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Abstract: - The low velocity impact response of a curved stiffness composite panel is studied. A two degree of 

freedom spring-mass model is used to evaluate the contact force between the composite panel and the impactor. 

This work uses the Hertzian contact model which is linearized for the impact analysis of the curved composite 

panel. First order shear deformation theory coupled with Fourier series is used to derive the governing equations 

of the curved composite panel. In this paper, the effect of contact stiffness on the impact force is studied 

analytically. The results showed that the impact force increased with increase of contact stiffness.  
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1 Introduction 

Composites are been widely used in various 

engineering fields since it has many advantages such 

as been lightweight, have high stiffness to weight 

ratios, good fatigue performance and excellent 

corrosion resistance. The major automotive 

industries are also utilizing composites to assist 

them meet the performance and weight 

requirements. For high performance Formula 1 

racing cars, most of the components such as 

chassis, monocoque, suspension and engine cover 

is manufactured from composites. [1]. However 

these advantages are slightly restrained by their high 

susceptibility to internal damage caused by foreign 

object damage. The impact process damages the 

structure and reduces its useful life. The failure 

modes of composite structures are different from 

metals. There are two main mechanisms of damage 

in composites. They are intra-laminar damage 

mechanisms (resin or fibre dominated failures due to 

tensile, compressive or out of plane stresses) and 

inter-laminar damage, which is delamination. [2] 

Interface delaminations are usually the most critical 

failure mechanisms since they severely degrade the 

strength and the integrity of the structure. These 

failure modes under low velocity impact depends 

upon the fibre type, resin type, lay-up, thickness, and 

projectile type.  

The use of Charpy tests, drop towers have been used 

in impact testing of composites. Various researchers 

have studied the impact behaviour of composite 

laminates. Several types of mathematical models 

have been built in order to study this impact 

behaviour.  

Gong et al. [3] studied the elastic response of 

orthotropic laminated cylindrical shells to low-

velocity impact. A spring-mass model was developed 

to determine the contact force between the shell and 

the impactor. An analytical function for the contact 

force was derived in terms of material properties and 

the mass of the shell and the impactor, as well as for 

the impact velocity. Khalili [4] studied the dynamic 

response of thin smart curved composite panel 

subjected to low-velocity transverse impact. First 

order shear deformation was used to obtain the 

structural field.  

 
Martinez et. al. [5] performed impact tests over a 

carbon fibre reinforced epoxy using low energy in the 

striker. A non-conservative and nonlinear spring-

clashpot series model was proposed to reproduce the 

material behaviour. The model considered 

simultaneously both flexural and indentation 
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phenomena accounting for energy losses by means of 

the restitution coefficient. This model enabled the 

accurate prediction of the contact force duration.  

 

Hassan et al. [6] addressed the response of Glass 

Fiber Reinforced Plastic laminates (GFRPs) under 

low-velocity impact. Experimental tests were 

performed according to ASTM: D5628 for different 

initial impact energy levels ranging from 9.8 J to 29.4 

J and specimen thicknesses of 2, 3 and 4 mm. The 

impact damage process and contact stiffness were 

studied incrementally until a perforation phase of the 

layered compounds occurred, in line with a force–

deflection diagram and imaging of impacted 

laminates. The effect that impact parameters such as 

velocity and initial energy had on deflection and 

damage of the test specimens was explored. 

Ghasemnejad et al [7] studied the Charpy impact 

behaviour of single and multi-delaminated hybrid 

composite beam structures. The Charpy impact test 

was chosen to study the energy absorption capability 

of delaminated composite beam. It was shown that 

the composite beams with closer position of 

delamination to impacted surface are able to absorb 

more energy in comparison with other delamination 

positions in hybrid and non-hybrid ones.  

Krishnamurthy et al [8] studied the impact response 

of a laminated composite cylindrical shell  

determined both by the classical Fourier series and 

the finite element methods. Impact response 

determined by the finite element method also 

includes a prediction of the impact-induced damage 

deploying the semi-empirical damage prediction 

model of Choi–Chang. The parametric carried out by 

the finite element method investigated the effect of 

governing parameters such as impactor mass, its 

approach velocity, curvature of the shell, on both the 

impact response and on the impact-induced damage. 

 

Ghasemnejad et al [9] studied the damage behavior 

of naturally stitched composite single lap joints under 

low velocity impact. In order to study the energy 

absorbing capability, Charpy Impact tests were used. 

It was proved that the composite beams stitched 

through the thickness were able to absorb more 

energy in comparison with adhesively bonded 

composite joints.  

 

Caputo et al [10] proposed numerical techniques to 

describe the damage initiation and propagation of 

impact damages in composite structures. An explicit 

finite element analysis was developed through 

utilizing a global/local finite element model and the 

model predicted the propagation of both interlaminar 

and intralaminar damages.  

 

Laminated theories have been widely used to study 

and predict the impact damage of composite 

structures. These theories can be classified as 

equivalent single layer (ESL), layer-wise and zig-zag 

theories. The ESL theories can be divided into three 

main categories: classical plate theory (CPT), first-

order shear deformation theory (FSDT) and higher 

order shear deformation theories (HSDTs). Shear 

deformation effects are ignored by the CPT and it 

provides reasonable results for thin laminates. 

Nonetheless, it underestimates the deflection and 

overestimates the buckling load and frequency of 

thick laminates where shear deformation effects are 

more distinct. Shear deformation effects are 

accounted through the FSDT proposed by Reissner 

[11] and Mindlin [12] by the way of linear variation 

of in-plane displacements through the thickness. A 

shear correction factor is essential to compensate for 

the difference between actual stress state and 

presumed constant stress state since the FSDT 

violates the equilibrium conditions on the top and 

bottom surfaces of the plate. [13]. This paper makes 

use of the FSDT to predict the impact response of the 

composite plate.  

 

There are several factors affecting impact damage. It 

is vital to identify the material properties that have an 

effect on impact damage as it would assist in 

designing improved materials and impact resistance 

composites. Improved impact resistance is obtained 

through using high strain to failure fibers, tougher 

resins and stitched laminates. The elastic properties 

of the material (E1, E2, v12, G12) along with the 

lamination orientation, define the overall rigidities of 

the plate which largely affect the contact force 

history. Experiments with the same matrix material 

and five different types of fiber reinforcements 

demonstrated an equal threshold damage energy, 

indicating that the damage initiation was matrix-

dominated. The stacking sequence and the properties 

of the reinforcing fibers had no major effect on the 

energy required for damage initiation.  

 
Damage is initiated by matrix cracking and when a 

matrix crack reaches an interface between layers with 

different fiber orientations, delamination is initiated 

[14]. The target stiffness also have a significant effect 

on the contact force history. At low velocities, 

flexible targets respond primarily by bending, which 

causes high tensile stresses in the lowest ply. Matrix 

cracks then developed in the lowest ply, which in turn 

generated a delamination at the lowest interface. This 
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matrix cracking-delamination repeats itself from ply 

to ply resulting in an inverted pine tree appearance. 

For stiffer targets, damage is initiated by high contact 

stresses and propagates downwards through the same 

matrix cracking-delamination process. Another 

factor affecting impact damage is the properties of 

the impactor, its size and shape, the material it is 

made of and the angle of incidence relative to the 

surface of the specimen. [14]. 

 

2 Problem Formulation 
 

2.1 Theoretical Analysis 

Love’s equations of motion for a cylindrical shell of 

length L, radius R and thickness h subjected to 

external loads are expressed as: 

𝜕𝑁𝑥

𝜕𝑥
+

1

𝑅

𝜕𝑁𝑥𝜃

𝜕𝜃
+ 𝑞𝑥(𝑥, 𝜃, 𝑡) = 𝜌ℎ𝑢̈                   (1) 

𝜕𝑁𝑥𝜃

𝜕𝑥
+

1

𝑅

𝜕𝑁𝜃

𝜕𝜃
+
𝑄𝜃

𝑅
+ 𝑞𝜃(𝑥, 𝜃, 𝑡) = 𝜌ℎ𝑣̈         (2) 

𝜕𝑄𝑥

𝜕𝑥
+

1

𝑅

𝜕𝑄𝜃

𝜕𝜃
−
𝑁𝜃

𝑅
+ 𝑞𝑛(𝑥, 𝜃, 𝑡) = 𝜌ℎ𝑤̈          (3) 

𝜕𝑀𝑥

𝜕𝑥
+

1

𝑅

𝜕𝑀𝑥𝜃

𝜕𝜃
− 𝑄𝑥 =

𝜌ℎ3

12
𝛽̈𝑥                            (4) 

𝜕𝑀𝑥𝜃

𝜕𝑥
+

1

𝑅

𝜕𝑀𝜃

𝜕𝜃
− 𝑄𝜃 =

𝜌ℎ3

12
𝛽̈𝜃                           (5) 

The constitutive equations of a specially orthotropic 

material are described as: 

{
𝑁𝑥
𝑁𝜃
𝑁𝑥𝜃

} = [
𝐴11 𝐴12 0
𝐴12 𝐴22 0
0 0 𝐴66

] {

𝜀𝑥
0

𝜀𝜃
0

𝛾𝑥𝜃
0

}                   (6) 

{
𝑀𝑥

𝑀𝜃

𝑀𝑥𝜃

} = [
𝐷11 𝐷12 0
𝐷12 𝐷22 0
0 0 𝐷66

] {

𝜅𝑥
𝜅𝜃
𝜅𝑥𝜃

}                    (7) 

{
𝑄𝑥
𝑄𝜃
} = [

𝑘𝐴55 0
0 𝑘𝐴44

] {
𝛾𝑥𝑧
0

𝛾𝜃𝑧
0 }                            (8) 

Where 

{𝐴𝑖𝑗 , 𝐷𝑖𝑗} = ∫ 𝑄̅𝑖𝑗(1, 𝑧
2)𝑑𝑧

ℎ 2⁄

−ℎ 2⁄
   (i, j = 1,2,6)  (9) 

𝐴𝑖𝑖 = ∫ 𝐶𝑖̅𝑖𝑑𝑧
ℎ 2⁄

−ℎ 2⁄
   (i,i =4, 5)                             (10) 

𝑄̅𝑖𝑗 are the transformed reduced stiffnesses in the 

𝑥 − 𝜃 plane, 𝐶𝑖̅𝑖 are the transformed shear 

stiffnesses, and 𝑘 is the Mindlin shear correction 

factor which is 𝜋2 12⁄ . [12] 

The strain-displacement relations are expressed as: 

𝜀𝑧
0 =

𝜕𝑢

𝜕𝑥
     𝜀𝜃

0 =
1

𝑅

𝜕𝑣

𝜕𝜃
+
𝑤

𝑅
    𝛾𝑥𝜃

0 =
𝜕𝑢

𝜕𝑥
+

1

𝑅

𝜕𝑢

𝜕𝜃
 

𝜅𝑥 =
𝜕𝛽𝑥

𝜕𝑥
   𝜅𝜃 =

1

𝑅

𝜕𝛽𝜃

𝜕𝜃
    𝜅𝑥𝜃 =

𝜕𝛽0

𝜕𝑥
+

1

𝑅

𝜕𝛽𝑥

𝜕𝜃
     (11) 

𝛾𝑥𝑧
0 = 𝛽𝑥 +

𝜕𝑤

𝜕𝑥
      𝛾𝜃𝑧

0 = 𝛽𝜃 +
1

𝑅

𝜕𝑤

𝜕𝜃
−

𝑣

𝑅
 

The solution to the dynamic problem is based on the 

expansion of the loads, displacement, and rotations 

functions in double Fourier series. Double Fourier 

series, for the displacements and the rotation of 

rectangular doubly curved composite panel with 

simply supported boundary conditions are defined 

according to [4]: 

 

𝑢0(𝑥1, 𝑥2, 𝑡) =

∑ ∑ 𝑈𝑚𝑛(𝑡)𝑐𝑜𝑠
𝑚𝜋𝑥1

𝑎
𝑠𝑖𝑛

𝑛𝜋𝑥2

𝑏
∞
𝑚=1

∞
𝑛=1           (12) 

𝑢0(𝑥1, 𝑥2, 𝑡) =

∑ ∑ 𝑉𝑚𝑛(𝑡)𝑠𝑖𝑛
𝑚𝜋𝑥1

𝑎
𝑠𝑖𝑛

𝑛𝜋𝑥2

𝑏
∞
𝑚=1

∞
𝑛=1            (13) 

𝑤0(𝑥1, 𝑥2, 𝑡) =

∑ ∑ 𝑊𝑚𝑛(𝑡)𝑠𝑖𝑛
𝑚𝜋𝑥1

𝑎
𝑠𝑖𝑛

𝑛𝜋𝑥2

𝑏
∞
𝑚=1

∞
𝑛=1           (14) 

𝜑1(𝑥1, 𝑥2, 𝑡) =

∑ ∑ 𝑋𝑚𝑛(𝑡)𝑐𝑜𝑠
𝑚𝜋𝑥1

𝑎
𝑠𝑖𝑛

𝑛𝜋𝑥2

𝑏
∞
𝑚=1

∞
𝑛=1           (15) 

𝜑2(𝑥1, 𝑥2, 𝑡) =

∑ ∑ 𝑌𝑚𝑛(𝑡)𝑠𝑖𝑛
𝑚𝜋𝑥1

𝑎
𝑠𝑖𝑛

𝑛𝜋𝑥2

𝑏
∞
𝑚=1

∞
𝑛=1            (16) 

For a concentrated load located at the point, 

𝑄𝑚𝑛(𝑡) =
4𝐹(𝑡)

𝑎𝑏
𝑠𝑖𝑛

𝑚𝜋𝑥1
𝑐

𝑏
;   𝑚, 𝑛 = 1,3,5, … 
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[
 
 
 
 
𝑐11 𝑐12 𝑐13 𝑐14 𝑐15
𝑐12 𝑐22 𝑐23 𝑐24 𝑐25
𝑐13 𝑐23 𝑐33 𝑐34 𝑐35
𝑐14 𝑐24 𝑐34 𝑐44 𝑐45
𝑐15 𝑐25 𝑐35 𝑐45 𝑐55]

 
 
 
 

{
 
 

 
 
𝑈𝑚𝑛(𝑡)
𝑉𝑚𝑛(𝑡)
𝑊𝑚𝑛(𝑡)
𝑋𝑚𝑛(𝑡)
𝑌𝑚𝑛(𝑡)}

 
 

 
 

=

{
 
 

 
 

0
0

𝜌ℎ𝑊̈𝑚𝑛(𝑡) − 𝑄𝑚𝑛(𝑡)
0
0 }

 
 

 
 

                                (17) 

𝑈𝑚𝑛(𝑡) = 𝐾𝑈𝑊𝑚𝑛(𝑡)                                     (18) 

𝑉𝑚𝑛(𝑡) = 𝐾𝑉𝑊𝑚𝑛(𝑡)                                      (19) 

𝑋𝑚𝑛(𝑡) = 𝐾𝑋𝑊𝑚𝑛(𝑡)                                     (20) 

𝑌𝑚𝑛(𝑡) = 𝐾𝑌𝑊𝑚𝑛(𝑡)                                      (21) 

Where: 

𝐾𝑈 = 𝑆1 + 𝑆2𝐾𝑋 + 𝑆3𝐾𝑌                                (22) 

𝐾𝑉 = 𝑆4 + 𝑆5𝐾𝑋 + 𝑆6𝐾𝑌                                      (23) 

𝐾𝑋 = Δ𝑋 Δ⁄                                                            (24) 

𝐾𝑌 = Δ𝑌 Δ⁄                                                            (25) 

Δ𝑋 = (𝑐35 + 𝑐15𝑠1 + 𝑐25𝑠4)(𝑐45 + 𝑐14𝑠3 +
𝑐24𝑠6) − (𝑐34 + 𝑐14𝑠1 + 𝑐24𝑠6)(𝑐55 + 𝑐15𝑠3 +
𝑐25𝑠6)                                                                   (26) 

Δ𝑌 = (𝑐45 + 𝑐15𝑠2 + 𝑐25𝑠5)(𝑐34 + 𝑐14𝑠1 +
𝑐24𝑠4) − (𝑐44 + 𝑐14𝑠2 + 𝑐24𝑠5)(𝑐35 + 𝑐15𝑠1 +
𝑐25𝑠4)                                                                    (27) 

Δ = (𝑐44 + 𝑐14𝑠2 + 𝑐24𝑠5)(𝑐55 + 𝑐15𝑠3 + 𝑐25𝑠6) −
(𝑐45 + 𝑐14𝑠3 + 𝑐24𝑠6)(𝑐45 + 𝑐15𝑠2 + 𝑐25𝑠5)        (28) 

Where: 

𝑠1 =
𝑐12𝑐23−𝑐22𝑐13

𝑠
                                    (29) 

𝑠2 =
𝑐12𝑐24−𝑐22𝑐14

𝑠
                                 (30) 

𝑠3 =
𝑐12𝑐25−𝑐22𝑐15

𝑠
                                       (31) 

𝑠4 =
𝑐12𝑐13−𝑐11𝑐23

𝑠
                                       (32) 

𝑠5 =
𝑐12𝑐14−𝑐11𝑐24

𝑠
                                       (33) 

𝑠6 =
𝑐12𝑐15−𝑐11𝑐25

𝑠
                                       (34) 

𝑠 = 𝑐11𝑐22 − 𝑐12
2                                                   (35) 

The operators of 𝑐𝑖𝑗 are evaluated as [4]: 

𝑐11 = −𝐴11 (
𝑚2𝜋2

𝑎2
) − 𝐴66 (

𝑛2𝜋2

𝑏2
) − (

𝑘𝑠ℎ

𝑅1
2 )𝐴55    (36) 

𝑐12 = −(
𝑚𝜋

𝑎
) (

𝑛𝜋

𝑏
) (𝐴12 + 𝐴66)                          (37) 

𝑐13 =
1

𝑅1
(
𝑚𝜋

𝑎
)𝐴11 +

1

𝑅2
(
𝑚𝜋

𝑎
)𝐴12 +

𝑘𝑠ℎ

𝑅1
(
𝑚𝜋

𝑎
)𝐴55    

(38) 

𝑐14 = −(
𝑛2𝜋2

𝑏2
) 𝑐0𝐷66 +

𝑘𝑠ℎ

𝑅1
𝐴55                           (39) 

𝑐15 = −(
𝑚𝜋

𝑎
) (

𝑛𝜋

𝑏
) 𝑐0𝐷66                                     (40) 

𝑐22 = −(
𝑛2𝜋2

𝑏2
)𝐴22 −

𝑘𝑠ℎ

𝑅2
2 𝐴44 − (

𝑚2𝜋2

𝑎2
)𝐴66       (41) 

𝑐23 =
1

𝑅1
(
𝑚𝜋

𝑏
)𝐴12 +

1

𝑅2
(
𝑛𝜋

𝑏
)𝐴22 +

𝑘𝑠ℎ

𝑅1
(
𝑛𝜋

𝑏
)𝐴44 

(42) 

𝑐24 = (
𝑚𝜋

𝑎
) (

𝑛𝜋

𝑏
) 𝑐0𝐷66                                         (43) 

𝑐25 =
𝑘𝑠ℎ

𝑅2
𝐴44 + (

𝑚2𝜋2

𝑎2
) 𝑐0𝐷66                             (44) 

𝑐33 = −𝑘𝑠ℎ (
𝑚2𝜋2

𝑎2
)𝐴55 − 𝑘𝑠ℎ (

𝑛2𝜋2

𝑏2
)𝐴44 −

(
1

𝑅2
2)𝐴22 − (

1

𝑅1
2)𝐴11                                             (45) 

𝑐35 = −𝑘𝑠ℎ (
𝑚𝜋

𝑎
)𝐴55                                          (46) 

𝑐35 = −𝑘𝑠ℎ (
𝑛𝜋

𝑏
)𝐴44                                           (47) 

𝑐44 = −(
𝑚2𝜋2

𝑎2
)𝐷11 − (

𝑛2𝜋2

𝑏2
)𝐷66 − 𝑘𝑠ℎ𝐴55      (48) 

𝑐45 = −(
𝑚2𝜋2

𝑎2
)𝐷12 − (

𝑚𝜋

𝑎
) (

𝑛𝜋

𝑏
)𝐷66                 (49) 

𝑐55 = −(
𝑚2𝜋2

𝑎2
)𝐷66 − (

𝑛2𝜋2

𝑏2
)𝐷22 − 𝑘𝑠ℎ𝐴44      (50) 

𝑊̈𝑚𝑛(𝑡) + 𝜔𝑚𝑛
2 (𝑡) =

𝑄𝑚𝑛(𝑡)

𝜌ℎ
                                (51) 
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The natural frequency of the plate is calculated by; 

𝜔𝑚𝑛
2 =

−(𝑐13𝐾𝑈+𝑐23𝐾𝑉+𝑐33+𝑐34𝐾𝑋+𝑐35𝐾𝑌)

𝜌ℎ
             (52) 

𝑊𝑚𝑛(𝑡) + 𝜔𝑚𝑛
2 𝑊𝑚𝑛(𝑡) =

4𝐹(𝑡)

𝑎𝑏𝜌ℎ
𝑠𝑖𝑛

𝑚𝜋𝑥1
𝑐

𝑎
𝑠𝑖𝑛

𝑛𝜋𝑥2
𝑐

𝑏
        (53) 

For zero initial displacement and velocity of the 

panel, the solution becomes: 

𝑊𝑚𝑛(𝑡) =
1

𝜔𝑚𝑛

4

𝑎𝑏𝜌ℎ
𝑠𝑖𝑛

𝑚𝜋𝑥1
𝑐

𝑎
𝑠𝑖𝑛

𝑛𝜋𝑥2
𝑐

𝑏
∫ 𝐹(𝜏)
𝑡

0
𝑠𝑖𝑛𝜔𝑚𝑛(𝑡 − 𝜏)𝑑𝜏     

(54) 

 

 

2.2 Impact Model 
In the existing S-M model, M1 and M2 represent the 

mass of the shell and the impactor respectively; K1 is 

the stiffness constant of the shell and K2 is the 

stiffness constant of the impactor. The stiffness of the 

simply supported laminated shell can be defined as: 

 

𝐾1 = 𝜔1
2𝑀1                                                    (40) 

 
Where 𝜔1 is the fundamental frequency of the 

laminated shell and obtained through equation (37) 

by applying 𝑚 = 𝑛 = 1.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If 

𝑧1(𝑡) represent the radial displacement of the load 

point of the shell and 𝑧2(𝑡) represent that of the 

impactor at any time 𝑡 during the impact, then the 

contact deformation is expressed as: 

 

𝜕(𝑡) = 𝑧2(𝑡) − 𝑧1(𝑡)                                    (55) 
 

It is assumed that the Hertzian theory governs the 

contact force between the impactor and the laminated 

shell during the impact and is given by: 

 

𝐹𝑐(𝑡) = 𝐾2(𝜕
𝑝)                                                    (56) 

 

Where 𝐾2 and 𝑝 are material constants obtained 

through static indentation tests [3]. 

Deriving an analytical solution for the contact force 

is a challenging task as the equation (56) is non-

linear. Therefore, the existing approach employs an 

effective contact stiffness 𝐾2
∗ in order to relate the 

equivalent contact force to the contact deformation.  

 

𝐹𝑐
∗(𝑡) = 𝐾2

∗𝜕                                                         (57) 

 

Which can also be expressed as, 

 

𝐹𝑐
∗(𝑡) = 𝐾2

∗[𝑧2(𝑡) − 𝑧1(𝑡)]                                  (58) 

 

The effective contact stiffness 𝐾2
∗ is expressed as: 

 

𝐾2
∗ = √𝜋Γ (

𝑝+1

2
)
2Γ(

𝑝

2
+1)+√𝜋Γ(

𝑝+1

2
)

4Γ2(
𝑝

2
+1)+𝜋Γ2(

𝑝+1

2
)
𝛿𝑚
𝑝−1𝐾2    (59) 

 

Where Γ is the Gamma function and the maximum 

contact deformation, 𝜕𝑚 is given by: 

 

For a target with free edges [1]: 
 

𝜕𝑚 = (
𝑀1𝑀2

𝑀1+𝑀2
)
0.4
[
5𝑉2

4𝑘2
]
0.4

                                     (60) 

 

For a target with clamped edges [1]: 

 

𝜕𝑚 = (𝑀2)
0.4 [

5𝑉2

4𝑘2
]
0.4

                                          (61) 

 

This study involves a target structure with simply 

supported edges and 𝜕𝑚 for simply supported target 

structure is expressed as: 

 

(𝜕𝑚)𝑓 < (𝜕𝑚)𝑠𝑠 < (𝜕𝑚)𝑐                                   (62) 

 

Where the subscripts 𝑓, 𝑠𝑠, 𝑐 refer to free, simply 

supported and clamped respectively. 

 

The corresponding equations of motion for a two 

degree of freedom model is as follows [2]: 

 

𝑚1𝑧1̈ = −𝑘1𝑧1 − 𝑘2(𝑧1 − 𝑧2)                           (63) 

 

𝑚2𝑧2̈ = −𝑘2(𝑧2 − 𝑧1)                                       (64) 

 

The initial conditions are defined as: 

 

𝑧1 = 𝑧1 = 𝑧2 = 0,      𝑧2 = 𝑉   𝑎𝑡 𝑡 = 0             (65) 

Fig. 1 A two degree of freedom spring-mass 

model [2] 
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By using the initial conditions defined in equation 

(51), the analytical function for the force can be 

defined as: 

 

𝐹𝑐
∗(𝑡) = 𝐾2

∗[𝐴1(𝐶1 − 1)𝑠𝑖𝑛𝜔1𝑡 + 𝐴2(𝐶2 − 1)𝑠𝑖𝑛𝜔2𝑡]     (66) 
 

The coefficients in the analytical function for the 

force are derived as: [2] 

 

𝜔1,2
2 =

1

2
(
𝑘1+𝑘2

𝑀1
+

𝑘2

𝑀2
) ∓ √

1

4
(
𝑘1+𝑘2

𝑀1
+

𝑘2

𝑀2
)
2
−

𝑘1𝑘2

𝑀1𝑀2
                      

(67) 

 

𝐶1 =
𝑘2

𝑘2−𝜔1
2𝑀2

                                                    (68) 

 

𝐶2 =
𝑘2

𝑘2−𝜔2
2𝑀2

                                                    (69) 

 

𝐴1 =
𝑉

𝜔1(𝐶1−𝐶2)
                                                  (70) 

 

𝐴1 =
𝑉

𝜔2(𝐶2−𝐶1)
                                                  (71) 

 

 

3 Problem Solution 
Calculations based on the present analysis were 

performed for impact on 48-ply laminate open 

cylindrical shells consisting a [(±45/02)2/±45/0/
90]2𝑠 lay-up fabricated from graphite/epoxy prepreg. 

The dimensions of the shell analyzed in this study are 

identical to the studies carried out by Gong et.al [ ]. 

The shell has a radius of 0.0254m, a length of 

0.6096m, a width of 0.2032m and a thickness of 

0.0127. The geometrical and material properties of 

the composite panel are shown in Table [ ]. The 

values of 𝜕𝑚, 𝐾2 and 𝑝 are calculated to be 10−4𝑚, 

120 × 108𝑁𝑚−1.5 and 1.5. 𝐾2
∗ was determined from 

equation [59] and the mass 𝑀2 was 3kg. A generic 

MATLAB script was written in order to calculate the 

stiffness matrices and the equivalent contact force. 
 

 

 

 

 

 

 

3.1 Contact Force History plots 
The contact force histories are plotted to investigate 

the effect of the contact stiffness on the contact force. 

In the first instance, the steel plate was simulated to 

vailidate the equations. Figure 2 shows the impact 

results for the steel plate when compared with the 

results derived by Gong et.al [1] and Khalili [2]. 

 

 

 

The above results showed that the maximum contact 

force for the present study was higher compared to 

the past studies carried out by Gong et.al [1] and 

Khali [2]. This was due to the fact that the current 

study yielded a higher contact stiffness, k2 than the 

earlier anlysis.  

 

 

 

𝐴11(𝑁𝑚
−1) 1.04 × 109  𝐷11(𝑁𝑚) 

1.41 × 104 

𝐴12(𝑁𝑚
−1) 2.33 × 108 𝐷12(𝑁𝑚) 

3.45 × 103 

𝐴22(𝑁𝑚
−1) 4.86 × 108 𝐷22(𝑁𝑚) 

5.77 × 103 

𝐴33(𝑁𝑚
−1) 2.66 × 108 𝐷66(𝑁𝑚) 

3.89 × 103 

𝐴44(𝑁𝑚
−1) 6.99 × 108 𝐷11(𝑁𝑚) 

1.41 × 104 

𝐴55(𝑁𝑚
−1) 6.99 × 108 M1 (kg) 0.95 

Table 3 Stiffness matrix values 

E11 141.2GPa 

E22=E33 9.72GPa 

G12=G13 5.53GPa 

G23 3.74GPa 

v12=v13=v23 0.30 

ρ 1536𝑘𝑔/𝑚3 

E 207GPa 

V 0.30 

ρ 7800𝑘𝑔/𝑚3 

Tip diameter 20mm 

Mass of the impactor 3kg 

Impactor velocity 6m/s 

Table 1 Material properties of the laminated composite shell 

Table 2 Material properties of the impactor 

Fig. 2 Contact Force History (Steel Plate) 
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3.2 Effect on contact stiffness, k2 on contact 

force 
The main aim of this paper was to study the effect of 

the contact stiffness on the contact history. Figure 3 

shows the contact force history based on the 

calculated value of k2 which is 120 × 108𝑁𝑚−1.5 

 

 

 

 

 
 

 

It can be seen from the above analysis that the contact 

force increases with increase of the contact stiffness, 

k2, but the contact duration decreases. The higher k2 

yields to a higher effective contact stiffness, 𝐾2
∗. 

Therefore, the higher the contact stiffness between 

the shell and  the impactor, the more spontaneous the 

contact force. This means that a larger force is acting 

over a shorter time period. Likewise, more higher 

modes of vibration are generated due to the shorter 

contact time as the impact by a stiffer impactor is 

more spontaneous.  

 

 

4 Conclusion 
 

This paper evaluated the effect on the contact 

stiffness on the contact force history. A two degree of 

freedom spring-mass model facilitated the use of a 

pre-derived analytical force function consisting of 

several material parameters. This contact force 

function was utilized to analyze the contact force 

between the impactor and the target shell structure 

Fig. 4 Contact force vs time (k2=130 × 108Nm−1.5) 

 

Fig. 3 Contact force vs time (k2=120 × 108Nm−1.5) 

Fig. 5 Contact force vs time (k2=150 × 108Nm−1.5) 

Fig 6 Contact force vs time (k2=100 × 108Nm−1.5) 

Fig. 7 Contact force vs time (combined) 
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during the impact and study the complete contact 

force history.  
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