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Abstract: - In this paper, we discuss the features of investigating the type of the critical point on the equilibrium 
curve (bifurcation point or limit point). There are new ideas about the completion of the initial equilibrium at 
the limit point or bifurcation point. Examples as the Mises’s truss, a shallow arch and a shallow cylindrical 
panel show the features of the birth and movement of bifurcation points along the curve of equilibrium. 
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1 Introduction 
The structure instability is an important and long-
standing part of mechanics. The instability 
phenomenon in most cases means overall failure of 
a structure that is why it draws a lot of attention.  

There is a difference between limit and 
bifurcation points.The indispensable and sufficient 
condition of instability will be discussed. 

 
2 Stability of the Equilibrium of  
Elastic Systems 
It is known that the coordinates of equilibrium 
points of mechanical and elastic systems are the real 
roots of a system of geometrically nonlinear 
equations 

( ) njePqqqF nj ,...,2,1,0,,,...,, 21 == . (1) 

Here nqqq ,...,, 21  - the coordinates of the 
system in the n - dimensional space, P and e - the 
parameters of the load and the initial imperfection. 
Every j – equilibrium equation defines a certain 
hypersurface. The coordinates of the points of 
simultaneous intersection of all hypersurfaces are 
the coordinates of the equilibrium states of the 
elastic or mechanical system. These intersections 
can be points, lines or surfaces, forming zero-
dimensional, one-dimensional or two-dimensional 
sets. In the case of a zero-dimensional and nowhere 
dense equilibrium set, the elastic systems are 
isolated from each other. If these equilibria are 
simple (not multiple), then they are isolated and 

nondegenerate (the Jacobi matrix of system (1) is 
nonsingular). Continuous sets of n-dimensional 
equilibria are sets of uninsulated and degenerate (or 
"indifferent") equilibria. 

For conservative systems, equilibrium points are 
projections of extremum points or stationary points 
of the total potential energy of the system E (

nnqqq ,...,, 21 ). If these points are nondegenerate 

(the first variation 0=Eδ , and the Hessian matrix 
{ }ki qqE ∂∂∂ /2  and the Jacobi matrix 
{ } nkjqF kj ,...2,1,/ =∂∂  are non-singular), then 
Sard's theorem implies that these projections form a 
set of measure zero. In this case all the equilibria of 
the conservative system are isolated, nondegenerate, 
and fairly "rare" in the configuration space. 
According to A.M. Lyapunov and M. Mors [1], near 
an isolated and non-degenerate equilibrium the total 
potential energy of an elastic system is strongly 
equivalent to the quadratic form 

( ) 0
2

21 ,...,, EqqqqE
i

iin +≈∑λ . (2) 

If all the "stability coefficients" iλ  are strictly 
positive, then the equilibrium is stable ( EE min0 = , 
the Lagrange-Dirichlet theorem). If among these 
coefficients there is at least one negative, then the 
isolated equilibrium is unstable. A special case 
appears when all the stability coefficients (except 
the last) are positive and the last coefficient is zero. 
This situation corresponds to a critical equilibrium 
in which the Hessian matrix (or the Jacobi matrix) 
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becomes singular ( 0detdet == JH E ), and the 
equilibrium becomes a multiple, degenerate, but 
externally isolated. However, the most important 
thing is that at a critical point (load crPP = ), or 
arbitrarily close to it (load PPP cr δ±= ), the 
previously stable subcritical equilibrium becomes 
unstable. 

The stability margin of the isolated equilibrium 
of a conservative system at a fixed load is 
determined by the magnitude of the kinematic 
perturbation that can overcome the potential barrier 
– the height of the potential well in the direction of 
the perturbation. The minimum potential barrier is 
always given by the height of the so-called criterial 
saddle - unstable equilibrium, which is located on 
the crest, separating the two potential wells of 
neighboring stable equilibria and having the lowest 
"height". 

Let us draw a line of the potential energy level 
constE =  along the inner surface of the potential 

well at the height of the "criterial saddle". If we 
project this line in the configuration space, we get 
the stability boundary of this equilibrium. Any 
kinematic perturbation that does not lead the system 
beyond the indicated boundary will cause only 
damped or undamped oscillations near stable 
equilibrium. 

If, at some load, a stable equilibrium is unique 
for a given system, then the potential well and the 
stability region have unlimited scale in all 
directions, and any kinematic perturbation will lead 
to the appearance of these oscillations. 

In general, the potential well is confined by the 
"watershed" line separating it from neighboring 
potential wells. The projection of the "watershed" 
line into the configuration space generates the 
boundary of the "region of attraction" around the 
point of stable equilibrium, including its stability 
region. If the watershed line is closed, then it 
contains at least two unstable equilibria: a "criterial 
saddle" and an equilibrium with a local maximum of 
the potential energy. 

The number of isolated equilibrium states of an 
elastic system is determined by the number of real 
roots of system (1). When the coefficients of the 
system change, this number may increase or 
decrease. But the birth of new equilibria or their 
disappearance always occur in pairs (at the limit 
points of the curves of equilibrium). Geometrically, 
the moment of birth of two new equilibria 
corresponds to the appearance of the point of 
tangency of one of the hypersurfaces with the 
previously formed line of intersection points of the 
remaining hypersurfaces. Until the moment of 

tangency, the nascent pair of equilibria did not exist, 
since the corresponding pair of roots of system (1) 
was still complex conjugate. At the moment of 
contact, the complex parts of these roots disappear, 
and the identical real parts determine the birth of 
double and externally isolated equilibrium. With 
further variation of the coefficients of equations (1), 
the point of tangency splits into two intersection 
points of all hypersurfaces, and double and 
degenerate equilibrium splits into two simple, 
isolated and non-degenerate equilibria. One of them 
is always a stable equilibrium, the other is unstable. 
The described birth sequence of two isolated 
equilibria corresponds to the lower limit point. The 
development of a near-critical situation in the 
opposite direction leads to the fusion of two simple 
equilibria into one double, followed by its 
disappearance, which takes place at the upper limit 
point. 

Let’s discuss some features of degenerate 
"indifferent" equilibria forming connected continual 
sets. The equilibrium points of the ball on a smooth 
horizontal plane form a two-dimensional continuum. 
The set of equilibria of a body floating in a fluid is a 
three-dimensional continuum. All the equilibria of 
the physical pendulum, the horizontal axis of which 
passes through its center of gravity, form a one-
dimensional continuum, etc. For an Euler rod, in the 
case of a double critical load with identical 
constraints, postcritical curved bent equilibria also 
form a one-dimensional continuum, because as a 
result of transverse deflections the center of any 
cross-section of the rod can be at an arbitrary point 
of a circle perpendicular to the subcritical axis of the 
rod. In this sense, the critical equilibrium of this rod 
is "indifferent". The potential well of this 
equilibrium is a circular trough in the form of half 
the surface of a cut torus, which creates only orbit 
stability of the equilibrium. Therefore, this rod can 
be "moved along the bottom of a circular trough" 
without any energy costs. This feature is a 
consequence of the structural instability of 
"indifferent" equilibria. This explains the well-
known paradox of Nikolai - the lack of equilibrium 
states of a cantilever "postcritical" rod with a 
circular cross-section in the case of applying an 
additional arbitrarily small nonconservative twisting 
moment at the free end. 

An arbitrarily small slope of the plane "destroys" 
all the equilibriums of the ball in this plane. A small 
curvature of the plane in a cylindrical surface with a 
horizontal tangent "at the bottom" narrows the two-
dimensional continuum of the indifferent balances 
of the ball to a one-dimensional one. Curvature of 
the plane in the surface of positive Gaussian 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
G. A. Manuylov, S. B. Kosytsyn, 
V. U. Polyakov, M. M. Begichev

E-ISSN: 2224-3429 137 Volume 12, 2017



 

 

curvature translates all indifferent equilibria into one 
isolated and non-degenerate (stable on the "bottom" 
of the well and unstable at the top of the "hill" of 
this surface). If the weight of the floating body 
decreases by a small amount in comparison with the 
weight of the liquid displaced by it, the body will 
float to the surface, and the continuum of indifferent 
equilibria instead of three-dimensional will turn out 
to be two-dimensional. For an Eulerian rod (and any 
other two-parameter elastic system that loses 
stability at the point of symmetric stable bifurcation) 
the critical equilibrium at load crPP =  is not 
indifferent. In fact, this equilibrium is triple, 
degenerate but externally isolated, and at the last 
time is still stable. There is no "new" (or "adjacent") 
equilibria infinitely close to the original then 

crPP = . However, for an arbitrarily small increase 
in the load dPPP cr += , the triple equilibrium 
breaks up into three simple isolated equilibria (two 
new, mirror-like and stable equilibria, located very 
close to the third – the initial equilibrium, which 
becomes "watershed" and unstable). 

Loss of stability at bifurcation point is only if the 
initial equilibrium is incomplete. This means that 
there are many "new" energetically orthogonal 
equilibria, supplementing the original equilibrium to 
the complete equilibrium. For a centrally 
compressed Euler rod, the initial equilibrium is one-
dimensional and incomplete ( ,0≠= PN z

0===== yxyxz QQMMM ). At the load 
dPPP cr += , this equilibrium becomes unstable. 

The rod with an arbitrary asymmetric cross section 
is transformed into a new stable compression-
flexural-torsion and complete equilibrium, in which 
all 6 internal forces yxyxzz QQMMMN ,,,,,  in the 
cross sections of the rod are not equal to zero. For 
conservative elastic systems, the geometric 
symmetry of the system and the incompleteness of 
its single subcritical equilibrium are sufficient 
conditions for the realization of the stability loss 
scenario "in the small" (i.e., stable symmetric 
bifurcation). Here the necessary condition is the 
symmetry and incompleteness of subcritical 
equilibrium. 

If the initial equilibrium of a one-parameter 
elastic system is complete (relatively complete), 
then the loss of stability can occur only at the limit 
point (i.e. "in the large"), when the system tends to 
fall into a distant stable equilibrium. An example is 
a flat loss of stability of symmetric equilibrium of a 
semicircular arch with pinched ends, loaded in a 
lock section by a vertical force. In this case, the 
critical load at the limit point is approximately 1.5 

times smaller than the "pseudo-bifurcation" critical 
load obtained from the linearized analysis. 
 
3 Features of Bifurcation Points 
In analysis of a conservative elastic system that 
depends on one or several parameters, the theorems 
of J.M.T. Thompson [2], Appel-Vozlinsky [3, 4], 
N.F. Morozov [5] are important in determining the 
type of critical points. 

The theorem of J.M.T. Thompson. If the 
equilibrium of the elastic system strictly 
monotonically develops with the growth of the load 
parameter, this equilibrium can lose its stability only 
at the bifurcation point. In other words, if the load is 
a generalized coordinate on the equilibrium curve, 
there are no local extremum and there are no 
inflection points with a horizontal tangent, then the 
stable equilibrium of the system can become 
unstable only at the bifurcation point. 

However, it should be added that Thompson's 
theorem is valid if the growing subcritical 
equilibrium is incomplete (there is an energetically 
orthogonal complement, as will be discussed later). 
Only in this case a bifurcation loss of stability is 
possible. 

Under certain additional conditions, one can 
predict whether the symmetric bifurcation point is 
stable or unstable (this also refers to incomplete 
equilibria, Fig. 1). The asymmetric bifurcation point 
is always unstable. This statement came out in the 
work of P. Appel [3], and later in the work of V.I. 
Vozlinsky [4]. 

 

 
Fig.1. 

 
The Appel-Vozlinsky theorem. The stability of a 

symmetric bifurcation is determined by the stability 
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of the approaching branch of equilibrium curve. In 
other words, if the subcritical equilibrium is unique 
and stable, then at the bifurcation point there is a 
loss of stability "in the small". Crossing the initial 
equilibrium, the curve of new equilibria will consist 
of stable post-bifurcation equilibria (at least, at some 
initial section of the postcritical loads). 

We should note that this theorem gives only 
sufficient conditions for the stability of a symmetric 
bifurcation. In the case when the elastic 
conservative system depends on four parameters 
(catastrophe "butterfly" [6]), the germ of the 
catastrophe (the highest term in the expansion in the 
bifurcation coordinate) having the sixth degree is 
positive ( 6q+ ), then the loss of stability will be at 
the point of symmetric stable bifurcation in spite of 
the fact that the subcritical equilibrium is not unique 
one (Fig.1b). 

The Appell-Vozlinsky theorem allows us to 
formulate the opposite assertion. If a single 
equilibrium half-branch is unstable (this is always 
so!), the new equilibria at the bifurcation point are 
also unstable (at least on some portion of the 
subcritical loads). But this is also only a sufficient 
condition. An example is the equilibrium curve for a 
catastrophe of a dual "butterfly" ( 6q− , Fig.1d). 

Here are a few examples of the use of the above-
mentioned statements for the analysis of bifurcation 
points. 

1. The stability problem of the usual elastic Euler 
rod. Its subcritical equilibrium is single, incomplete 
and it monotonically develops as the compressive 
load increases. According to Thompson's theorem, 
the Euler rod can lose stability only at the 
bifurcation point. On the basis of the Appel-
Vozlinsky theorem, due to the uniqueness of the 
subcritical equilibrium of the central compression, 
the loss of stability will be "soft" ("in the small", at 
the point of symmetric stable bifurcation). Its post-
bifurcation (and more complete) compressed-curved 
equilibrium will be stable and observable, which is 
confirmed experimentally. 

2. A uniformly compressed circular ring is 
compressed monotonically as the load increases. 
The loss of stability will be at the bifurcation point. 
This subcritical equilibrium of the ring is unique. 
Hence, the bifurcation of the circular form of the 
ring into the initial elliptic ring will be stable 
(Appel-Vozlinsky theorem). Then the ellipse passes 
into a stable oval, and later takes a stable "double" 
figure-eight type shape. The diagram of near-critical 
equilibria, obtained by the authors with the help of 
FEM, is close in character to the diagram for the 
Euler rod. 

3. For the axisymmetric equilibrium of a bent 
round plate Morozov [5] proved its uniqueness for 
large deflections. However, this does not imply the 
absence of other forms of equilibrium (for example, 
cyclically symmetric) of a strongly curved plate 
with a load that is less than critical. In this case the 
axisymmetric equilibrium develops monotonically. 
Consequently, the bifurcation loss of stability of this 
partial equilibrium is expected. But because of the 
possible nonuniqueness of the subcritical 
axisymmetric equilibrium, the bifurcation point can 
be either stable or unstable. The results of 
calculations with the NASTRAN showed that a 
stable initial post-bifurcation equilibrium (circular 
wave formation, fig.2) under the action of a 
distributed load and a concentrated force was 
observed in the case of contour constraints of a 
sliding-type [7]. Postcritical equilibrium of plate and 
graph of vertical displacements of points along a 
parallel with a radius of 0.85R for the plate under 
distributed load (a) and under concentrated load (b) 
are shown at fig.2.  

 

 
Fig.2. 

 
If the edge is hinged the wave formation under 

the same loads occurred instantly at much greater 
deflections (fig.3). This means that with the hinged 
edge, the bifurcation point was unstable. Large 
radial forces, shape of model at postcritical 
equilibrium and graph of vertical displacements are 
shown on the fig.3. 

4. A similar in character pattern of loss of 
stability of axisymmetric equilibrium develops 
when the concentrated force is at the apex of the 
segment of a non-regular shell of revolution with a 
circular base. Around the force a relatively small 
circular dent is formed almost instantly (Fig.4a). Its 
dimensions and deflections grow monotonously 
along with the increase in the load. One can expect a 
loss of stability of the axisymmetric equilibrium at 
the bifurcation point. 

Subcritical equilibrium is not single. Therefore, it 
is not possible to formally use the Appel-Vozlinsky 
theorem to determine the nature of the bifurcation 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
G. A. Manuylov, S. B. Kosytsyn, 
V. U. Polyakov, M. M. Begichev

E-ISSN: 2224-3429 139 Volume 12, 2017



 

 

point. But locally it is unique. The loss of stability 
of axisymmetric equilibrium and the transition to a 
cyclically symmetric equilibrium occurs at the point 
of symmetric stable bifurcation. 

 

 
Fig.3. 

 
Three waves are formed (Fig.4b). With a further 

increase in the load this form changes into four-
wave stable shape (Fig.4c) as a result of secondary 
bifurcation. Further, a shape with 5 circumferential 
waves is also formed, and so on.  

 

 
Fig.4. 

 
The described pattern of successive wave 

formation was obtained numerically for a clamped 
shell (R = 500 cm, δ = 0.25 cm, R / δ = 1000, a = 
353.5 cm – the radius of the base) is shown in Fig.4. 

A.V. Pogorelov [8] described an experiment with a 
copper shell that was close in size (but significantly 
thinner). He observed three transverse waves 
formed as a result of the loss of stability of 
axisymmetric equilibrium. 
 
4 Computational Differences of 
Bifurcation Points and Limit Points 
In this paragraph, we discuss the computational 
differencesof critical points (bifurcation point or 
limit point). 

Let the system of nonlinear equilibrium 
equations for a finite-element model -of an elastic 
system be represented as depending on the node 
displacements ν, the generalized coordinate q (on 
which the equilibrium state curve is constructed), 
the load parameter λ, and the vector of unit nodal 
loads Р



. 
0))(),(( =PqqG



λν   (3) 
The derivative of a nonlinear operator (the Jacobi 

matrix or the tangent rigidity matrix) is expressed as 
follows: 

ν
λνλν

∂
∂

=
),(),( GK   (4) 

The derivative with respect to the load parameter 
λ gives the aforementioned unit load vector Р



: 

РG 



=
∂
∂
λ

  (5) 

The points of critical equilibrium (λcr, νcr) are 
determined by two main expressions: 

 0),(det crcr =νλK   (6) 
0),( 0

1crcr =⋅WK


νλ   (7) 
Here 0

1W


is the first "zero" eigenvector ofloss of 
stability, corresponding to the "zero" eigenvalue of 
the stiffness matrix in pre-critical equilibrium. 

The main relation determining the type of the 
critical point isobtained by multiplying zero 
eigenvector TW )( 0

1 from the left by the derivative of 
the nonlinear operator with respect to the coordinate 
q. After some transformations, taking into account 
relation (7), we obtain the basic formula [9]: 

( ) 0)(...)( 0
1

0
1 =

∂
∂
⋅⋅→→

∂
∂

q
PW

q
GW TT λ



 (8) 

If in this formula, the scalar product is not zero

)0)(( 0
1 ≠⋅ PW , and the derivative turns to zero

)0( =∂∂ qλ , then the critical point is the limit 
point. 
If on the contrary, the scalar product turns to zero

)0)(( 0
1 =⋅ PW , and the derivative is not
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)0( ≠∂∂ qλ , then the critical point is a bifurcation 
point. 

Another sign of the bifurcation point is the 
fulfillment of the orthogonality between the pre-
critical form of equilibrium and the "zero" 
eigenvector: 

( ) 00
1 =⋅ precrWW   (9) 

In the case of a limit point, the orthogonality 
condition does not hold: 

( ) 00
1 ≠⋅ precrWW    (10) 

Note that formula (6) in its most general form 
was first given in the works of A. Jepson and A. 
Spence (1982, 1985) [10, 11]. 

Regardless of the work of these authors, the 
relation (8) was formulated in the works of G.A. 
Manuilov, S.B. Kositsyn and K.A. Zhukov [12]. An 
energy interpretation of formula (8) was also given 
there. 

If the work of an external load on displacements 
given by the eigenvector of the tangent stiffness 
matrix for pre-critical  equilibrium is zero, then the 
critical point is a bifurcation point. Otherwise, this 
critical point is a limit point. 

A formal proof was given in the paper of M. 
Deml and B. Wunderlich [13]. An overall review of 
the issues under consideration is given in the book 
by V. Galishnikova, P. Dunaiski and P.J. Pahl in 
2009 [14] and in the work of the authors [9]. 

P. Vriggers and J. Simo [15] connected the 
mathematical results of Jepson and Spence to the 
FEM method. The authors also indicated signs of 
differences in the types of limit points and 
bifurcation points under special additional 
conditions that are expressedby the constants a, b, c, 
d calculated according to the following formulas: 

( ) 0
1

00
1 )( WWKWa

T 

ν∇=  (11) 

( ) ννλ
~)()()( 0

1
0

1
0

1
0

1 WKWWKWb ТT 

∇+∇=    (12) 

( ) ( ) +∇+∇= )~(2 0
1

0
1 νλλ KWРWc

TT 

  

( ) ννν
~)~(0

1 KW
T
∇+



             (13) 

acbd −= 2              (14) 
Here PK 1~ −=ν , ν∇ λ∇ are the geometric 

derivatives of the matrix K"along the direction" 

 ( )( ) 0
0

1,)( =∆+=∆∇ εν λνεν
ε

ν WK
d
dWK



     (15) 

 ( )( ) 0
0

1,)( =∆+=∆∇ ελ λελν
ε

λ WK
d
dWK



     (16) 

To distinguish the types of limit points, Jepson 
and Spence [11] suggested the following conditions. 

If the scalar product ( ) 00
1 ≠





 ⋅PW

T 

and 

coefficient is not zero 0≠a at the critical point, then 
this is a simple (quadratic) limit point (turning 
point) (Fig.5b). 

If the scalar product ( ) 00
1 ≠





 ⋅PW

T 

, but the 

coefficient 0=a , then the critical point is a double 
(cubic) limit point (the point of inflection from the 
horizontal tangent, Fig.5a). It is called a "weakly 
stable" equilibrium point.  

 

 
Fig.5. 

 
The phenomenon of loss of stability of shallow 

arches and shells with an increase in the elevation 
parameter begins from this point.The emergence 
and development of limit points can be represented 
using a cusp catastrophe (Fig.6). 

 

 
Fig.6. 

 
To distinguish the types of bifurcation points, the 

following conditions are used. 

If: ( ) 00
1 =





 ⋅PW

T 

, 0≠a , 0>d , 

then the bifurcation point is simple and 
asymmetric (Fig.7c). 

If: ( ) 00
1 =





 ⋅PW

T 

, 0=a , 0≠b , 

then the bifurcation point is symmetric (unstable 
for 0<b , Fig.3a, stable if 0>b , Fig.7b). 
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If: ( ) 00
1 =





 ⋅PW

T 

, 0<d , 

then the isolated point of the bifurcation 
occurs(Fig.7d). 

We note that, despite the apparent exclusivity of 
isolated bifurcation points, they sometimes occur in 
the most unexpected cases. For example, the 
bifurcation point of the symmetric equilibrium of a 
circular, high-rise two-hinged arch (2α>135°), 
loaded with two identical symmetrically located 
forces, is isolated. 

 

 
Fig.7. 

 
Consider another specific point of bifurcation, 

which occurs when the type of the critical point 
changes (limit point is replaced by the bifurcation 
point). The described transition from the limit point 
to the bifurcation point is accomplished through a 
double critical point of the type "branching at the 
top of the hill" (variant of the hyperbolic umbilic 
catastrophe) [6, 16]. 

This double critical point (Fig.8) is characterized 
by the following formulas: 

0)( 0
11 ≠⋅wP , 0

1
=

∂
∂
q
λ , 02

1

2

<
∂
∂

q
λ , (17) 

0)( 0
21 =⋅wP , 0

2
=

∂
∂
q
λ , 02

2

2

<
∂
∂

q
λ . (18) 

 

 
Fig.8. 

 
5 Complement of the initial post-
critical equilibrium 

As it is known [9,17], the initial post-critical 
equilibrium is the sum of the pre-critical equilibrium 
and the zero eigenvector with a scale factor ξ: 

...0
1/. ++= WWW precrcrpinit ξ



  (19) 
At the point of bifurcation, the pre-critical 

equilibrium Wprecr is the incomplete equilibrium. 
Therefore, there is an energetically orthogonal 
addition for it. Incomplete equilibrium can lose its 
stability both at the bifurcation point and at the 
limiting point. If the pre-critical equilibrium is "full" 
(the energy orthogonal complement is equal to 
zero), then the instability is possible only at the limit 
point. These positions follow from the orthogonality 
relations (8), (9). 

After the passage of the bifurcation point, the 
addition of pre-critical equilibriumis possible in two 
versions: 

1) new material components are added (for 
example before mentioned Euler rod, for shells 
momentless equilibrium becomes  moment 
equilibrium); 

2) relatively new ("organized" in another way) 
components that were previously presented in the 
pre-critical  equilibrium (symmetric equilibria + 
antisymmetric from the composition of the 
complement give a sum of asymmetrical post-
critical equilibrium) are added. 

These considerations can be represented in the 
form of the formulas 

{ } 00
1

0
1 =





 ⋅→∈ ⊥

precrprecr
E WWWAddW



 (20) 

At the limit point, the orthogonality condition (9) 
is not valid ( ) 00

1 ≠⋅ precrWW . However, for this point 
we can symbolically write down some (conditional) 
decomposition of the zero eigenvector 

bif
precr WсWсW 0

121
0

1 +=  (21) 
If the limit point is close to the unstable 

bifurcation point (to which it is "subordinate" 
according to the catastrophe hierarchy [18]), then 
c2>> c1, c1 ≠ 0, and in this case the initial postcritical 
equilibrium is more complete than the pre-critical  
equilibrium. For a detailed analysis of the example 
related to the loss of stability at the limit point of a 
cylindrical shell, see paper [17]. 

If the limit point is not connected with the 
bifurcation point or is located far enough from it 
(c2 = 0 or c2<< c1), then the zero eigenvector is 
proportional (or almost proportional) to the pre-
critical  equilibrium vector )( 1

0
1 precrWсW = . Then 
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the initial postcritical equilibrium (after passing 
through the limit point) repeats the pre-critical  
equilibrium, but will be unstable 

( ) precrprecrprecrcrpinit WсWсWW


11/. 1 ξξ +=+= (22) 
 

6 The Emergence of Bifurcation 
Points and Their Movements on the 
Equilibrium Curve 

Suppose that some elastic system has an 
equilibrium curve with two limit points. Bifurcation 
points are generated in pairs and can appear at some 
point of the stable part of the equilibrium curve 
(before the upper limit point) or after passing 
through this limit point (on the unstable part of the 
equilibrium curve). The example of the first variant 
is the "high" Mises’s truss (α0 ≥ 67°.36, Fig.9). As 
long as the angle of the rods is less than 67°.36 the 
Mises’s truss loses stability only at the limit point. It 
is known that the critical angle of inclination of the 
rods at the limit point, as well as the value of the 
critical force, satisfy the relations [19]: 

0
*3 coscos αα =cr , crcr clР α3* sin2= . 

The value of stiffness c for rods: 

l
EAс = . 

When the angle 67°,36 is reached, a new pair of 
critical points defining a symmetric unstable 
bifurcation is created at a certain point in the 
ascending stable equilibrium branch. This follows 
from an analysis of the solutions of equation [19] 

0
3 coscoscos ααα =− bifbif   (23) 

Which can be represented as a cubic equation: 
03 =+− axx    (24) 

The discriminant of this equation is D = 0 when 
α1

bif = α2
bif for α0 = 67.36°. This equality indicates 

the birth of a double real root (Fig.10a). From this 
moment, at the high Mises’s truss, the minimal 
critical load corresponds to the loss of stability at a 
symmetric unstable bifurcation point. The 
corresponding critical bifurcation load is 
calculatedaccording to: 

bif
bifbif clР α

α
α

sin
cos
cos

12 0 






 −=  (25) 

With the increase of the angle α0> 67.36°, two 
bifurcation points begin to diverge along the stable 
branch (Fig.10b). With an increase in the initial 
angle to α0 = 69.29 °, the second bifurcation point 
reaches the limit point, becoming a double critical 
point such as "branching at the top of the hill". 
Further, this bifurcation point passes through the 
limit point and reaches the unstable branch of 

equilibria curve (Fig.10d). Through these points, 
pass two loops of unstable bifurcations. 

 

 
Fig.9. 

 
However, in many cases (arched structures, shell 

structure) bifurcation points are born on an unstable 
branch of equilibria. However, their birth does not 
mean an immediate change of the type of loss of 
stability, as was in the previous case (the Mises’s 
truss). 

 

 
Fig.10. 
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Let us consider the simplest shallow sinusoidal 

outline arch: 

l
zfy πsin= ,   (26) 

loaded with a sinusoidal distributed load 

l
zpp πsin0= .   (27) 

A detailed analysis of the development of critical 
points for such an arch is given in book[19]. 

 

 
Fig.11. 

 
It is convenient to analyze the birth of bifurcation 

points using a dimensionless parameter 2
4

Af
Is = . 

While s> 1.0, a very shallow arch is stable. For s 
= 1.0, a double limit point appears on the 
equilibrium curve (the inflection point with the 
horizontal tangent). From this point, all the arcs 
having the parameter s <1.0 up to the value s*= 2/11 
(≈0.182) are unstable at the limit points. However, 
at s**=0.25, a double bifurcation point occurs on the 
unstable part of the branch of the equilibrium curve 
(Fig.12).  

 

 
Fig.12. 

 
With further decrease of the parameter s 

(s<0.25), the bifurcation points diverge from each 
other. Moving along the unstable part of the 
equilibrium curve, one of them tends to the upper 
limit point, the other – to the lower limit point. 
When the value s becomes s*=2/11 (≈0.182) the 

bifurcation points reach the limit points. At this 
moment, two (upper and lower) double critical 
points ("branching at the top of the hill") are 
formed. 

With an even smaller decrease of the parameter s 
(s<2/11), the minimal critical load will correspond 
to the loss of stability of the arch at the point of a 
symmetric unstable bifurcation. The corresponding 
loops of unstable post-bifurcation equilibria are 
shown in Fig.12. The dimensionless critical loads 
for the arch at the limit point and the bifurcation 
point are determined by the relations: 

;
27

)1(11 2

3
*

s
sРcr

−
±=   (28) 

.4131 sРbif
cr −±=   (29) 

 

 
Fig.13. 

 
P is the dimensionless load parameter: 

EJf
lPР 4

4
0

π
= .   (30) 

A similar picture of the behavior of bifurcation 
points takes place in the case of loss of stability of a 
shallow elongated cylindrical panel hinged along 
straight edges and loaded with a uniformly 
distributed load [20] (Fig.13). While the parameter

δRbk 2=  is less than 5, the panel does not lose 
stability of symmetric equilibrium. For k = 5, a 
double limit point appears, and in the range from k 
= 5 to k≈9, the panel looses stability at the limit 
point. At a certain value of k close to k≈8, a double 
bifurcation point appears on the unstable branch of 
equilibria (Fig.10). As the parameter k increases, the 
double bifurcation point splits into two simple 
bifurcations diverging from each other along the 
unstable branch, and at k≈10 the upper bifurcation 
point reaches the upper limit point. From this point, 
the panel becomes unstable at the bifurcation points 
(symmetric and unstable). The corresponding lines 
of unstable bifurcation equilibria are shown in 
Fig.13. We note that the behavior of bifurcation 
points of an elongated cylindrical panel actually 
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repeats the behavior of these points for a sinusoidal 
arch. 

In conclusion, we note that in the work of Kerr 
A.D. and Soifer M.T.  [21] is the investigation of the 
stability of a circularly clamped arch under the 
action of a radial load (taking into account the 
geometric nonlinearity).It was established that when 
parameter k reaches 5.024, a double bifurcation 
point appears. However, the creation of the 
bifurcation parameter does not yet mean the 
beginning of the loss of stability of the arch at the 
bifurcation point. In fact, this double bifurcation 
point is born on an unstable branch of equilibrium 
curve, and in order to go through the limit point it is 
necessary to increase the parameter k to the value k 
= 5.18. Only after this, the minimum critical load 
will correspond to the loss of stability of the arch in 
a symmetrical bifurcation point. This is confirmed 
by the first proper forms of loss of stability for such 
an arch (Fig.14), calculated at the parameters k = 
5.17 and k = 5.2. 

 

 
Fig.14. 

 
With the parameter k = 5.17, the first eigenform 

is symmetric, it corresponds to the loss of stability at 
the limit point. The second form is skew-symmetric. 
At a parameter value of 5.2 for pre-critical 
equilibrium, the first form is already skew-
symmetric, indicating a bifurcation loss of stability. 
We emphasize once again that the moment of birth 
of bifurcation points does not mean an immediate 
change in the type of loss of stability. Such a change 
will occur only if this bifurcation point is born on a 
stable branch of the equilibrium curve. 
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