
Static and Free Vibration Analysis of Composite Straight Beams on the 
Pasternak Foundation 

 
MERVE ERMİS   ÜMİT N ARIBAS   NİHAL ERATLI     MEHMET H OMURTAG 

Department of Civil Engineering 
Istanbul Technical University 

34469 Maslak İstanbul 
TURKEY 

ermism@itu.edu.tr    http://akademi.itu.edu.tr/ermism/ 
 
 
Abstract: - The objective of this study is to investigate the static and free vibration analysis of the cross-ply 
laminated straight beams on a two-parameter foundation, namely Pasternak. The curved element formulation is 
based on Timoshenko beam theory including the shear influence and the rotary inertia. The degrees of freedom 
of the two nodded element are three translations, three rotations, two shear forces, one axial force, two bending 
moment and one torque (12 DOF). A parametric study is performed on the static and the natural frequencies of 
cross-ply laminated straight beams with various foundation parameters. Support conditions are simply 
supported, fixed-fixed and fixed-roller. 
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1 Introduction 
The increased use of laminated composite beams in 
many applications due to their attractive properties 
in strength, stiffness and lightness has resulted in a 
growing demand for engineers in the design of 
structures. The free vibration analysis of laminated 
composite beams with no foundation are studied by 
several researchers [1-8] 

Beams on elastic foundation are presented in [9]. 
Elastic and viscoelastic foundation models are 
proposed in [10]. [11] investigated the effects of 
rotary inertia, shear deformation and foundation 
constants on the natural frequencies of Timoshenko 
beam on Pasternak foundation. [12] investigated the 
free vibration of beam-columns on two-parameter 
elastic foundations. [13] is presented the static 
analysis of beams on two-parameter elastic 
foundation using the exact displacement function. 
[14] used a finite element procedure for the free 
vibration analysis of Timoshenko beam-columns 
fully or partially supported two-parameter elastic 
foundation. [15] employed the exact and the 
approximate shape functions to analyze the free 
vibration of beams on two-parameter elastic 
foundation. Free vibration analysis of initially 
stressed beams resting two-parameter elastic 
foundation is considered using the finite element 
method in [16]. [17] employed two different 
differential equation of motion for Timoshenko 
beam based on elastic foundation parameters. [18] is 
performed the exact free vibration analysis of Euler 

beams on Pasternak foundation. The bending, 
buckling and free vibration problems of 
Timoshenko and Euler beams on different elastic 
foundation models are presented by using Green’s 
functions in [19]. [20] presented a mixed method, 
which composes the state space method and the 
differential quadrature method, for bending and free 
vibration of beams on a Pasternak elastic 
foundation. [21] presented analytic solutions for the 
static analysis of beams on Pasternak foundation. A 
symplectic method based on two-dimensional 
elasticity theory is used for analytic solutions.  

The bending and free vibration of functionally 
graded beams on elastic foundation is considered by 
using exact two-dimensional elasticity theory in 
[22]. The stability and free vibration of functionally 
graded sandwich beams on two-parameter elastic 
foundation is studied using Chebyshev collocation 
method in [23]. Free vibration and buckling analysis 
of double functionally graded Timoshenko beams 
on elastic foundation is studied in [24]. The exact 
natural frequencies and buckling loads are obtained 
using Wittrick-William algorithm. 

Nonlinear free flexural and post-buckling 
analysis of laminated orthotropic cross-ply beams 
on two-parameter elastic foundation is presented in 
[25]. The static analysis of thick composite beams 
on Winkler foundation using higher order shear 
deformation theory is investigated analytically and 
experimentally in [26]. The differential quadrature 
method for nonlinear free vibration analyses of 
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laminated composite beams on elastic foundation 
which has cubic nonlinearity with shearing layer is 
employed in [27]. Free vibration analysis of cross-
ply laminated beams on elastic foundation is studied 
using finite element method in [28,29]. 

In this study, the static and free vibration 
analyses of cross-ply laminated straight beams 
based on Timoshenko beam theory, resting on 
Pasternak foundation are investigated. The 
constitutive equations of layered orthotropic beams 
are derived by reducing the constitutive relations of 
orthotropic materials for three-dimensional body 
[30]. As a numerical investigation, the static and 
free vibration analysis of isotropic thin/thick beams 
and cross-ply laminated beams on Pasternak 
foundation are performed via the mixed finite 
element method (MFEM) and the results are 
compared with the literature [18-20, 28-29] and the 
static analysis results of cross-ply laminated beams 
on resting Winkler and Pasternak are given as a 
contribution for the literature. 
 
 

2 Formulation 
 
 
2.1 The constitutive relations 
The constitutive equation yields 

 :E   (1) 

  is the stress tensor,   is the strain tensor 
and E  is the function of elastic constants. In order 
to derive the constitutive equations of a laminated 
composite beam, firstly the assumptions made on 
stress, in accordance with beam geometry [3], 
secondly some reductions made on the constitutive 
relation of orthotropic materials for the three 
dimensional body by incorporating the Poisson's 
ratio [30]. 
 

 

Fig.1 The stresses in the Frenet Coordinate System 
(N: Total number of layers) 

 
In Frenet coordinate system (see Fig.1), paying 

attention to 0n b nb     , the constitutive 

relations yield 
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In (1), 3 3[   matrix is the function of 

orthotropic material constants. Timoshenko beam 
theory requires shear correction factors and it is 
assumed to be 5 / 6  for a general rectangular cross-
section. By means of the kinematic equations 
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By obtaining strains for beam geometry due to 
displacements [31], the forces and moments for a 
layer can be derived by analytical integration of the 
stresses in each layer through the thickness of the 
cross-section, respectively. 
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N  is the number of the layer, 
L

n  is the width of 

the layer, 
L

b  and 
1L

b


 are the directed distances to 

the bottom and the top of the thL  layer where b is 
positive upward. The constitutive equation in a 
matrix form: 
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or, since 1[ ] [ ]C E , in accordance with (1) and (3), 

(10) yields to the form 
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, ,
t n b

    are curvatures. 

 

 

Fig.2 Pasternak model for the two- parameter 
foundation 

 
 
2.2 The field equations and functional 
The field equations and functional for the isotropic 
homogenous spatial beam, which are based on 
Timoshenko beam theory exists in [32-34]. The 
field equations and the functional are extended to 
laminated composite beams in [35-36]. Winkler and 

Pasternak foundation (Fig.2) terms inserted to the 
field equations of spatial beam as follows: 
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s  is the arc axis of the spatial beam, 
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u u uu  is the displacement vector, 
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  Ω  is the cross section rotation 

vector. 
W
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Once the motion is considered as harmonic for the 
free vibration of the beam, the conditions  q m 0  

are satisfied. Incorporating Gâteaux differential in 
terms of (12)-(13) with potential operator concept 
[38] yields to an original functional for the 
literature.  
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For a static analysis, the above functional needs 
to be modified by excluding the terms 

 1 2
2

,A  u u ,  1 2
2

, Ω Ω and inserting  ,q u , 

 ,m  . In (14),  the square brackets indicate the 

inner product, the terms with hats are known values 
on the boundary and the subscripts   and   
represent the geometric and dynamic boundary 
conditions, respectively. 
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2.3 Mixed finite element formulation 
The linear shape functions are employed in the finite 
element formulation. The curvatures are satisfied 
exactly at the nodal points and linearly interpolated 
through the element [33]. Calculation of the natural 
free vibration frequencies of a structural system 
yields to the following standard eigenvalue problem, 

    2[ ] [ ] K M u 0  (15) 

where, [ ]K and [ ]M  are the system and mass matrix 

of the entire domain, respectively. u  is the 

eigenvector (mode shape) and  depicts the natural 
angular frequency of the system. 
 
 

3 Numerical Examples 
The static and dynamic analysis of isotropic straight 
beams resting on two-parameter elastic foundation 
are verified with the literature [18-20] and then the 
natural frequencies of cross-ply laminated straight 
beams on Winkler and Pasternak foundations are 
verified with the literature [28-29]. As far as the 
knowledge of the authors, the static analysis of 
cross-ply laminated straight beams on Pasternak 
foundation presented in this study is as a 
contribution for the literature. 
 
 
3.1 Isotropic beams on elastic foundation   
Common parameters for the beam problem on 
elastic foundation are: Two different the length of 
beam-to-the thickness of beam ratio ( / 120L h   

and / 5L h  ) is considered. Two different 

boundary conditions are utilized, namely, fixed-
fixed (C-C) and simply supported-simply supported 

(S-S). The Winkler 
W

K ( 2 4 60,10 ,10 ,10 ) and 

Pasternak 
P

K ( 0,10, 25) foundation parameters are 

considered. The non-dimensional parameters, which 
are used in tables, are defined as: 
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3.1.1 Static analysis 
The straight beam subjected to a q  uniformly 

distributed load on two-parameter foundation is 
solved and compared the literature results [19-20]. 

The non-dimensional maximum displacements 
2( 10 )

b
u   are listed in Tables 1-4. The MFEM 

results are an excellent agreement with the 
literature. 
 
Table 1 The non-dimensional maximum 
displacements for the isotropic thin beam (boundary 
condition: S-S) 

foundation 
parameters 

/ 120L h    
210

b
u   

W
K  

P
K  MFEM  [19] [20] 

[20] 
exact  

0 0 1.3024 1.3023 1.3023 1.3023 

10 
0 1.1807 1.1814 1.1806 1.1806 
10 0.6134 0.6141 0.6133 0.6133 
25 0.3557 0.3566 0.3557 0.3557 

102 
0 0.6401 0.6403 0.6400 0.6400 
10 0.4256 0.4261 0.4256 0.4256 
25 0.2829 0.2836 0.2828 0.2828 

 
Table 2 The non-dimensional maximum 
displacements for the isotropic moderately thick 
beam (boundary condition: S-S) 

foundation 
parameters 

/ 5L h    
210

b
u   

W
K  

P
K  MFEM [20] 

[20] 
exact  

0 0 1.4322 1.4203 1.4202 

10 
0 1.2857 1.2826 1.2773 
10 0.6388 0.6464 0.6402 
25 0.3631 0.3721 0.3657 

102 
0 0.6671 0.6961 0.6685 

10 0.4363 0.4593 0.4388 
25 0.2869 0.3052 0.2894 

 
Table 3 The non-dimensional maximum 
displacements for the isotropic thin beam (boundary 
condition: C-C) 

foundation 
parameters 

/ 120L h    
210

b
u   

W
K  

P
K  MFEM  [19] [20] 

0 0 0.2609 0.2616 0.2606 

10 
0 0.2557 0.2565 0.2555 
10 0.2053 0.2062 0.2053 
25 0.1588 0.1597 0.1588 

102 
0 0.2169 0.2174 0.2167 

10 0.1793 0.1800 0.1794 
25 0.1427 0.1435 0.1427 
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Table 4 The non-dimensional maximum 
displacements for the isotropic moderately thick 
beam (boundary condition: C-C) 

foundation 
parameters 

/ 5L h    
210

b
u   

W
K  

P
K  MFEM [20] 

0 0 0.3906 0.3881 

10 
0 0.3789 0.3782 

10 0.2854 0.2887 
25 0.2094 0.2148 

102 
0 0.2979 0.3091 

10 0.2366 0.2482 
25 0.1817 0.1930 

 
 
3.1.2 Dynamic analysis 
The free vibration analysis of isotropic straight 
beams on elastic foundation is carried out and the 
non-dimensional natural frequencies are tabulated in 
Tables 5-8. Only for the moderately thick beam, in 
the case of increasing values of Winkler and 
Pasternak foundation parameters the results of our 
study with respect to [20] diverged (Tables 6 and 8). 
For the rest, the results are all in agreement. 
 

Table 5 The non-dimensional fundamental 
frequencies   for the isotropic thin beam (boundary 
condition: S-S)  

foundation 
parameters 

/ 120L h   

W
K  2

P
K   MFEM  [18] [20] 

[20] 
exact  

0 0 3.1414 3.1415 3.1414 3.1414 

102 
0 3.7482 3.7483 3.7482 3.7482 

1.0 4.1436 4.1437 4.1436 4.1436 
2.5 4.5824 4.5824 4.5823 4.5823 

104 
0 10.024 10.024 10.024 10.024 

1.0 10.048 10.048 10.048 10.048 
2.5 10.084 10.084 10.084 10.084 

106 
0 31.623 31.623 31.622 31.622 

1.0 31.624 31.624 31.622 31.622 
2.5 31.625 31.625 31.625 31.625 

 
 
 
 
 
 
 
 
 
 

Table 6 The non-dimensional fundamental 
frequencies   for the isotropic moderately thick 
beam (boundary condition: S-S) 

foundation 
parameters 

/ 5L h   

W
K  2

P
K   MFEM [20] 

[20] 
exact  

0 0 3.0453 3.0480 3.0480 

102 
0 3.6798 3.6705 3.6705 

1.0 4.0839 4.0664 4.0664 
2.5 4.5280 4.4991 4.4991 

104 
0 9.9267 7.3408 7.3408 

1.0 9.9502 7.3410 7.3410 
2.5 9.9851 7.3412 7.3412 

106 
0 13.3516 7.3508 7.3508 

1.0 13.3516 7.3508 7.3508 
2.5 13.3516 7.3508 7.3508 

 
Table 7 The first three non-dimensional natural 
frequencies   for the isotropic thin beam (boundary 
condition: C-C) 

foundation 
parameters 

/ 120L h    

W
K  2

P
K   MFEM  [18] [20] 

0 0 4.7289 4.7300 4.7314 
  7.8488 7.8540 7.8533 
  10.985 10.996 10.991 

102 

0 4.9494 4.9500 4.9515 
 7.9000 7.9040 7.9044 
 11.004 11.014 11.010 

1.0 5.1816 5.1820 5.1834 
 8.1208 8.1240 8.1247 
 11.183 11.192 11.188 

2.5 5.4767 5.4770 5.4783 
 8.4200 8.4230 8.4234 
 11.436 11.444 11.440 

104 

0 10.123 10.123 10.123 
 10.837 10.839 10.838 
 12.518 12.526 12.522 

1.0 10.152 10.152 10.152 
 10.925 10.927 10.926 
 12.641 12.648 12.644 

2.5 10.194 10.194 10.194 
 11.053 11.055 11.054 
 12.818 12.825 12.821 
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Table 8 The first three non-dimensional natural 
frequencies   for the isotropic moderately thick 
beam (boundary condition: C-C) 

foundation 
parameters 

/ 5L h    

W
K  2

P
K   MFEM [20] 

0 0 4.2420 4.2634 
  6.4179 6.4648 
  8.2853 7.4013 

102 

0 4.5325 4.5418 
 6.5062 6.5472 
 8.3260 7.4018 

1.0 4.7925 4.7910 
 6.8293 6.8471 
 8.6590 7.4091 

2.5 5.1104 5.0974 
 7.2389 7.2228 
 9.0948 7.4261 

104 

0 10.018 7.4054 
 10.261 8.5458 
 10.863 10.112 

1.0 10.047 7.4091 
 10.347 8.6492 
 11.011 10.192 

2.5 10.087 7.4135 
 10.470 8.7616 
 11.221 10.306 

 
 
3.2 Laminated composite straight beams on 
Pasternak foundation 
The static and dynamic analysis of symmetrically 
(0/90/90/0) and non-symmetrically 
(0/90/0/90) layered cross-ply beams with four 
orthotropic lay-ups on Winkler and Pasternak 
foundation is investigated. The material properties 
of orthotropic material are as follows: 

144.8GPa
t

E  , 9.65GPa
n

E  , 9.65GPa
b

E  , 

4.14GPa
tn

G  , 4.14GPa
tb

G  , 3.45GPa
nb

G  , 

0.3
tn tb

   , 0.399
nb

  . The density of the 

material 31389.23kg/m  . The length of beam-to-

the thickness of beam ratio / 15L h  , where the 
width of rectangular cross-section is 0.15mb  , is 

considered. Two different boundary conditions C-C 
(fixed-fixed) and C-S (fixed-simply supported) are 
employed. 
 
 
3.2.1 Dynamic analysis 
Firstly, the free vibration analysis of symmetrically 
and non-symmetrically layered cross-ply straight 

beams with no foundation is considered and 
compared with literature [1,2,5,28,29] and then the 
first three non-dimensional natural frequencies are 
tabulated in Tables 9-10. The definition of non-
dimensional natural frequency parameter is 

2
2

t

L
E h


   (17) 

 
Table 9 The first three non-dimensional natural 
frequencies of symmetrically and non-
symmetrically cross-ply straight beams (no 
foundation, boundary condition: C-C) 

 Ref. 

Non-dimensional 
frequencies 

1   2  3  

0/90/90/0 

MFEM 4.5870 10.281 16.955 
[1] 4.5940 10.291 16.966 
[2] 4.6180 10.796 16.984 
[5] 4.5869 10.281 16.955 

[28,29] 4.6170 10.471 18.160 
     

0/90/0/90 

    

MFEM 3.7030 8.8150 15.045 
[2] 3.7360 9.1870 15.102 

[28,29] 3.7320 9.1810 15.097 
 
 
Table 10 The first three non-dimensional natural 
frequencies of symmetrically cross-ply straight 
beams (no foundation, boundary condition: C-S) 

 Ref. 

Non-dimensional 
frequencies 

1   2  3  

0/90/90/0 

MFEM 3.5180 9.4300 16.370 
[1] 3.5250 9.4420 16.384 
[2] 3.6130 9.5690 16.482 
[5] 3.5183 9.4299 16.370 

[28,29] 3.7060 9.6500 17.384 
 
 

Next, the free vibration analysis of 
symmetrically and non-symmetrically layered cross-
ply straight beams on elastic foundation is 
investigated and the results compared with [28,29]. 

P
k  is constant along to the length of beam in our 

MFEM solution for cross-ply laminated beams on 
Pasternak foundation. The tabulated results are 
given in Tables 11-12. The foundation constants for 

Winkler and Pasternak are 2100kN/m
W

k   and 

200kN
P

k  , respectively. The all results are in a 

good agreement. 
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Table 11 The first three non-dimensional natural 
frequencies of symmetrically and non-
symmetrically cross-ply straight beams on elastic 
foundation (boundary condition: C-C) 

 

foundation 
constants 

non-dimensional frequencies 

W
k  

2kN/m  

P
k  

kN  
Ref. 1   2  3  

0
 /

90
 /

90
 /

0
 

      

100 0 MFEM 4.597 10.285 16.958 
  [29] 4.627 10.475 18.162 
 200 MFEM 4.603 10.296 16.971 
  [28] 4.714 10.632 18.346 
      
      

0
 /

90
 /

0
 /

90
        

100 0 MFEM 3.715 8.820 15.048 
  [29] 3.636 8.626 15.687 
 200 MFEM 3.723 8.833 15.063 
  [28] 3.752 8.832 15.918 
      

 
Table 12 The first three non-dimensional natural 
frequencies of symmetrically and non-
symmetrically cross-ply straight beams on elastic 
foundation (boundary condition: C-S) 

 

foundation 
constants 

non-dimensional frequencies 

W
k  

2kN/m  

P
k  

kN  
Ref. 1   2  3  

0
 /

90
 /

90
 /

0
       

100 0 MFEM 3.531 9.435 16.373 
  [29] 3.718 9.655 17.387 
 200 MFEM 3.539 9.446 16.387 
  [28] 3.819 9.811 17.578 
      

0
 /

9
0
 /

0
 /

90
        

100 0 MFEM 2.773 7.817 14.192 
  [29] 2.840 7.738 14.610 
 200 MFEM 2.783 7.830 14.208 
  [28] 2.973 7.938 14.849 
      

 
 
3.2.2 Static analysis 
The static analysis of symmetrically (0/90/90/0) 
and non-symmetrically (0/90/0/90) cross-ply 
laminated straight beams under q  uniformly 

distributed load with and without foundation is 
carried out. The results for no foundation are 
validated with ANSYS and the results are given in 
Tables 13-15 for non-dimensional maximum 

vertical displacement (
b

u ) and shear force (
b

T ) and 

bending moment (
n

M ) at the fixed end. The results 

for the beam resting on elastic foundation are given 
in Tables 16-17. The variation of 

b
u  along the beam 

span is depicted for symmetrically and non-

symmetrically cross-ply laminated beams on 
Pasternak foundation with C-C and CS boundary 
conditions in Figs.3-4, respectively. The definition 
of non-dimensional values is 

4 2
, ,b t n b n

b b n

u E I T M
u T M

qLqL qL
    (18) 

 
Table 13 The non-dimensional 

b
u  displacements 

for symmetrically and non-symmetrically cross-ply 
straight beams without foundation  
[diff.% = (MFEM-ANSYS)*100/MFEM] 

 310bu   (non-dimensional displacement) 

 C-C C-S 
 MFEM ANSYS diff.% MFEM ANSYS diff. % 

0
o /

90
o
/9

0
o /

0
o  

5.07 5.05 0.3 8.57 9.17 -7.0 

0
o /

90
o
/0

o /
90

o  

7.83 8.21 -4.9 14.0 16.2 -15.5 

 

Table 14 The non-dimensional 
b

T  displacements 

for symmetrically and non-symmetrically cross-ply 
straight beams without foundation 
[diff.% = (MFEM-ANSYS)*100/MFEM] 

 bT  (non-dimensional shear force) 

 C-C C-S 
 MFEM ANSYS diff.% MFEM ANSYS diff.% 

0
o /

9
0

o
/9

0
o /

0
o  

0.50 0.50 0.0 0.62 0.64 -3.2 

0
o /

90
o /

0
o
/9

0
o  

0.50 0.50 0.0 0.62 0.65 -4.8 
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Table 15 The non-dimensional nM  displacements 

for symmetrically and non-symmetrically cross-ply 
straight beams without foundation 
[diff.% = (MFEM-ANSYS)*100/MFEM] 

 nM  (non-dimensional bending moment) 

 C-C C-S 
 MFEM ANSYS diff.% MFEM ANSYS diff.% 

0
o /

90
o /

90
o /

0
o  

0.08 0.08 0.0 0.120 0.126 -5.0 

0
o
/9

0
o
/0

o
/9

0
o  

0.08 0.08 0.0 0.117 0.125 -6.8 

 
Table 16 The non-dimensional 

b
u  displacement and 

b
T , 

n
M internal forces for symmetrically and non-

symmetrically cross-ply straight beams on elastic 
foundation (boundary condition: C-C) 

 

foundation constants non-dimensional values 

W
k  

2kN/m  

P
k  

kN  

bu   

310   
bT  nM  

0
 /

90
 /

9
0
 /

0
 

     

100 0 5.047 0.498 0.083 
     

 200 5.033 0.498 0.083 
     

     

0
 /

90
 /

0
 /

9
0

      

100 0 7.777 0.498 0.083 
     

 200 7.737 0.498 0.082 
     
     

 
 

4 Conclusion 
The finite element algorithm is verified for isotropic 
and composite straight beams resting on Winkler 
and Pasternak foundation [1,2,5,18-20,28,29]. Next, 
the static and free vibration analysis of 
symmetrically and non-symmetrically cross-ply 
laminated composite straight beams on Pasternak 
foundation is investigated via mixed FE algorithm. 
The static analysis of cross-ply laminated beams on 
resting Pasternak beam results are presented as a 
contribution for the literature. It is observed that, in 
composite materials, layer-wise material placement 

along the thickness direction has great importance 
on the response the structure. 
 
Table 17 The non-dimensional 

b
u  displacement and 

b
T , 

n
M internal forces for symmetrically and non-

symmetrically cross-ply straight beams on elastic 
foundation (boundary condition: C-S) 

 

foundation constants non-dimensional values 

W
k  

2kN/m  

P
k  

kN  

bu   

310  
bT  nM  

0
 /

90
 /

9
0
 /

0
 

     

100 0 8.502 0.616 0.119 
     

 200 8.465 0.616 0.118 
     

     

0
 /

90
 /

0
 /

90
  

     

100 0 13.834 0.612 0.116 
     

 200 13.733 0.612 0.115 
     
     

 
 

 

Fig.3 The variation of non-dimensional maximum 
displacements of laminated composite straight beam 

with C-C boundary condition 
 
 

 

Fig.4 The variation of non-dimensional maximum 
displacements of laminated composite straight beam 

with for C-S boundary condition 
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