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Abstract: The controllers for active safety systems of motorcycles cannot be synthesized regardless by a suitable
analytic dynamic model of the vehicle. Generally the analytical study and analysis of critical driving situations,
falls and accidents is a complex task, since these events take place due to the simultaneity of different and complex
phenomena. An analytical model able to capture the dynamics of a two-wheeled vehicle in curve is considered.
In this paper the performance of the proposed model in describing the low side fall, a critical vehicle condition
involving the safety of the rider, is investigated. The model has the minimum degree of complexity needed to
describe complex dynamics and two different assumptions of accuracy have been made on it. The linearized
version of the model has been compared with a nonlinearized version and the results have shown no substantial
differences in the description of the lowside major dynamics.
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1 Introduction

Nowadays, in the automobile industry, active safety
systems have reached a high technological level and
reliability. On the contrary, that has not happened for
the powered two wheelers (PTW’s), where the most
used available system is the Anti-lock Braking Sys-
tem (ABS) [1]. According to recent statistics on mo-
torcycles and mopeds fatalities [2], these kind of sys-
tems are desirable to increase rider safety. Currently,
the control system design of safety devices for PTWs
represents a challenging task.

Model-based design of control systems, widely
used in automotive and aerospace sectors, represents
an efficient and suitable approach to cope with this
challenge [3]. Briefly, the model-based design ap-
proach for control systems requires the following
steps: the modeling of the plant, the synthesis of the
controller for the plant, its simulation and the con-
troller deployment.

In such approach, the plant modeling is a core
issue, mainly for systems having complex dynamic
behaviours such as automobiles and motorcycles. In
particular, the analysis of the motorcycle dynamics is
even more complex. While the study of the automo-
bile stability can be addressed adequately by consid-
ering the lateral and yaw degrees of freedom, for a
motorcycle it is also required to add the roll and the
steer angles.

When a motorcycle is leaned over in corner-

ing, the longitudinal and lateral friction forces inter-
act each other and this interaction increases with in-
creased roll angle [4]. As a consequence of this fea-
ture, simple mathematical models are not suitable to
describe high cornering accelerations during critical
situations such as accidents and falls.

In literature [5], analytical models addressing the
issues related to motorcycle’s behaviour in curve usu-
ally makes some major assumptions such as: steady
state cornering condition, the longitudinal and lateral
contact forces acting on the tyres are linearized or do
not interact each other [6]. In general, these works
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Figure 1: Motorcycle in cornering condition.

investigate on the effects related to the balancing of
forces and moments during a turn as shown in Fig-
ure 1, where for a roll angle φ the relevant forces (fric-
tional X , Y , centrifugal and gravitational mg) acting
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on the vehicle system are reported. Their balancing
yields the value of the lateral force Y needed to main-
tain in equilibrium the vehicle in curve that is equal
to N tanφ, where N is the vertical load. However,
falls and critical conditions cannot be captured under
the aforementioned assumptions when strong acceler-
ation or braking occur. As a result, a controller able
to prevent falls should be synthesized by using more
appropriate models. On the other hand, commercial
multibody software allow to simulate adequately these
complicated phenomena, but due to their black box
nature they are not suitable for the purpose of synthe-
sis of control systems.

Within the challenging task of investigating new
safety devices preventing PTW’s falls, and according
to the model-based approach above mentioned, the
present paper deals with its first step: the investigation
of the behaviours of a proposed motorcycle analyti-
cal model during the lowside fall which is one of the
most common motorcycle’s fall. Here the motorcycle
has been simulated in such typical dangerous condi-
tion that may potentially lead the driver to slide off
the road and causing him serious injuries. In order to
analyze the performance of the model in describing
the fall, a comparison between a version of the model
linearized with respect to the roll angle and the non-
linear version has been proposed.

The paper is organized as follows: the problem
addressed in this paper is described in section 2. A
description of the model is shortly summarized in sec-
tion 3. In section 4 the lowside fall and the simulations
results are presented. Section 5 completes the paper.

2 Problem statement and related
works

The control of an active safety system for motorcy-
cles cannot be synthesized regardless by a suitable
dynamic model of the vehicle. The model should be
able to describe its behaviour even during falls. Now,
the following questions arise. Which analytical model
may be suitable to describe the dynamics of the vehi-
cle in complex situations such as the fall during cor-
nering? What is the right trade-off between simulation
accuracy and model’s complexity? This article pro-
poses the analysis of the results obtained by simulat-
ing a typical PTW’s fall described with a motorcycle’s
analytic model. The model has the minimum degree
of complexity needed to describe these dynamics (two
rigid bodies) and two different assumptions of accu-
racy have been made on it: the roll angle’s dynamic in
both conditions linear and nonlinear have been con-
sidered. The comparison of the two behaviours shows
the effects of the roll angle’s dynamic on the accuracy

of the results of the model during fall situations where
huge roll angles are involved.

An analytical model is used to address the low-
side phenomenon whose complex dynamics usually
requires the use of multibody software. The model
is based on the author’s prior works. It removes the
condition of steady-state in cornering and introduces
the rear traction given by the engine, the tyre fric-
tion forces and their interaction. The proposed model
has been already tested in several situations: in [7]
the motorcycle dynamics in straight running, accelera-
tion and braking with slippages have been considered;
furthermore, the cornering situation with no slippages
has been analyzed; in [8] the author’s model has been
compared with a well established model proposed
in literature considering the motorcycle in cornering
condition with no slippages; in [9] the same model
has been compared with its nonlinear version with re-
spect the lean angle, here the pure rolling during the
cornering has been assumed for both the wheels. In
this paper a further analysis of the model in cornering
condition with slippages has been done.

Generally the analytical study and analysis of crit-
ical driving situations, falls and accidents, is a com-
plex task since these events take place due to the si-
multaneity of different circumstances involving the
trim of the motorcycle in motion, the speed and the in-
crease of lean angle. This analytical complexity aug-
ments when considering the loss of adherence both in
acceleration and braking that may lead the panicked
rider to the typical lowside fall. A lowside may oc-
cur while approaching a curve with excessive velocity
and braking. Due to the wheels loss of adherence, the
rider loses the vehicle control and they both fall lat-
erally. Lowside critical aspects are described in the
section 4. In the next section the equations of motion
of the model are briefly summarized.

3 Summary of the analytic model
As shown in Figure 2, the model consists of two rigid
bodies, the rear frame with mass centre Gr which in-
cludes the rider, the engine and the rear wheel with
radius Rr, and the front frame with mass centre Gf
which includes the steering mechanism and the front
wheel with radius Rf . Besides, the geometric param-
eters h, j, l and b represent the heights of the two rigid
bodies respect to the ground level and the distances of
the wheels from the point A respectively. The model
has 7 degrees of freedom (dofs): the longitudinal and
lateral velocity of the motorcycle respectively ẋ1, ẏ1,
the yaw angle ψ, the roll angle φ, the rotation around
the steer δ and the tyre rotations θ̇r and θ̇f . The ver-
tical dynamic does not provide a fundamental contri-
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Figure 2: Geometric parameters of the model.

bution to the lowside fall dynamic hence it can be ne-
glected by the model. Figure 2 also shows the refer-
ence frames needed to describe the position and orien-
tation of the two rigid bodies Gr and Gf as reported
in table 1. In order to simulate the motion of the ve-

reference frame (r.f.) description

Σ0 (O ,X0 ,Y0 ,Z0 ) inertial reference frame
Σ1 (A,X1 ,Y1 ,Z1 ) rear reference frame rotating Σ0

of a yaw angle ψ wrt Z0

Σ2 (A,X2 ,Y2 ,Z2 ) rear reference frame rotating Σ1

of a roll angle φ wrt X1

Σ3 (A,X3 ,Y3 ,Z3 ) rear reference frame rotating Σ2

of a pitch angle ε wrt Y2

Σ4 (B ,X4 ,Y4 ,Z4 ) front reference frame rotating Σ3

of a steer angle δ wrt Z3

Table 1: The reference frames.

hicle in acceleration and braking, the model takes into
account the traction Tr provided by the rear engine.
The rider is rigidly attached to the rear body and he
maneuvers the motorcycle by applying the torque τ
on the handlebar. Finally, Xf , Yf , Xr and Yr are the
longitudinal and lateral friction forces applied at the
front and rear tyre on the road contact points S and P
respectively.

3.1 Equations of motion
After defining the geometry and the model reference
frames, the equations of motion have been derived us-
ing the Lagrangian equation:

d

dt

(
∂T

∂q̇

)
− ∂T

∂q
+
∂V

∂q
= Qq, (1)

where:
◦ T is the kinetic energy;

◦ V is the potential energy;

◦ q = [ẋ1 ẏ1 ψ̇ φ δ θ̇r θ̇f ]
T is the system’s dofs vector;

◦ Qq is the vector of the generalized external forces
that are functions of the friction forces (Figure 2).

Sobstituting the kinetic energy T and the potential en-
ergy V derived in [9], 7 nonlinear second order dif-
ferential equations are obtained. In order to reduce
their complexity, in [7] and [8] these equations have
been linearized around the vertical position consider-
ing (φ, δ) = (0, 0).

For a motorcycle on a curve the steer angle δ re-
mains limited to a few degrees endorsing the lineariza-
tion assumption, while the lean angle φ usually can
assume large values. Therefore, the small approxi-
mation for the roll angle may be excessive. In or-
der to investigate the accuracy of the linearized model
in describing a lowside fall in cornering, it has been
compared with the same model with no roll angle lin-
earization assumption. This model has been derived
in [9]. For the sake of semplicity all the equations of
motion with no roll linearization are reported in Ap-
pendix A.

3.2 The contact forces
In order to describe the motorcycle behaviours on a
curve and in critical situations the tyre friction forces
have to be modeled adequately. Indeed, they trans-
fer the power provided by the motor through the tyre-
ground contact and they are needed to push the vehicle
and keep it in balance while running the trajectory in
curve.

The literature proposes several tyre models,
among which, purely theoretical models such as the
brush model can be found [10]. This model is able
to describe most of the tyre conditions. Other kinds
of models are empirical hence they do not provide
any theoretic foundamentals but deliver accurate de-
scriptions of the tyres behaviour. Among the empiri-
cal models, the “magic formula” became the standard
for the vehicle dynamic simulations [11]. The model
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Figure 3: The magic formula for different road condi-
tions.
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is described by the following expression:

y(x) = D sin[C arctan{Bx
− E(Bx− arctan(Bx))]}, (2)

where the variables and parameters in the equation
are: x is the input variable, y is the output variable,
B is the stiffness factor, C is the form factor, D is the
peak value of the curve and E is the bending factor.
By varying the values of parameters B, C, D and E
it is possible to consider the friction forces for differ-
ent road conditions, as shown in Figure 3. The peak
value D represents the maximum value of the force
generated by the tyre and depends on the coefficient
of friction µ and the vertical load Fz acting on the
wheel:

D = µFz. (3)

The equation 2 allows to calculate:
◦ the longitudinal forces Xr and Xf as a function of

the longitudinal slip;

◦ the lateral forces Yr and Yf as a function of the lat-
eral slip angle.

Based on the SAE J670 definitions, the longitudinal
slip λ is defined as:

λ = − ẋ−Rθ̇
ẋ

, (4)

where ẋ, θ̇ and R are respectively the forward veloc-
ity of the vehicle, the wheel angular velocity and the
wheel’s radius. The coefficient λ is positive in traction
and negative in braking. The lateral slip α is defined
as:

tanα = − ẏ
ẋ
, (5)

where ẋ and ẏ are the forward and lateral velocity of
the wheel. Using expressions (4) and (5), the magic
formula (2) for the longitudinal and lateral force hold:

Fx0(λ, Fz) = FzDx sin[Cx arctan{Bxλ
− E(Bxλ− arctan(Bxλ))]}, (6)

Fy0(α, Fz) = FzDy sin[Cx arctan{Bxα
− E(Bxα− arctan(Bxα))]}, (7)

where λ and α are given respectively by (4) and (5).
For motorcycle tyres, the roll angle (or camber angle)
can reach up to 50◦-55◦ in extremis cases. In order to
take into account the lateral slip and the camber angle,
it is possible to define the equivalent sideslip as:

αeq = α+
kφ
kα
φ, (8)

where α is the lateral slip defined in (5), φ is the wheel
camber angle, kφ and kα are respectively the camber
and the cornering stiffnesses. Replacing α with αeq,
the lateral force (7) becomes:

Fy0(αeq, Fz) = FzDy sin[Cx arctan{Bxαeq
− E(Bxαeq − arctan(Bxαeq))]}. (9)

Besides, by considering the interaction between the
longitudinal and lateral forces, the theoretical slips σx
and σy can be defined as follows:

σx =
λ

1 + λ

σy =
tanαeq
1 + λ

.

(10)

By introducing the slip magnitude σ:

σ =
√
σ2x + σ2y . (11)

the friction forces are:X ′ =
σx
σ
Fx0

Y ′ =
σy
σ
Fy0.

(12)

To take into account the time delay of the tyres the
following equations must be introduced:

ξx
ẋ1
Ẋ +X = X ′

ξy
ẋ1
Ẏ + Y = Y ′,

(13)

where ξx and ξy are the tyre longitudinal and lateral
relaxation lengths and X ′ and Y ′ are given by (12).
The expressions of X and Y computed in (13) for the
rear and front tyre are the friction forces of the model.

3.3 Slippages and front wheel camber angle
To calculate the theoretical slips given in (10) the in-
put quantities φ, λ and α must be computed for both
the wheels. Referring to Figure 2 and by using equa-
tion (4), the rear and front longitudinal slip λr and λf
are simply:

λr = −
ẋ1 +Rrθ̇r −Rr sinφψ̇

ẋ1
. (14)

λf = −
ẋ1 +Rf θ̇f cos δ cos ε

ẋ1
, (15)

Equations (14) and (15) show that the two longitudi-
nal slips are related to the motorcycle longitudinal ve-
locity ẋ1, the rear and the front angular velocities θ̇r,
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Figure 4: The front camber angle.

θ̇f and the dofs φ, ψ̇ and δ. The longitudinal slips are
therefore being affected by most of the variables of the
model. Figure 4 shows the front wheel in some gener-
ally displaced position and the front camber angle φf
can be easily computed as:

sinφf = sinφ+ δ cosφ sin ε, (16)

while for the rear wheel the camber angle φr is sim-
ply:

φr = φ. (17)

Referring to Figure 2 and using equation (5), the rear
and the front sideslip angle αr and αf are:

αr =
bψ̇ − ẏ1
ẋ1

. (18)

αf = δ cos ε− ẏ1 + lψ̇ − tδ̇
ẋ1

, (19)

where l and t are the parameters listed in table 2 re-
ported in Appendix A.

4 Lowside fall simulations
A motorcycle may experience a lowside fall while en-
tering in a curve with excessive speed and instinc-
tively the rider brakes hard to keep the trajectory. The
strong rear braking results in the rear wheel losing lat-
eral adherence and the increase of the roll and yaw
angles. In case the panicking rider ignores the loss
of adherence and keeps on braking, the slippage never
stops because the lateral force acting on the rear wheel
is always lesser than the force necessary to keep the
vehicle in balance. In particular, the required friction
force is proportional to tanφ (Figure 1). In this case
the roll angle increases progressively and the vehicle
ends up to fall laterally and drag the rider down (Fig-
ure 5).

Figure 5: The lowside fall. (Source: www.zimbio.com)

In the following it will be investigated the effect
of the roll angle on the motorcycle dynamic by simu-
lating the vehicle during a lowside fall and comparing
the behaviour of the linearized model against the non-
linear model. In the following figures the trends of the
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Figure 6: The curve.

variables involved in the simulations are compared.
The subscripts “L” and “NL” stand for the linear and
the nonlinear case respectively, “r” and “f” stand for
rear and front. The trajectory, the roll angle φ, the
yaw angle ψ, the lateral forces Yr and the longitudinal
forces Xr acting on the rear wheel, the rear wheel’s
angular velocity θ̇r, the front wheel’s angular velocity
θ̇f have been compared. The simulations start with
the motorcycle runnnig the trajectory depicted in Fig-
ure 6. The vehicle engages the curve at 40 m/s (144
km/h) with roll angle φ of about 40◦, as shown in Fig-
ure 8. The trends of the variables yield by the linear
model and the nonlinear model are very similar till
the brake is applied. Figure 7 shows the strong nega-
tive rear torque applied on the rear wheel in the time
window 5-6.5 seconds. This torque simulates the hard

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Andrea Bonci, Riccardo De Amicis, 
Sauro Longhi, Emanuele Lorenzoni

E-ISSN: 2224-3429 82 Volume 12, 2017



0 1 2 3 4 5 6 7 8 9

t [s]

-500

-400

-300

-200

-100

0
T

r [N
/m

]

Rear torque

Figure 7: The rear torque.

0 1 2 3 4 5 6 7

t [s]

-100

-50

0

[d
eg

]

Roll angle

?L

?NL

0 1 2 3 4 5 6 7

t [s]

-150

-100

-50

0

50

[d
eg

]

Yaw angle

AL

ANL

Figure 8: The roll and yaw angles.

braking applied by the rider. As shown in Figure 9,
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during the same time window the longitudinal forces
XrL , XrNL acting on the rear wheel (also known as
the braking forces) show a fast growing trend as ex-
pected. Figure 10 shows that the braking action leads
to an increase in the rear longitudinal slip angles σxL ,
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Figure 10: The rear theoretical slips.

σxNL . As a result of the longitudinal slip, the rear
lateral slips σyL , σyNL increase as well because the
rear lateral force Yr needed to maintain the vehicle
in balance are reached with a greater rear slip angle
in both linear and nonlinear cases. The rear wheel’s
angular velocities θ̇rL , θ̇rNL decrease more strongly
with respect to the relevant front wheel’s angular ve-
locities θ̇fL , θ̇fNL

(Figure 11). As the braking force
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Figure 11: The rear and front angular velocities.

reaches its maximum at 6 seconds (Figure 7), a slight
difference on the rear wheel’s angular velocities can
be observed between the linear and nonlinear cases,
but still they maintain the same trend. The roll angles
drop progressively in both cases although the trends
are slightly different as shown in Figure 8. In Fig-
ure 9 the lateral forces YrL and YrNL acting on the
rear wheel are shown. During the braking, the force
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YrL starts decreasing more rapidly than YrNL but in
both cases these values tend to decrease progressively
and they are not sufficient to keep the motorcycle in
balance hence the slip angle of the rear wheel contin-
ues to grow as well as the roll angles φL and φNL. At
6.5 seconds the rider starts decelerating but the roll an-
gle has now reached such a value that it is impossible
for the rider to regain the correct attitude of the vehicle
in both cases. Indeed, around 6.2 seconds the motor-
cycle reaches 90◦ in the roll angle hence it falls down
and the simulation ends. The trajectories depicted in
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Figure 12: The longitudinal velocity.

Figure 6 show little difference between the linear and
the nonlinear case, precisely in the first case the fall
occurs slightly sooner than in the nonlinear case. The
graphs clearly show that the linearization on the roll
angle φ is able to describe most of a lowside fall dy-
namic, in particular this event occurs slightly in ad-
vance respect to the nonlinear case, but the trajectory
run by the vehicles are very similar. The major dif-
ference stands on the final longitudinal velocity that
in the linear case reaches a smaller value (Figure 12).
It is worth noting that the general vehicle dynamic in
this critical condition is strongly affected by the tyres
friction forces. The trends of the dynamics variables
obtained in the simulations are in line with what was
expected. This results push the authors to address a
deeper analysis of the model in future works.

5 Conclusion
In this paper the authors have investigated furtherly
the performance of a motorcycle’s analytical model in
describing the low side fall, a critical driving condi-
tion that may put at risk the safety of the driver. Au-
thors proposes this model as a resource for designing
model-based safety control systems for PTWs. The
rear traction, an adequate modelling of longitudinal
and lateral dynamic, tyre friction forces and their in-
teractions they are all considered by the model and
make it suitable to capture most of the complex mo-
torcycle dynamics arising in cornering, where the ve-
hicle may experience extreme loss of adherence due

to excessive acceleration or braking. In order to better
evaluate the effects of the roll dynamic on the accu-
racy of the lowside simulation a linear version and a
nonlinear version of the same model have been com-
pared. The results show that in spite of the large roll
angles involved in the low side phenomena, the linear
version is able to capture such critical condition. This
result confirms the high influence of the tyre forces on
the general vehicle dynamic. Given the rapid evolu-
tion of the fall in this specific case, the linear simula-
tion represents an encouraging approximation of the
nonlinear phenomenon and it deserves further analy-
sis that will be presented in the next works along with
others studies on similar critical conditions.

Appendix A
The complete set of equations of motion:

[ẍ1] (Mf +Mr)(ẍ1 − ẏ1ψ̇)− (Mrh−
Mf j) sinφψ̈−Mfkψ̇

2− 2(Mrh+Mf j) cosφφ̇ψ̇−
2Mfe cosφψ̇δ̇ −Mfe cos εδ̇

2 = Xr +Xf (20)

[θ̈r] (iry + iλ2)θ̈r + (iry + iλ) sinφψ̈ + (iry +

iλ) cosφφ̇ψ̇ = RrXr + Tr (21)

[θ̈f ] ify θ̈f + ify sinφψ̈ − ify cos εφ̇δ̇ +
ify cosφψ̇φ̇+ ify sin ε cosφψ̇δ̇ = RfXf (22)

[ÿ1] (Mf +Mr)(ÿ1 + ẋ1ψ̇) + (Mrh+

Mf j) cosφφ̈+Mfe cosφδ̈ +Mfkψ̈ − (Mrh+

Mf j) sinφψ̇
2 − (Mrh+Mf j) sinφφ̇

2 −
Mf δ̇

2e sin ε sinφ− 2Mf δ̇φ̇e sinφ = Yr + Yf (23)

[ψ̈] −(Mrh−Mf j) sinφẍ1+Mfkÿ1+(Irz cosφ
2+

Ify sinφ
2 + Iry sinφ

2 + Ifz cos ε
2 cosφ2 +

Ifx cosφ
2 sin ε2+Mfk

2+(Mrh
2+Mf j

2) sinφ2)ψ̈+
(Mf jk + Ifz cos ε sin ε− Ifx cos ε sin ε−
Crxz) cosφφ̈+ (Mfek + Ifz cos ε) cosφδ̈ + (Iry +

Iλ) sinφθ̈r + Ify sinφθ̈f + (Iry + Iλ) cosφφ̇θ̇r +

Ify cosφφ̇θ̇f + Ify sin ε cosφδ̇θ̇f + (Mrh+

Mf j) sinφẏ1ψ̇ +Mfkẋ1ψ̇ + (Crxz +

Ifx cos ε sin ε− Ifz cos ε sin ε−Mf jk)φ̇
2 +

2(Mrh
2 +Mf j

2 − Ifz cos ε2 − Ifx sin ε2 + Ify +

Iry − Irz) sinφ cosφφ̇ψ̇ + 2(Ify sin ε− Ifx sin ε+
Mfej) sinφ cosφψ̇δ̇ + (Ifx cos ε− Ify cos ε−
Ifz cos ε− 2Mfek) sinφφ̇δ̇ +Mfef sinφδ̇

2 =
Yf l − Yrb (24)

[φ̈] (Mrh+Mf j) cosφÿ1 + (Ifz cos ε sin ε−
Ifx cos ε sin ε− Crxz +Mf jk) cosφψ̈ + (Ifz +
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Irx +Mfa
2 +Mfe

2 +Mrh
2 + Ifx cos ε

2 −
Ifz cos ε

2 + 2Mfae−Mfa
2 cos ε2 −Mfe

2 cos ε2 +
Mff

2 cos ε2 − 2Mfae cos ε
2 + 2Mfaf cos ε sin ε+

2Mfef cos ε sin ε)φ̈+ (Ifz sin ε+Mfej)δ̈ − (Iry +

iλ) cosφθ̇rψ̇ − Ify cosφψ̇θ̇f − Ify cos εδ̇θ̇f +
(Mrh+Mf j) cosφẋ1ψ̇ + (Ifx − Ify +
Ifz) cos ε sinφψ̇δ̇ + (Ifx − Ify − Iry + Irz −
Mfa

2 −Mfe
2 − 2Mfae−Mrh

2 − Ifx cos ε2 +
Ifz cos ε

2 +Mfa
2 cos ε2 +Mfe

2 cos ε2 −
Mff

2 cos ε2 + 2Mfae cos ε
2 − 2Mfaf cos ε sin ε−

2Mfef cos ε sin ε) sinφ cosφψ̇
2 + Zf tδ cosφ−

Mrgh sinφ− Yf tδ sinφ−Mfeg cosφ sin δ −
Mffg cos ε sinφ−Mfag sin ε sinφ−
Mfeg cos δ sin ε sinφ = 0 (25)

[δ̈] Mfe cosφÿ1 + (Ifz cos ε+Mfek) cosφψ̈ +

(Ifz sin ε+Mfej)φ̈+ (Mfe
2 + Ifz)δ̈ +

Mfe cosφẋ1ψ̇ + Ify cos εφ̇θ̇f − Ify cosφ sin εψ̇θ̇f +
(Ify−Ifx−Ifz) cos ε sinφφ̇ψ̇+(Ifx sin ε−Ify sin ε−
Mfej) sinφ cosφψ̇

2+Kδ̇+Yf t cosφ+Zf t sinφ−
Xf tδ cos ε−Mfeg sinφ+ Zf tδ cosφ sin ε−
Yf tδ sin ε sinφ−Mfegδ cosφ sin ε = τ. (26)

The motorcycle physical parameters are listed in ta-
ble 2.

parameter notation value u.m. (SI)

Mf mass of front frame 30.6472 kg
Mr mass of rear frame 217.4492 kg
Zf front vertical force −1005.3 N
Irx rear frame inertia x axis 31.184 kgm2

Irz rear frame inertia z axis 21.069 kgm2

Crxz product of inertia xz 1.7354 kgm2

Ifx front frame inertia x axis 1.2338 kgm2

Ifz front frame inertia z axis 0.442 kgm2

ify = iry front and rear wheel inertias 0.7186 kgm2

ε caster angle 0.4715 rad
a distance between A and B 0.9485 m
b distance between A and P 0.4798 m
e x position of Gr 0.024384 m
f z position of Gf 0.028347 m
h z position of Gr 0.6157 m
l distance between A and S 0.9346 m
Rr rear wheel radius 0.3048 m
Rf front wheel radius 0.3048 m
t trail 0.11582 m

Table 2: Motorcycle physical parameters.
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[1] P. Seiniger, K. Schröter, J. Gail, Perspectives
for motorcycle stability control systems, Acci-
dent Analysis & Prevention, Volume 44, Issue
1, 2012, pp. 74-81.

[2] European Road Safety Observatory,
https://ec.europa.eu/transport/
road_safety/specialist/erso_en

[3] J. Reedy, S. Lunzman, Model Based Design Ac-
celerates the Development of Mechanical Loco-
motive Controls, SAE Technical Paper, 2010.

[4] C. Koenen, The dynamic behaviour of a motor-
cycle when running straight ahead and when cor-
nering, PhD Dissertation, 1983, TU Delft.

[5] V. Cossalter, A. Doria, R. Lot, Steady Turning
Of Two Wheel Vehicles, Vehicle System Dynam-
ics, 31, 3, 1999, pp. 157-181.

[6] R. Lot, A Motorcycle Tires Model for Dynamic
Simulations: Theoretical and Experimental As-
pects, Meccanica, vol. 39, 2004, pp. 207-220.

[7] A. Bonci, R. De Amicis, S. Longhi, G. A. Scala
and A. Andreucci, Motorcycle lateral and lon-
gitudinal dynamic modeling in presence of tyre
slip and rear traction, 21st International Con-
ference on Methods and Models in Automation
and Robotics (MMAR), Miedzyzdroje, 2016, pp.
391-396.

[8] A. Bonci, R. De Amicis, S. Longhi, E. Loren-
zoni and G. A. Scala, A motorcycle enhanced
model for active safety devices in intelligent
transport systems, 12th IEEE/ASME Interna-
tional Conference on Mechatronic and Embed-
ded Systems and Applications (MESA), Auck-
land, 2016, pp. 1-6.

[9] A. Bonci, R. De Amicis, S. Longhi, E. Loren-
zoni and G. A. Scala, Motorcycle’s lateral stabil-
ity issues: Comparison of methods for dynamic
modelling of roll angle, 20th International Con-
ference on System Theory, Control and Comput-
ing (ICSTCC), Sinaia, 2016, pp. 607–612.

[10] H. Dugoff, P. Fancher, L. Segel, Tire perfor-
mance characteristics affecting vehicle response
to steering and braking control inputs. Ed. by
Michigan Highway Safety Research Institute,
1969.

[11] A. T. van Zanten, Bosch ESP Systems: 5 Years
of Experience, SAE Technical Paper, 2000.

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Andrea Bonci, Riccardo De Amicis, 
Sauro Longhi, Emanuele Lorenzoni

E-ISSN: 2224-3429 85 Volume 12, 2017




