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Abstract: This paper proposes a three-dimensional exact shell model for the correct evaluation of the 3D stress
state of multilayered composite and sandwich structures for aerospace applications. The model is based on the
equilibrium equations written in general orthogonal curvilinear coordinates which are valid for spherical shells.
Such equations automatically degenerate in those for cylindrical shells and plates allowing a general and unified
formulation. The equations are solved in closed form supposing simply supported structures and applied harmonic
loads. The partial differential equations are solved by means of the exponential matrix method and a layer-wise
approach is considered for the multilayered plates and shells. Layer-wise approaches allow the zigzag form of the
displacement field in the thickness direction. In-plane stresses can be discontinuous at each layer interface. On
the contrary, transverse stresses must be continuous at each layer interface for equilibrium reasons. Displacements
must be continuous in the thickness direction for compatibility reasons. Therefore, displacements and transverse
shear/normal stresses are continuous functions in the thickness direction. Moreover, displacements and transverse
stresses have discontinuous first derivatives in the thickness direction with correspondence to each interface be-
cause the mechanical properties change in each layer (zigzag effect). The fulfillment of all these requirements
is a crucial point in the development of the present 3D shell model. The obtained 3D stress state allows the de-
termination of failure parameters by means of several mathematical models such as the Von Mises’s Criterion,
the Maximum Stress Criterion, the Tsai-Wu’s Criterion, the Tsai-Hill’s Criterion, the Hoffman’s Criterion, the
Hashin’s Criterion, the Puck’s criterion and the LaRC04 criterion.

Key–Words:3D exact shell model, failure indexes, composite and multilayered structures, 3D stress state, layer-
wise approach, zigzag effects, interlaminar continuity.

1 Introduction

Multilayered composite and sandwich structures have
an extensive application range in aerospace, marine
and automotive fields due to their high values of the
stiffness/weight ratio and the strength/weight ratio.
For this reason, the accurate prediction of failure pa-
rameters for composite and sandwich structures plays
a fundamental role. Research activity has focused its
attention on the determination of failure parameters
by means of several mathematical models. Both glass
and carbon fiber reinforced materials in cross-ply and
angle-ply configurations can be also investigated. The
present work proposes a three-dimensional exact shell
model [1]-[8] which is able to define a complete and
exhaustive 3D stress state useful to calculate cor-
rect failure parameters for multilayered composite and
sandwich plates and shells.

The Tresca’s criterion and the Von Mises’ crite-
rion are the most known ones for the failure investiga-

tion of isotropic structures [9]. The Tresca’s criterion
is the most conservative one, but it requests the in-
troduction of stresses in the principal axes. The Von
Mises’ criterion is invariant with respect to the refer-
ence system. The most important failure criteria for
composite structures can be found in [10]-[12]. The
fundamental features, the advantages and disadvan-
tages have been analyzed at the World Wide Failure
Exercise organised by Hinton and Soden [13]. An
exhaustive comparison between the most important
failure criteria for composite structures has been pro-
posed in [14] and [15]. The criteria used in these
two interesting works were the max stress, Tsai-Wu’s,
Tsai-Hill’s, Hoffman’s and Hashin’s criteria. Further
interesting criteria which are worthy to be mentioned
are the LaRC02 criterion developed by NASA [16]
and the Puck’s criterion widely used by the European
Space Agency [17]-[19].

The three-dimensional shell model here proposed
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is based on the three-dimensional equilibrium equa-
tions written in general orthogonal curvilinear coordi-
nates valid for spherical shells. Such equations auto-
matically degenerate in those for cylinders, cylindrical
shell panels and plates by means of opportune consid-
erations made on the radii of curvature. The equa-
tions are exactly solved considering simply supported
structures and harmonic forms for applied loads. The
second order differential equations are reduced to first
order differential equations, and then they are solved
by means of the exponential matrix method. A layer-
wise approach is applied for the considered multilay-
ered plates and shells. The proposed 3D shell model
is a generalization of the models already proposed by
Messina [20] for plates in orthogonal rectilinear co-
ordinates, by Soldatos and Ye [21] for cylinders in
cylindrical coordinates and by Fan and Zhang [22]
for doubly-curved shells. The use of a layer-wise ap-
proach and the 3D point of view allow the zigzag form
of the displacement field in the thickness direction.
The equilibrium conditions can be directly imposed in
the model in order to obtain transverse stresses which
are continuous at each layer interface. The compati-
bility conditions are directly introduced in the model
in order to have displacements which are continuous
in the thickness direction. Therefore, displacements
and transverse shear/normal stresses are continuous
functions in the thickness direction. Moreover, dis-
placements and transverse stresses have discontinuous
first derivatives in the thickness direction with corre-
spondence to each interface because the mechanical
properties change in each layer of the multilayered
structure (zigzag effect). The fulfillment of all these
requirements is a crucial point in the development of
the present 3D shell model in order to obtain a cor-
rect 3D stress state which will be a fundamental input
in the correct evaluation of the most important failure
parameters used in the aerospace field.

The present paper is divided in two main parts, the
first part presents the most important failure param-
eters in order to understand the main inputs to give
for their correct evaluations. The second part shows
the main details of the proposed 3D shell model and
some results about the static analysis of multilayered
structures in order to propose the 3D stress state given
by the developed model. Future developments will be
the introduction of the obtained 3D stress state in the
main failure parameters proposed in the literature in
order to have an exhaustive comparison between the
most important failure criteria.

2 Failure parameters

A possible classification of failure parameters can be
made between classical criteria for homogeneous ma-
terials and advanced criteria for composite materials.
In classical criteria we can include those criteria valid
for continuous, homogeneous and isotropic materials
such as the Rankine-Navier’s criterion, the Tresca’s
criterion, the Coulomb-Mohr’s criterion and the Von
Mises’ criterion. In advanced criteria we include those
criteria valid for advanced composite and sandwich
structures such as the Tsai-Hill’s criterion, the Hoff-
man’s criterion, the Tsai-Wu’s criterion, the Hashin’s
criterion, the Puck’s criterion and the LaRC02 crite-
rion.

Rankine-Navier’s criterion

It is the maximum stress criterion and it is usually
used for fragile materials. The failure occurs when
the maximum or minimum principal stress reaches the
limit [9]. The equivalent stress is given by:

σe = max{σ1, rσ2} , (1)

whereσ1 is the maximum principal stress (σ1 > 0)
andσ2 is the minimum principal stress (σ2 < 0). The
parameterr is the ratio between the ultimate tensile
stressσt and the ultimate compressive stressσc:

r =
σt
σc

. (2)

Tresca’s criterion

It is also known as the maximum shear stress criterion
and it was originally proposed by Coulomb in 1773
and then it was developed by Tresca in 1868 during
his studies about the plastic deformations [9]. This
criterion can be applied to ductile materials and the
failure occurs when the maximum shear stress reaches
the yield value for a specimen subjected to a tensile
state. The maximum yield shear stress is:

τs =
1

2
σs . (3)

The maximum shear stresses in the principal planes
are:

τij =
1

2
(σi − σj) , i, j = 1, 2, 3 , i 6= j . (4)

The equivalent stress is given by:

σe = max {|σi − σj |} . (5)
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Coulomb-Mohr’s criterion

Some ductile materials have a different behavior in
tensile and in compression state. This criterion is able
to consider this no-symmetric behavior [9]. For this
reason, the equivalent stress is:

σe = max{σ1, rσ2, σ1 + rσ2} , (6)

the Eq.(6) is modified for fragile materials as:

σe = {σ1, rσ2, (1 + r)σ1 + rσ2} . (7)

The meaning ofr, σ1 andσ2 is the same already seen
for the Rankine-Navier’s criterion.

Von Mises’ criterion

The Von Mises’ criterion is also known as the crite-
rion of maximum distortion energy. It was developed
by Huber in 1904, Von Mises in 1913 and Hencky in
1925. This criterion is valid for ductile materials and
it is based on the feature that a ductile material has a
greater strength when subject to a hydrostatic state in
place of a tensile state [9]. The energy for unite of
volume given by the principal stressesσ1, σ2 andσ3
is:

Utot =
1

2E
[σ2

1+σ2
2+σ2

3−2ν(σ1σ2+σ1σ3+σ2σ3)] ,

(8)
the equivalent stress can be obtained from the energy
given in Eq.(8):

σe =
√

σ2
1 + σ2

2 + σ2
3 − (σ1σ2 + σ1σ3 + σ2σ3) .

(9)

Tsai-Hill’s criterion

The Tsai-Hill’s criterion was proposed by Tsai in
1966 starting from that by Hill in 1950. It was de-
veloped for general orthotropic materials and it can
be considered as a generalization of the Von Mises’
theory [10]-[12]. However, in the present case the to-
tal deformation energy is considered in place of the
distortion energy. This feature is due to the fact that in
an anisotropic material, it is not possible to separate
the distortion energy from the energy connected with
the volume variation. For the failure index (FI), Hill
proposed:

FI = A(σ1 − σ2)
2 +B(σ2 − σ3)

2 (10)

+C(σ3 − σ1)
2 +Dσ2

4 + Eσ2
5 + Fσ2

6 ,

where parametersA, B, C, D, E, Fcan be experimen-
tally calibrated. These parameters have been defined
by Tsai. The weak point of the method is that it has
been developed starting from a theory valid for sym-
metric ductile materials.

Hoffman’s criterion

The limitations of the Tsai-Hill’s criterion have been
overcome by Hoffman in 1967 which added the linear
terms in Eq.(10):

FI = H1(σ1 − σ2)
2 +H2(σ2 − σ3)

2 (11)

+H3(σ3 − σ1)
2 +H4σ1 +H5σ2 +H6σ3 +

+H7σ
2
4 +H8σ

2
5 +H9σ

2
6 .

In the Tsai-Hill’s criterion the parameters were 6, in
the Hoffman’s criterion they are 9. In general, the
Hoffman’s criterion is more accurate than the Tsai-
Hill’s criterion. The two criteria are coincident in the
case of tensile strength which is equal to compressive
strength [10]-[12].

Tsai-Wu’s criterion

Tsai and Wu developed their criterion in 1971 using a
quadratic relation between the stresses in order to be
more general as possible [10]-[12]. In this case, 12
parameters must be defined for the evaluation of the
following failure index (FI):

FI =
3
∑

i=1

Fiσi+
6
∑

i=1

Fiiσ
2
i+

2
∑

i=1

3
∑

j=i+1

Fijσiσj . (12)

Hashin’s criterion

In 1980, Hashin developed a criterion valid for com-
posite materials because it is able to differentiate be-
tween fiber failure and matrix failure, and also be-
tween tensile and compressive stress status. The for-
mulation is based on quadratic relations which are a
good compromise between the simplicity of the solu-
tion and its accuracy [14], [15].

• Tensile fiber (f ) failure mode, (σ1 ≥ 0)

FIf =

(

σ1
XT

)2

+

(

σ4
R

)2

+

(

σ6
T

)2

. (13)

• Compressive fiber (f ) failure mode, (σ1 < 0)

FIf = −
σ1
XC

. (14)

• Tensile matrix (m) failure mode, (σ2 + σ3 ≥ 0)

FIm =

(

σ2
YT

+
σ3
ZT

)2

(15)

+
1

S2
(σ2

5 − σ2σ3) +

(

σ4
R

)2

+

(

σ6
T

)2

.
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• Compressive matrix (m) failure mode, (σ2 +
σ3 < 0)

FIm =
1

YC

[

(

YC

2S

)2

− 1

]

σ2 (16)

+
1

ZC

[

(

ZC

2S

)2

− 1

]

σ3 +

1

4S2
(σ2 + σ3)

2 +
1

S2
(σ2

5 − σ2σ3)

+

(

σ4
R

)2

+

(

σ6
T

)2

.

The meaning of coefficients in Eqs.(13)-(16) is pro-
posed in [14] and [15]. This criterion is an impor-
tant step if compared with the other presented crite-
ria because it is based on a new approach of the phe-
nomenon. It shows some difficulties in the case of
predominant matrix behavior.

Puck’s criterion

The Puck’s criterion was formulated by Puck and
Schürmann in 1998 and it can be considered as a gen-
eralization of the Coulomb-Mohr’s criterion. In par-
ticular, it is based on the hypothesis that the failure is
associated only to stresses acting in the plane where
failure happens. As already seen in the Hashin’s cri-
terion, there is a distinction between the fibre failure
and the matrix failure. The first one is here indicated
as FF (Fiber Failure), the second one is here indicated
as IFF (Inter-Fiber Failure). There is a good correla-
tion with the experimental tests but a large number of
parameters is requested, and these parameters are of-
ten not easy to be identified. More details about the
Puck’s criterion can be found in [17]-[19].

LaRC02 criterion

The LaRC02 criterion has been proposed in 2002 by
the NASA research centre of Langley after the World
Wide Failure Exercise (WWFE). The WWFE was
useful to analyse the state of the art about the failure
parameters for composite materials. A deep study was
conducted about the advantages and disadvantages of
failure parameters developed for composite materials.
For this reason, NASA decided to develop a new fail-
ure parameter with a maximum efficiency for com-
posite materials. The LaRC02 criterion is a further
development and refinement of Hashin’s and Puck’s
criteria. Further details about the theory and the for-
mulation can be found in [16]. The great capability
of this model is strictly connected with the physical
bases used for its development.

2.1 Principal stresses

In order to use some of the failure indexes proposed
in the previous parts, it is sometimes fundamental to
find the principal stresses to introduce in the above
equations. The stress state will be defined by means of
the 3D shell model presented in the next section. The
six stress componentsσαα, σββ, σαβ, σαz, σβz and
σzz in orthogonal curvilinear coordinates will be used
to define the principal stresses in accordance with the
following procedure.

In order to calculate the principal stresses it is
necessary to solve the eigenvalue problem for the
stress tensor. In particular, it is fundamental the so-
lution of the following equation:

σ3 − I1σ
2 + I2σ − I3 = 0 , (17)

where the invariants are calculated as

I1 = σαα + σββ + σzz , (18)

I2 = σαασββ + σαασzz + σββσzz (19)

−σ2
αβ − σ2

αz − σ2
βz ,

I3 = σαασββσzz + 2σαβσαzσβz (20)

−σαασ
2
βz − σββσ

2
αz − σzzσ

2
αβ .

I1, I2 e I3 are invariants because they do not depend
on the used reference system adopted in the point.

3 3D shell model
The equilibrium equations are written using a gen-
eral orthogonal curvilinear coordinate system (α, β,
z) valid for plates and shells with constant radii of
curvature. These equations are solved in exact form
by means of simply supported boundary conditions,
harmonic form for applied loads and the use of the ex-
ponential matrix method for the solution of the differ-
ential equations inz. The three differential equations
written for the static analysis of multilayered spherical
shells (embeddingNL physical layers) with constant
radii of curvatureRα andRβ are:

Hβ

∂σk
αα

∂α
+Hα

∂σk
αβ

∂β
+HαHβ

∂σk
αz

∂z
+ (21)

(

2Hβ

Rα

+
Hα

Rβ

)

σk
αz = 0,

Hβ

∂σk
αβ

∂α
+Hα

∂σk
ββ

∂β
+HαHβ

∂σk
βz

∂z
+ (22)

(

2Hα

Rβ

+
Hβ

Rα

)

σk
βz = 0,

Hβ

∂σk
αz

∂α
+Hα

∂σk
βz

∂β
+HαHβ

∂σk
zz

∂z
− (23)
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Hβ

Rα

σk
αα −

Hα

Rβ

σk
ββ +

(

Hβ

Rα

+
Hα

Rβ

)

σk
zz

= 0,

in above equations, (σk
αα, σ

k
ββ , σ

k
zz, σ

k
βz, σ

k
αz, σ

k
αβ) are

the six stress components. Displacementsuk, vk and
wk are considered throughα, β andz directions, re-
spectively. Each quantity has a dependence from the
k physical layer.Rα andRβ are the radii of curvature
evaluated in the mid-surfaceΩ0 of the whole multilay-
ered structure. Parametric coefficientsHα andHβ for
shells with constant radii of curvature continuously
vary through the thickness directionz of the multi-
layered structure:

Hα = (1 +
z

Rα

),Hβ = (1 +
z

Rβ

),Hz = 1. (24)

Shells and plates are considered as simply sup-
ported. Therefore, the three displacement components
can be written in harmonic form:

uj(α, β, z, t) = U j(z)cos(ᾱα)sin(β̄β), (25)

vj(α, β, z, t) = V j(z)sin(ᾱα)cos(β̄β), (26)

wj(α, β, z, t) = W j(z)sin(ᾱα)sin(β̄β). (27)

U j(z), V j(z) andW j(z) are the displacement ampli-
tudes inα, β andz directions, respectively.̄α = mπ

a

and β̄ = nπ
b

, wherem and n are the half-wave
numbers anda and b are the shell dimensions inα
andβ directions, respectively (evaluated at the mid-
surfaceΩ0). j indicates the mathematical layers used
to approximate the curvatures and/or the functionally
graded laws in eachk physical layer.

The analyzed plates and shells have simply sup-
ported edges and they can be loaded at the top and/or
at the bottom of the whole laminated structure using
the following conditions:

σzz = pz , σαz = pα , σβz = pβ (28)

for z = −h/2,+h/2 ,

w = v = 0, σαα = 0 (29)

for α = 0, a ,

w = u = 0, σββ = 0 (30)

for β = 0, b ,

pz, pα andpβ are harmonic mechanical loads that can
be applied at the top or at the bottom of the structure
in z, α andβ direction, respectively:

pjα(α, β, z) = P j
α(z)cos(ᾱα)sin(β̄β) , (31)

pjβ(α, β, z) = P j
β(z)sin(ᾱα)cos(β̄β) , (32)

pjz(α, β, z) = P j
z (z)sin(ᾱα)sin(β̄β) , (33)

P j
α, P j

β andP j
z indicate the load amplitudes.

Via the substitution of harmonic forms of dis-
placements and loads and the use of the exponential
matrix method [1]-[8], it is possible to obtain a fi-
nal linear algebraic system. From the solution of this
system, the three displacement components and their
first derivatives inz can be calculated. These vari-
ables allow to obtain the strain components by means
of the geometrical relations and the stress components
by means of the constitutive equations. In order to
approximate the curvature terms, the structures have
been divided inM=100 mathematical layers and an
order of expansionN=3 has been set for the exponen-
tial matrix calculation.

An example is here given to demonstrate the great
capability of such a method. A sandwich cylindrical
shell panel with two external isotropic skins and an
internal soft core is considered. The radii of curva-
ture areRα = 10m andRβ = ∞, the dimensions
area = π

3
Rα andb = 20m. The two external skins

have thicknessh1 = h3 = 0.1h whereh is the to-
tal thickness. The internal soft core has thickness
h2 = 0.8h. The load is applied inz direction at the
top with amplitudePz = 1Pa and half-wave numbers
m = n = 1. The external skins have Young modulus
E = 73GPa and Poisson ratioν = 0.3. The internal
core has Young modulusE = 180MPa and Poisson
ratioν = 0.37. The structure is moderately thick with
a thickness ratioRα/h = 10. The results are given in
Figures 1-6 in terms of the following no-dimensional
stress amplitudes:

(σ̄αα, σ̄ββ, σ̄αβ) =
103(σαα, σββ, σαβ)

Pz(Rα/h)2
, (34)

(σ̄αz , σ̄βz) =
103(σαz, σβz)

Pz(Rα/h)
, σ̄zz = σzz . (35)
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Figure 1: No-dimensional stress componentσ̄αα
through the thickness of a sandwich cylindrical shell.
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Figure 2: No-dimensional stress componentσ̄ββ
through the thickness of a sandwich cylindrical shell.
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Figure 3: No-dimensional stress componentσ̄αβ
through the thickness of a sandwich cylindrical shell.
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Figure 4: No-dimensional stress componentσ̄αz
through the thickness of a sandwich cylindrical shell.

Figures 1-6 clearly demonstrate the 3D capabil-
ity of the proposed shell model to capture the stress
state of a multilayered structure. Figures 1 and 2 give
the in-plane normal stresses, the typical zigzag form
is shown due to the presence of the external skins and
the internal soft core. These stresses can be discontin-
uous at the interfaces. Similar considerations can be
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Figure 5: No-dimensional stress componentσ̄βz
through the thickness of a sandwich cylindrical shell.
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Figure 6: No-dimensional stress componentσ̄zz
through the thickness of a sandwich cylindrical shell.

made for the in-plane shear stress in Figure 3. Fig-
ures 4 and 5 propose the transverse shear stresses,
these quantities are continuous at each interface be-
cause the equilibrium conditions have been success-
fully imposed in the 3D shell model. The loading
conditions at the external surfaces are correctly deter-
mined (Pα = Pβ = 0 at the top and bottom surfaces).
Figure 6 shows the transverse normal stress through
the thickness. It is continuous at each interface and it
follows the boundary loading conditions (Pz = 1Pa
at the top andPz = 0 at the bottom).

For the sake of brevity, further results will be pro-
posed at the conference. First of all, an exhaustive val-
idation of the proposed 3D shell model will be given.
The correct values for the numberM of mathemati-
cal layers and the order of expansionN for the expo-
nential matrix will be determined by means of com-
parisons with further results in the literature. New
benchmarks will be considered including plate, cylin-
der, cylindrical shell and spherical shell geometries.
Each geometry can be single- or multi-layered includ-
ing composite materials and sandwich configurations.
For each proposed case, the 3D shell model will give
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the opportune stress state in order to use the appropri-
ate failure parameter for the correct failure analysis of
the investigated structure.

4 Conclusions and future develop-
ments

A general 3D shell model has been proposed in this
work. The model is able to analyze different ge-
ometries embedding several isotropic, orthotropic and
composite layers. For each simply supported struc-
ture, a correct and accurate 3D stress state can be de-
termined in terms of the six stress components in the
structural reference system. Such components can be
used to calculate the principle stresses to determine
the most appropriate failure parameters for a refined
and accurate failure analysis of advanced structures.
Plates, cylinders, cylindrical and spherical shell pan-
els will be analyzed in single- or multi-layered config-
uration determining an accurate failure analysis in the
cases of isotropic, orthotropic and composite layers.
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