𝐾𝐾𝐼𝐼(𝑡𝑡) = 𝐾𝐾𝐼𝐼𝐼𝐼 ,                           (43) 
𝑝𝑝0(𝑡𝑡) = 12𝜂𝜂𝑄𝑄(𝑡𝑡)

2𝜋𝜋𝑤𝑤(0,𝑡𝑡)3.                      (44) 
The system of equations (39)-(44) can be solved 
numerically. 

 
Fig. 15 

 
Fig.16 
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In Figs.15-17, time dependencies of crack radius 
𝑅𝑅(𝑡𝑡) for the three-parameter model and the discrete 
model of crack growth are shown for fluid viscosity 
𝜂𝜂 = 0.001, 0.01, 0.1𝑃𝑃𝑎𝑎 ⋅ 𝑠𝑠𝑠𝑠𝐼𝐼 and various values of 
fracture toughness 𝐾𝐾𝐼𝐼𝐼𝐼 . In these figures, solutions of 
the system (39)-(44) are dashed lines, and the results 
of the discrete model are solid lines. (Note that 
viscosity of see water widely used for hydraulic 
fracture is about 0.001𝑃𝑃𝑎𝑎 ⋅ 𝑠𝑠𝑠𝑠𝐼𝐼). It is seen from 
these figures that the three-parameter model 
corresponds better to the discrete model in the case 
of higher values of the fracture toughness and lower 
values of fluid viscosity. 
In Fig.17, the influence of shear modulus μ of the 
medium on the time dependence of the crack radius 
in the process of crack growth is shown. (𝜈𝜈 = 0.2, 
𝐾𝐾𝐼𝐼𝐼𝐼 = 1𝑀𝑀𝑃𝑃𝑎𝑎√𝑚𝑚, 𝜂𝜂 = 0.001𝑃𝑃𝑎𝑎 ⋅ 𝑠𝑠𝑠𝑠𝐼𝐼, fluid injection 
rate is 𝑄𝑄 = 0.1𝑚𝑚³/𝑠𝑠𝑠𝑠𝐼𝐼). In this figure, solid lines 
correspond to the discrete model, and dashed lines 
to the three-parameter model. It is seen that the 
models give close predictions for all the cases. 

 
Fig.17 

 
 
6 Application of the three-parameter 
model to hydraulic fracture crack 
grows in heterogeneous media 
Consider an isotropic medium with varying in space 
elastic moduli tensor 𝐶𝐶(𝑥𝑥) and fracture toughness 
𝐾𝐾𝐼𝐼𝐼𝐼(𝑥𝑥), 𝑥𝑥 is a point of the medium. In this case, the 
crack shape can be non-circular in the process of 
hydraulic fracture. For small fluid viscosity and low 
injection rates, the three-parameter model of 
pressure distribution can be used. Let the pressure 
be approximated by the equation similar to (39) 

𝑝𝑝(𝑥𝑥, 𝑡𝑡) = −𝑝𝑝0(𝑡𝑡) ln 𝑟𝑟
𝑅𝑅∗(𝑡𝑡) + 𝑝𝑝1(𝑡𝑡), 𝑥𝑥 ∈ Ω.    (45) 

where 𝑟𝑟 = |𝑥𝑥 − 𝑥𝑥0| is the distance from point 𝑥𝑥 on 
the crack surface Ω to the injection point 𝑥𝑥0, 𝑅𝑅∗(𝑡𝑡) 
is the maximum distance from 𝑥𝑥0 to the crack 
boundary. It follows from the condition at the 

injection point 𝑥𝑥0 that the coefficient 𝑝𝑝0(𝑡𝑡) in 
equation (45) is similar to (44) 

𝑝𝑝0(𝑡𝑡) = 12𝜂𝜂𝑄𝑄(𝑡𝑡)
2𝜋𝜋𝑤𝑤(𝑥𝑥0,𝑡𝑡)3.                      (46) 

If 𝑤𝑤(𝑥𝑥, 𝑡𝑡) is crack opening, the total crack volume 
𝑉𝑉(𝑡𝑡) is calculated as follows 

𝑉𝑉(𝑡𝑡) = ∫ 𝑤𝑤(𝑥𝑥, 𝑡𝑡)𝑥𝑥Ω.Ω                    (47) 
For an elastic medium with varying fracture 
toughness only, crack opening 𝑤𝑤(𝑥𝑥, 𝑡𝑡) and pressure 
distribution 𝑝𝑝(𝑥𝑥, 𝑡𝑡) are related by the equation  
∫ 𝛥𝛥(𝑥𝑥 − 𝑥𝑥′)𝑤𝑤(𝑥𝑥′ , 𝑡𝑡)𝑥𝑥Ω′Ω = 𝑝𝑝(𝑥𝑥, 𝑡𝑡), 𝑥𝑥 ∈ Ω,   (48) 

where the kernel 𝛥𝛥(𝑥𝑥) is a generalized function 
which regular part has the form [9] 

𝛥𝛥(𝑥𝑥) = 𝜋𝜋′
𝜋𝜋|𝑥𝑥|3.                     (49) 

In the case of a medium with varying fracture 
toughness and elastic moduli, we consider a finite 
volume 𝑊𝑊 of the heterogeneous medium containing 
the crack. The sizes of 𝑊𝑊 should be taken such as 
the stresses induced by the fluid pressure applied to 
the crack surface practically vanish. outside 𝑊𝑊. 

Fig. 18 
Let us chose a homogeneous medium with stiffness 
tensor 𝐶𝐶0  and fracture toughness 𝐾𝐾𝐼𝐼𝐼𝐼0 as a reference 
(host) medium. The system of equations for actual 
stress tensor 𝜎𝜎(𝑥𝑥) in 𝑊𝑊 and crack opening 𝑤𝑤(𝑥𝑥) 
takes the form (see [10] for details) 
σ(𝑥𝑥) = 𝑝𝑝(𝑥𝑥) + ∫ 𝑆𝑆(𝑥𝑥 − 𝑥𝑥′)𝐵𝐵1(𝑥𝑥′)σ(𝑥𝑥′)𝑥𝑥𝑥𝑥′ +W   

∫ 𝑆𝑆(𝑥𝑥 − 𝑥𝑥′)𝑛𝑛𝑤𝑤(𝑥𝑥′)𝑥𝑥Ω′Ω  ,  𝑥𝑥 ∈ W & 𝑥𝑥 ∉ Ω,   (50) 

 𝑛𝑛(𝑥𝑥)∫ 𝑆𝑆(𝑥𝑥 − 𝑥𝑥′)𝐵𝐵1(𝑥𝑥′)σ(𝑥𝑥′)𝑥𝑥𝑥𝑥′Ω +                       

∫ 𝛥𝛥(𝑥𝑥 − 𝑥𝑥′)𝑤𝑤(𝑥𝑥′)𝑥𝑥Ω′Ω = 𝑝𝑝(𝑥𝑥), 𝑥𝑥 ∈ Ω,     (51) 
𝐵𝐵1(𝑥𝑥) = 𝐵𝐵(𝑥𝑥) − 𝐵𝐵0.                       (52) 

Here 𝑛𝑛 is the normal vector to crack plane Ω, 
𝐵𝐵(𝑥𝑥) = 𝐶𝐶(𝑥𝑥)−1 and 𝐵𝐵0 = 𝐶𝐶0

−1 are elastic 
compliance tensors of heterogeneities and host 
media, and 
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 𝑆𝑆(𝑥𝑥) = −𝐶𝐶0∇∇𝐺𝐺(𝑥𝑥)𝐶𝐶0 − 𝐶𝐶0𝛿𝛿(𝑥𝑥).         (53) 
Here 𝐺𝐺(𝑥𝑥) is Green function of the host medium 
𝐶𝐶0, ∇ is gradient operator, 𝛿𝛿(𝑥𝑥) is Dirac’s delta-
function, 𝛥𝛥(𝑥𝑥) = 𝑛𝑛𝑆𝑆(𝑥𝑥)𝑛𝑛. The system (50) and (51) 
can be solved only numerically. For the numerical 
solution, the integral equations should be discretized 
by using an appropriate class of approximating 
functions. In [10] a class of Gaussian functions 
concentrated at the nodes of a regular node grid was 
used for this purpose. The node grid should cover 
region 𝑊𝑊 and crack surface Ω (Fig.18). The 
unknown functions (stress tensor 𝜎𝜎(𝑥𝑥) in 𝑊𝑊 and 
crack opening 𝑤𝑤(𝑥𝑥) on Ω) are approximated by 
sums of Gaussian functions with coefficients that 
are the values of the functions at the nodes. The 
theory of approximation by Gaussian functions was 
developed in [11]. The discretized system is 
obtained after substitution of the approximations in 
equations (50), (51) and satisfaction of the resulting 
equations at the nodes (collocation method). 
Advantage of the Gaussian functions is that action 
of the integral operators in equations (50), (51) on 
this functions are presented in analytical forms or as 
combinations of standard integrals that can be 
tabulated [10]. The discretized problem is a system 
of linear algebraic equations for the values of stress 
tensor 𝜎𝜎(𝑥𝑥(𝑠𝑠)) and crack opening 𝑤𝑤(𝑥𝑥(𝑠𝑠)) at the 
nodes. The principal problem in solution of the 
discretized problem is that for sufficient accuracy, 
the dimensions of the matrix of the system should 
be large. However, for regular node grids, this 
matrix has Toeplitz’s structure, and as the result, 
fast Fourier transform technique can be used for 
iterative solution of the discretized problem (see 
details in [9], [10]). 
The stress intensity factor (SIF) at the crack edge 
𝐾𝐾𝐼𝐼(𝑥𝑥, 𝑡𝑡) is calculated from the asymptotic value of 
the crack opening near the crack edge [10], [12]. Let 
in the polar coordinate system (𝑟𝑟,𝜙𝜙) with the center 
at the point of injection 𝑥𝑥⁰ the crack boundary Γ be 
defined by the equation 𝑟𝑟 = 𝑅𝑅(𝜙𝜙, 𝑡𝑡). Function 
𝑅𝑅(𝜙𝜙, 𝑡𝑡) and the coefficients 𝑝𝑝₀(𝑡𝑡), 𝑝𝑝₁(𝑡𝑡) in equation 
(47) can be found from the following system: 
integral equations (50), (51), balance of the crack 
volume 𝑉𝑉(𝑡𝑡) and the volume of injected fluid (47), 
condition (46) at the point of injection fracture, and 
the fracture criterion at the crack contour Γ similar 
to (43)  

𝐾𝐾𝐼𝐼(𝑥𝑥) = 𝐾𝐾𝐼𝐼𝐼𝐼(𝑥𝑥), 𝑥𝑥 ∈ Γ,                  (54) 
Construction of the crack contour and crack opening 
in the process of hydraulic fracture is based on fast 
solution of integral equations (50), (51) and 
calculation of stress intensity factors on the crack 
edge for a crack of arbitrary shape by the method 

proposed in [10], [12]. First, we introduce a 
reference homogeneous medium with constant 
fracture toughness 𝐾𝐾𝐼𝐼𝐼𝐼0 and elastic moduli 𝐶𝐶0 and 
solve the problem for given injection rate 𝑄𝑄(𝑡𝑡) at 
discrete time moments 𝑡𝑡1,𝑡𝑡2,…,𝑡𝑡𝑀𝑀 . For the three-
parameter model, these solutions determine the 
coefficients 𝑝𝑝0(𝑡𝑡𝑘𝑘) and 𝑝𝑝1(𝑡𝑡𝑘𝑘) in equation (45) and 
the crack contours Γ(𝑡𝑡𝑘𝑘) that are circles of radii 
𝑅𝑅(𝑡𝑡𝑘𝑘). These values of 𝑅𝑅, 𝑝𝑝0, and 𝑝𝑝1 are initial data 
for iterative construction of the crack contour and 
pressure distribution at the time moment 𝑡𝑡𝑘𝑘 . In order 
to satisfy the fracture criterion (54) we define a set 
of discrete points with polar coordinates {𝑟𝑟𝑘𝑘 ,𝜙𝜙𝑘𝑘}, 
𝑟𝑟𝑘𝑘 = 𝑅𝑅⁽⁰⁾(𝜙𝜙𝑘𝑘), 𝜙𝜙𝑘𝑘 = 2𝜋𝜋(𝑘𝑘/𝑁𝑁), 𝑘𝑘 = 1,2,...,𝑁𝑁 on the 
crack contour Γ(𝑡𝑡₁). Then, the crack problem is to 
be solved for the known crack contour Γ0(𝑡𝑡₁) and 
pressure coefficients 𝑝𝑝0(𝑡𝑡1) and 𝑝𝑝1(𝑡𝑡1). As a result, 
the values 𝐾𝐾𝐼𝐼(𝜙𝜙) at the points 𝜙𝜙 = 𝜙𝜙𝑘𝑘  are 
calculated. Then, the distances 𝑅𝑅(𝜙𝜙) at 𝜙𝜙 = 𝜙𝜙𝑘𝑘  
(𝑘𝑘 = 1,2,...,𝑁𝑁) are changed iteratively according to 
the following equations (𝑛𝑛 is the number of the 
iteration, 𝑛𝑛 = 0,1,2,...) 
R⁽ⁿ⁺¹⁾(ϕk)=(1-δ)R⁽ⁿ⁾(ϕk)  if  
minKI(ϕk)>minKIc(ϕk) & maxKI(ϕk)>maxKIc(ϕk); 
R⁽ⁿ⁺¹⁾(ϕk)=(1+δ)R⁽ⁿ⁾(ϕk)  if 
minKI(ϕk)<minKIc(ϕk)&maxKI(ϕk)<maxKIc(ϕk); 
R⁽ⁿ⁺¹⁾(ϕk)=R⁽ⁿ⁾(ϕk)+δK(KI(ϕk)-KIc(ϕk))  if 
minKI(ϕk)>minKIc(ϕk)&maxKI(ϕk)<maxKIc(ϕk); 
R⁽ⁿ⁺¹⁾(ϕk)=R⁽ⁿ⁾(ϕk)-δK(KI(ϕk)-KIc(ϕk))  if 
minKI(ϕk)<minKIc(ϕk)&maxKI(ϕk)>maxKIc(ϕk). 
Here the parameters 𝛿𝛿 > 0 and 𝛿𝛿𝐾𝐾 > 0 are taken for 
the fastest convergence of the iteration process, 
𝑅𝑅⁽⁰⁾(𝜙𝜙𝑘𝑘) = 𝑅𝑅⁽⁰⁾(𝑡𝑡₁). Thus, if 𝐾𝐾𝐼𝐼 at the point 𝜙𝜙𝑘𝑘  of 
the crack contour is smaller than 𝐾𝐾𝐼𝐼𝐼𝐼 , radius 𝑅𝑅(𝜙𝜙𝑘𝑘) 
increases proportionally to the difference 𝐾𝐾𝐼𝐼(𝜙𝜙𝑘𝑘)−
𝐾𝐾𝐼𝐼𝐼𝐼(𝜙𝜙𝑘𝑘). If 𝐾𝐾𝐼𝐼(𝜙𝜙𝑘𝑘) < 𝐾𝐾𝐼𝐼𝐼𝐼(𝜙𝜙𝑘𝑘), radius 𝑅𝑅(𝜙𝜙𝑘𝑘) 
decreases proportionally to the same difference. The 
process stops at the 𝑛𝑛th iteration if 

Δ = ∑ |𝐾𝐾𝐼𝐼
(𝑛𝑛 )(𝜙𝜙𝑘𝑘)−𝐾𝐾𝐼𝐼𝐼𝐼 (𝜙𝜙𝑘𝑘)|𝑘𝑘
∑ 𝐾𝐾𝐼𝐼𝐼𝐼 (𝜙𝜙𝑘𝑘)𝑘𝑘

<Δ₀.             (55) 
The tolerance of 𝛥𝛥₀ = 0.05 is taken in the 
calculations. Here 𝐾𝐾𝐼𝐼

(𝑛𝑛)(𝜙𝜙𝑘𝑘) is SIF at 𝜙𝜙 = 𝜙𝜙𝑘𝑘  in the 
𝑛𝑛th iteration. Then, keeping 𝑝𝑝1(𝑡𝑡1) unchanged, we 
correct the value of 𝑝𝑝0(𝑡𝑡1) in order to satisfy 
equation (46) at the point of injection. It requires an 
additional iteration procedure with respect to the 
coefficient 𝑝𝑝₀. This iteration process is based on the 
conditions that 𝑝𝑝₀ is changed to 0.9𝑝𝑝₀ if  𝑝𝑝₀ >
12𝜂𝜂𝑄𝑄/(2𝜋𝜋𝑤𝑤³(𝑥𝑥⁰)) and to 1.1𝑝𝑝₀ if 𝑝𝑝₀ <
12𝜂𝜂𝑄𝑄/(2𝜋𝜋𝑤𝑤³(𝑥𝑥⁰)). Then, we can calculate crack 
opening 𝑤𝑤₁(𝑟𝑟) and crack volume 𝑉𝑉₁ for the 
calculated pressure coefficients 𝑝𝑝₀, 𝑝𝑝₁ and crack 
boundary 𝑅𝑅(𝜙𝜙). The corrected time moment 𝛥𝛥₁ that 
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corresponds to this crack state is calculated from the 
equation 

 ∫ 𝑄𝑄(𝜏𝜏)𝑥𝑥𝜏𝜏𝛥𝛥1
0 =V₁.                        (56) 

Then, we proceed to the second moment 𝑡𝑡₂, etc. 
Let a layer |𝑥𝑥₂| < 20m with fracture toughness 
𝐾𝐾𝐼𝐼𝐼𝐼0 = 1MPa⋅√m and Young modulus 𝐸𝐸0 = 15GPa 
be embedded in the medium with fracture toughness 
𝐾𝐾𝐼𝐼𝐼𝐼 = 1.5MPa⋅√m and Young modulus 𝐸𝐸1 =
15GPa (solid lines in Figs.21 and 22) or 30GPa 
(dashed lines), Poisson ratio of the both media are 
constant ν=0.2,  injection rate is 𝑄𝑄 = 0.2m³/sec, and 
fluid viscosity is 𝜂𝜂 = 0.01Pa⋅sec. The initial crack is 
penny-shape with radius 𝑅𝑅⁽⁰⁾ = 1m, and fluid is 
injected in the crack center at the point 𝑥𝑥1

0 = 𝑥𝑥2
0 =

0. The crack shapes at various time moments are 
shown in Fig. 18. 

Fig.18 

Fig.19 
The crack openings along the x₁ and x₂-axes are 
shown in Fig.19. 
In the second example, we consider the medium that 
consists of two half-spaces with the boundary at       
𝑥𝑥2 = 20m. For 𝑥𝑥2 < 20m, the Young modulus of 
the medium is 𝐸𝐸0 = 15GPa and fracture toughness 
is 𝐾𝐾𝐼𝐼𝐼𝐼0  = 1MPa·m1/2, for 𝑥𝑥2 > 20m, 𝐸𝐸1 = 15GPa 
(solid lines) or 𝐸𝐸1 = 30GPa  (dashed lines) and 
𝐾𝐾𝐼𝐼𝐼𝐼 = 1.5MPa·m1/2. The initial crack is penny-shape 
with radius 𝑅𝑅 = 1m, fluid with viscosity 0.01Pa·sec 

is injected in the crack center 𝑥𝑥1
0 = 𝑥𝑥2

0 = 0 with rate 
𝑄𝑄 = 0.2m3/sec. The crack shape at various time 
moments is shown in Fig. 20; the crack opening 
along  
the 𝑥𝑥₂-axis is in Fig.21. It can be noted that for the 
medium with constant Young modulus 𝐸𝐸 = 15GPa 
and varying fracture toughness, the crack shape is 
substantially different from the penny-shape when 
the crack intersects the boundary between the two 
media. If Young moduli of two media are 15GPa 
and 30GPa, the crack shape is closer to penny-shape 
in the process of growing. 

 
Fig.20 

 
 

Fig.21 
 
 
8 Conclusion 
Efficient numerical methods for solution of the 
problem of hydraulic fracture crack growth in 
homogeneous and heterogeneous isotropic elastic 
media are proposed. 
In the case of homogeneous media, when the crack 
is penny shape, the numerical algorithm is based on 
a specific class of approximating functions (21) 
used for approximation of the pressure distribution 
on the crack surface. These functions allow 
excluding numerical integration and differentiation 
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that are sources of numerical errors and solving 
efficiently the ill-posed problem of reconstruction of 
pressure distribution in each time step of the crack 
growth. The proposed discrete model of crack 
growth can be considered as a physical 
interpretation of the formal procedure of 
discretization of the lubrication equation (4). This 
model results a specific numerical algorithm 
different from existing in the literature.  
For fluids with small viscosity (𝜂𝜂 < 0.01Pa·sec) and 
low injection rates, the pressure distribution on the 
crack surface can be approximated by the three-
parameter model (45). In this case, the problem can 
be simplified: one can neglect the detailed 
lubrication equation and find the crack size and 
pressure distribution from equivalence of the 
volumes of the crack and the injected fluid, fracture 
criterion (54), and condition (46) at the point of 
injection. The three-parameter model can be 
extended to the case of heterogeneous media. In this 
case, solution of integral equations for crack 
opening (50), (51) becomes a complex problem that 
required a specific numerical method. This method 
based on Gaussian approximating functions and fast 
Fourier transform algorithm was developed in [9], 
[10]. The method allows predicting evolution of the 
crack boundary in the process of hydraulic fracture 
crack growth in heterogeneous media.  
Note that external stresses (lithographic pressure) 
that usually act in actual rocks and fluid filtration in 
the medium were neglected here for simplicity. 
Accounting these factors in the framework of the 
proposed numerical algorithm is straightforward.  
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