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Abstract: - Two methods for linear stability analysis of shallow mixing layers are presented in the paper: 

temporal stability analysis and spatial stability analysis. The combined effect of small curvature and non-

constant friction force in the transverse direction is analyzed. Both spatial and temporal linear stability 

problems are solved numerically by means of a collocation method based on Chebyshev polynomials. Marginal 

stability curves are obtained for different values of the parameters of the problem. It is shown that both 

curvature and variable friction stabilize the flow.  
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1 Introduction 
Shallow mixing layers are often observed in nature 

and civil engineering. Examples include flows at 

river junctions and flows in compound and 

composite channels. Different methods are used to 

analyze flow patterns and structure of shallow 

mixing layers [1]: experimental investigations, 

numerical modeling and stability analysis. In the 

present paper we analyze linear stability of slightly 

curved shallow mixing layers. 

Linear stability of straight shallow mixing layers 

under the rigid-lid assumption is analyzed in [2], 

[3]. It is assumed in [2] and [3] that free surface acts 

as a rigid lid so that water depth is constant. The 

rigid-lid assumption is relaxed in [4] where it is 

shown that the rigid-lid assumption (from a linear 

stability point of view) works well for small Froude 

numbers. Such a condition is usually satisfied for 

many shallow flows observed in practice.  

The analyses in [2]-[4] have shown that bottom 

friction stabilizes the flow. The influence of bottom 

friction on the stability of shallow flows is usually 

described by the bed-friction number 

,/ hbcS f where fc is the friction coefficient 

which is related to roughness of the surface and the 

Reynolds number of the flow by empirical formulas 

[5], h is water depth and b is the characteristic 

length scale of the flow (for example, mixing layer 

width).  

The effect of large Froude numbers on the linear 

stability of shallow mixing layers is analyzed in [6] 

where it is shown that  

In many cases shallow flows are not straight. The 

effect of small curvature on linear stability 

characteristics of deep mixing layers in analyzed in 

[7] where it is shown that curvature has a stabilizing 

effect on stably curved mixing layer and 

destabilizing effect on unstable curved mixing layer. 

Spatial and temporal instability of curved shallow 

mixing layers is analyzed in [8], [9].  

In all the above mentioned studies the friction 

coefficient is assumed to be constant. There are 

cases, however, where resistance force varies 

considerably in the transverse direction. One 

example of such a situation is a flow in a compound 

channel where the friction force is usually larger in 

the floodplain and smaller in the main channel. 

Similar situation occurs during floods where water 

occupies vegetated areas along river banks. Series of 

experimental papers by MIT group led by prof. H. 

Nepf appeared in the literature [10]-[14] in the last 

few years. It is shown in [10]-[14] that the variation 

of the friction force in the transverse direction has 

an important effect on the mass and momentum 

exchange.  
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Recently the effect of non-constant resistance 

force in the transverse direction on the linear 

stability characteristics of straight shallow mixing 

layers is analyzed in [15]-[17]. Spatial stability 

analysis is used in [15]. Temporal stability analysis 

of particle-laden shallow flows with non-constant 

resistance force is performed in [16]. Preliminary 

results of the spatial stability of shallow mixing 

layers with non-uniform resistance force are 

presented in [17]. 

In the present paper both temporal and spatial 

stability analysis is performed for the case where the 

friction force varies in the transverse direction. The 

flow is assumed to be slightly curved with large 

radius of curvature. Linear stability problem is 

solved using both temporal and spatial method. 

Results of numerical computations are presented.  

 

 

2 Mathematical Formulation of the 

Problem 
Consider the following form of shallow water 

equations under the rigid-lid assumption 
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where p is the pressure, h is water depth, u and 

v are the depth-averaged velocity components, 

)( yc f is the friction coefficient which is assumed to 

be dependent on the transverse coordinate y , and 

R is the dimensionless radius of curvature 

( 1R ).  

Equation (1) is equivalent to the continuity equation 

in a two-dimensional hydrodynamics so that it is 

natural to introduce the stream function 

),,( tyx by the relations 

x
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y
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Using (1)-(4) we obtain 
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where )(yc fy is the derivative of the function 

)( yc f with respect to y . The friction coefficient 

)( yc f is modeled by the formula 

),()(
0

ycyc ff                                                        (6) 

where )(y is a differentiable shape function. 

A perturbed solution ),,( tyx is assumed to be of 

the form 

...),,()(),,( 10 tyxytyx                     (7) 

where )(0 y is the stream function of the base flow 

)(yU , so that )()( 0 yyU y . In the present study 

the function )(yU is given by 

).tanh1(
2

1
)( yyU                                         (8) 

Substituting (6) and (7) into (5) and linearizing the 

resulting equation in the neighborhood of the base 

flow we obtain 
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The perturbed solution is represented in the form of 

a normal mode 
)(

1 )(),,( ctxieytyx ,                                 (10) 

where is the wave number and c is the wave 

speed of the perturbation. . It follows from (9) and 

(10) that  
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where 
h

bc
S

f0 is the stability parameter and b is a 

length scale of the problem. 

The boundary conditions have the form 

.0)(                                                          (12) 

Problem (11), (12) is an eigenvalue problem. In 

general, both parameters and c in (10) can be 

complex. However, two ways to solve (11), (12) are 

usually used in practice: (a) temporal stability 

analysis and (b) spatial stability analysis. In case (a) 

it is assumed that the wave number is real while 

the eigenvalue ir iccc is complex.  The sign of 

the imaginary part of the complex eigenvalue c is 
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used to decide whether flow (8) is linearly stable or 

unstable: if all eigenvalues satisfy the 

inequality 0ic then base flow (8) is said to be 

linearly stable. On the other hand, if at least one 

eigenvalue has a positive imaginary part ( 0ic ) 

then base flow (8) is said to be linearly unstable. 

Finally, if one eigenvalue satisfies the condition 

0ic while all other eigenvalues have negative 

imaginary parts, base flow is said to be marginally 

stable. The set of all values of the parameters and 

S for which flow (8) is marginally stable determines 

the marginal stability curve.  

    In case (b) the wave speed is assumed to be real 

while the wave number is complex: 

ir i . Flow (8) is said to be spatially 

unstable if at least one .0i  

    Numerical solution of (11), (12) for the case of 

temporal stability is simpler since the discretized 

eigenvalue problem is linear in c . In this case 

standard software packages for the solution of a 

generalized matrix eigenvalue problem can be used 

for calculations. On the other hand, a nonlinear 

eigenvalue problem  has to be solved in case of 

spatial stability analysis. As a result, a 

computational algorithm should be modified.  

    In the present paper both approaches are 

presented. In Section 3 we describe the numerical 

method used to discretize (11), (12). The results of 

linear stability calculations for temporal stability are 

shown in Section 4 while spatial stability is 

analyzed in Section 5.   

 

 

3 Numerical Method 
Numerical solution of (11), (12) is obtained by a 

collocation method. It is convenient to map the 

interval y onto the interval 

11 using the new variable yarctan
2

. 

In terms of the transformed variable the solution to 

(11) is sought in the form  
1

0

2 ),()1()(
N

k

kk Ta                           (13) 

where arccoscos)( kTk is the Chebyshev 

polynomial of the first kind of order k and ka are 

unknown coefficients. The factor )1( 2
in (13) 

guarantees that zero boundary conditions at 

1will be satisfied automatically: 

.0)1(                                                          (14) 

The collocation points are chosen in the form 

.1,...,2,1,cos Nm
N

m
m                       (15) 

Using (11), (13) and (15) we obtain the following 

generalized eigenvalue problem 

,0)( acBA                                                   (16) 

where A and B are complex-valued matrices and 
T

Naaaa )...( 110 . Note that both A and B are 

non-singular (this fact simplifies the solution of the 

generalized eigenvalue problem (16)).  

 

 

4 Temporal Stability Analysis 
Numerical results are presented in the paper for the 

case where variability of the friction coefficient in 

the transverse direction is described by (6), where 

,tanh
2

)1(

2

1
)( yy                        (17) 

with 1

0

1

f

f

c

c
 and the parameter in (17) 

represents how sharp is the transition from the 

region of larger friction to the region of smaller 

friction. 

Here 
1f

c and 
0fc are the friction coefficients in 

the vegetated area and main channel, respectively.  

Note that in [16] the friction coefficient varied is 

such a way that 0
0fc as y . Variability of 

the friction coefficient given by (17) is consistent 

with the velocity profile (8) since higher velocity is 

expected in the region where friction force is 

smaller.  

Marginal stability curves for the case 

1,R and three values of the parameter , 

namely, 5.1,1 and 2 are shown in Fig. 1. Note 

that 1 corresponds to a constant friction 

coefficient in the whole region of the flow while 

values 1 represent the degree of non-uniformity 

of the friction force in the transverse direction. It is 

seen from Fig. 1 that the case with non-constant 

friction is more stable than the case of a uniform 

friction. In addition, the critical value of 

S decreases as the parameter increases.  
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Fig. 1. Marginal stability curves for the case 
R

and three values of 5.1,1:  and 

2 (from top to bottom). 

 

Fig. 2 plots the marginal stability curves for the case 

1,03.0/1 R and three values of 5.1,1: and 

2 . It is also seen from the graph that non-uniformity 

of the friction coefficient stabilizes the flow in the 

presence of a small curvature.  

 

      S  

 
 
                                                                                                                                                                                            

Fig. 2. Marginal stability curves for the case 

03.0/1 R and three values of 5.1,1:  

and 2 (from top to bottom).  

The effect of small curvature on the stability 

boundary is shown in Fig. 3 for the case of a non-

constant friction. The marginal stability curves in 

Fig. 3 correspond to one value 2 . It is seen 

from the graph that the increase in curvature leads to 

a more stable flow.  
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Fig. 3. Marginal stability curves for the case 

1,2 and three values of 

06.0,03.0,0:/1 R (from top to bottom).  

 

The combined effect of the variable friction and 

small curvature on the stability boundary is shown 

in Fig. 4 where the critical value of the parameter 

S (defined as )(max kSS
k

cr ) is plotted versus 

for three different values of 

06.0,03.0,0:/1 R (from top to bottom). Both 

parameters (small curvature R/1 and non-

uniformity of the friction coefficient ) have a 

stabilizing influence on the flow. 

 

    S  

 
 

                                                                                    

Fig. 4. Critical values crS versus for three values 
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of 5.1,1:/1 R  and 2 (from bottom to top).  

 

 

5 Spatial Stability Analysis 
In this section we consider numerical results that are 

obtained using spatial stability approach.  

Fig. 5 plots the spatial growth rates for the case 

1,15.0S and 

R

(no curvature). The case 

1 (top curve) corresponds to uniform friction. 

As can be seen from the graph, non-uniform friction 

of the form (17) has a stabilizing influence on the 

flow: the growth rate for the most unstable mode 

decreases as the parameter increases. Note that 

represents the degree of non-uniformity of the 

friction force in the transverse direction. Thus, flow 

with non-uniform friction is more stable than flow 

with uniform friction.  

 

i

 

                                                    rc  

Fig. 5. Spatial growth rates i versus rc  for three 

values of 5.1,1:  and 2 (from top to 

bottom).  

 
The role of curvature on the stability characteristics 

of the flow is seen from Fig. 6 where the spatial 

growth rate for the case 15.0S and 5.1 is 

shown for three values of the parameter R/1 , 

namely, 0/1 R (straight flow with no curvature), 

0.01 and 0.02.  

     

 

 

 

 

 

 

 

i  

 

                                                                          rc  

Fig. 6. Spatial growth rates i versus rc  for three 

values of 01.0,0:/1 R  and 02.0 (from bottom to 

top).  

 

The bottom curve in Fig. 6 corresponds to the 

case of no curvature and is the most stable among 

the three cases considered. Thus, increase in 

curvature has a destabilizing effect on the flow.  

The effect of the parameter on the spatial 

growth rates is shown in Fig. 7 for the case 

.0/1,2,15.0 RS  

 

i  

 

                                                      rc  

Fig. 7. Spatial growth rates i versus rc  for two 

values of 1:  and 10 (from bottom to top).  

 

It is seen from Fig. 7 that steeper friction gradients 

result in less stable flow.  

 

 

6 Conclusion and Direction of Future 

Work 
Spatial and temporal linear stability analysis of 

shallow mixing layers is performed in the present 

paper. The effect of several parameters of the 
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stability characteristics of the flow is investigated.  

In particular, it is shown that non-uniform friction 

coefficient in the transverse direction of the flow has 

a stabilizing influence in comparison with the case 

of a uniform friction. In addition, numerical 

computations demonstrate that slightly curved 

mixing layers are more stable than layers without 

curvature. Finally, it is shown that steepness of the 

change of the friction coefficient in the transverse 

direction has a destabilizing influence on the flow.  

Linear stability analysis is performed in the 

present paper under the assumption of a parallel 

flow. In other words, the base flow profile (8) is 

assumed to be independent on the longitudinal 

coordinate. Experimental data (see, for example, [5] 

and [6]) show that the base flow is slightly changing 

along the longitudinal coordinate. Asymptotic 

schemes have been developing in the past in order 

to take into account slow longitudinal variation of 

the base flow. The authors are currently 

implementing the asymptotic scheme in order to 

derive the amplitude evolution equation for the most 

unstable mode.   
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