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Abstract: A novel version of strain gradient elasticity is proposed. This theory emerges from an older version of 
strain gradient elasticity suggested by Toupin and Mindlin through replacement of their asymmetric stress by a 
symmetric stress tensor. In this way one derives an improvement of the theory which is mathematically sound. 
Since analytical solutions are not easy to achieve within this approach, a numerical solution is elaborated with 
use of Finite Element Analysis. Thus, the theory is implemented in the commercial FEM software ABAQUS 
through user subroutine UEL. It is demonstrated for the example of a shear test that the stress singularities 
occurring in classical continuum theory have now disappeared.  
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1 Introduction 
In recent years strain gradient theory has attracted 
the interest of numerous scientist for two main 
reasons: First, strain gradient theory usually reduces 
the value of stress concentrations which sometimes 
appear exaggerated within classical continuum 
mechanics. And second, it predicts a size effect in 
the sense smaller is stronger. These results were 
confirmed experimentally on many occasions. 
Nevertheless, some scientists still have doubt about 
the soundness of this theory, because some details 
were never proved mathematically. Let us therefore 
get back to the fundamental aspects of strain 
gradient elasticity as they were proposed in an early 
publication of Mindlin [1]. Following the principles 
of Cosserat theory [2], an asymmetric stress tensor 
was assumed where the shear stresses τxy and τyx are 
not equal. The torque arising from the asymmetric 
shears in static equilibrium was compensated by 
couple stresses µx and µy corresponding to bending 
moments [1]: 
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Further, the bending moments were correlated to a 
bending stiffness described by a bending modulus 
B. Consequently, the bending stiffness arising from 
the microstructure of a crystal [3] was considered as 
a correction to Hooke’s law. This lead to the 
constitutive equation (1), where the couple stresses 

µ were related to the curvature of the crystal lattice. 
With use of a compatibility condition it was shown 
that the curvatures are equivalent to linear 
combinations of strain gradients. In this way a linear 
theory was obtained where strain gradients were 
related to couple stresses similar as strains are 
related to ordinary stresses.  

However, the approach described by equation (1) 
includes a serious flaw: Couple stresses are 
components of a tensor which has a rank higher than 
two. In conclusion, the torque arising from an 
asymmetric stress tensor cannot consequently be 
compensated by the torque associated with a tensor 
of higher rank. In fact, there are different 
transformation rules for tensors of different rank 
during rotation of a coordinate system. Therefore, 
couple stress theory does not consequently fulfill the 
requirement of invariance with respect to rotation of 
the coordinate system. 

In spite of this deficiency, strain gradient theory 
still contains important aspects which are correct. In 
particular, the density of elastic energy may be 
described by 

 ( )ijkijkijijw ηµεσ ⋅+⋅=
2
1

, (2) 

where summation is carried out over repeated 
indices. Here, the µijk are called higher order stresses 
and ηijk are the strain gradients ∂2ui/∂xj∂xk, where ui 
are the displacements and xi are the coordinates. In 
the most general two-dimensional isotropic case, the 
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energy density associated with the strain gradients 
may also be expressed as [3,4] 
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where summation is again carried out over repeated 
indices. Here, B1 through B5 are components of the 
bending tensor. In this context, equation (3) 
represents the most general expression which is 
invariant with respect to rotation of the coordinate 
system. In contrast to Toupin [5, 6], Mindlin and 
others [3, 7-11], however, σij of equation (2) is 
interpreted as symmetric tensor throughout the 
present study. In consequence, equation (1) is 
omitted hereafter.  

The modification suggested here has some 
important consequences: After equation (1) is 
eliminated, it gets very difficult to find any 
analytical solutions. On the other hand, the new 
theory may be solved numerically using the 
algorithms of Finite Element Analysis. In this way 
one derives a linear elastic global stiffness matrix K. 
The relation between nodal forces F and nodal 
displacements U takes the simple form UKF ⋅= , 
where K is symmetric. It should be said here that the 
validity of the present approach is restricted to small 
deformations. 
 
 
2 Finite Element Implementation 
The elements defined in the following subsection 
are rectangular quadrilaterals. At first sight the 
restriction to rectangular elements seems to be a 
disadvantage compared to arbitrary element shapes. 
Nevertheless, these elements may be applied to a 
wide class of problems discussed in engineering 
fracture mechanics. Moreover, the rectangular 
elements facilitate the assessment whether 
convergence is achieved during mesh refinement. 
Hence, our interest is focused on the simplest 
elements which are adequate to implement the 
constitutive equations (2) and (3).  

But at first elements of Shu et al. [4] and Zybell 
et al. [12] are reexamined briefly. These elements 
were based on the Toupin-Mindlin approach. It 
follows immediately that their method of using an 
asymmetric stress tensor is different from the 
assumptions of the present study. But aside from 
this detail it is interesting to look how these authors 
derived the C1 continuity at element boundaries 
which is necessary for strain gradient theories. 
When discontinuous jumps of strain were appearing 
at element boundaries, then the energy associated 

with that strain gradient would be lost by ordinary 
elements. Therefore, Shu et al. introduced additional 
degrees of freedom (DOFs) at element nodes where 
strain components appeared as DOFs. However, this 
lead to a situation where the DOFs were not 
completely independent from each other and the 
equations became overdetermined. Hence, the error 
arising from these definitions was afterwards 
minimized using the Lagrange multiplier method.  

Instead, the present investigation utilizes a 
method which converges precisely. In consequence, 
one obtains a global linear elastic stiffness-matrix 
which may be solved exactly. For this purpose an 
overlapping mesh technique will be defined.  
 
2.1 Definition of Elements 
First, 9 node quadrilateral elements consisting of 
isoparametric 4 node sub-elements are defined as 
depicted in Figure 1: 

     
Figure 1: (a) left: Sub-elements are isoparametric four 
node quadrilaterals. (b) right: 9-node elements consist of 
four 4-node sub-elements. 

The interpolation functions for the displacements on 
sub-element level read as [13, 14] 

U = ¼ (1–g)(1–h)U1 + ¼ (1+g)(1–h)U2 +  
       ¼ (1+g)(1+h)U3 + ¼ (1–g)(1+h)U4 (4) 

where g and h are the coordinates of the 
isoparametric space and U1, U2, U3 and U4 are 
the displacement vectors of the nodes 1, 2, 3, 
and 4, respectively. Square shaped elements of 
this type were already used in a preceding article 
[14], where a simpler version of strain gradient 
elasticity was introduced. The strains and the strain 
gradients η112, η121, η212 and η221 are evaluated at 
integration points in the middle of sub-elements 
through differentiation of interpolation functions in 
the element coordinate system. Thereafter, the 
remaining strain gradients η111, η122, η211 and η222 
are calculated on element level by a difference 
method; i.e. the difference of strains in 
neighbouring sub-elements is divided through 
the distance of the integration points.  
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Next, the residual nodal forces have to be 
calculated as function of nodal displacements (see 
for instance reference [15]). One derives the nodal 
forces by superposition of stresses σij and higher 
order stresses µijk. The contribution of the stresses to 
nodal forces is obtained from the energy density 
according to 

ij
ij

w
ε

σ
∂
∂

= ,  (5) 

while higher order stresses are obtained from  

ijk
ijk

w
η

µ
∂
∂

= . (6) 

The direction of nodal forces related to higher order 
stresses is obtained from the rule that some µijk is 
always counteracting the deformation introduced by 
the corresponding ηijk, as shown in Figures 2 to 4. 
Further, the residual nodal forces of the entire 
element must lead to static equilibrium so that 
neither translational nor rotational forces will 
remain.  

              
Figure 2: Direction of the residual nodal forces for the 
case of µ112 = µ121, schematically. The higher order 
stresses are counteracting the deformation introduced by 
the corresponding strain gradients η112 = η121.  

The value of nodal forces is obtained from a 
principle of virtual work requiring that the work 
done by external nodal forces equals the elastic 
energy stored in the volume of the element.  

  
Figure 3: µ111 is here applied to the lower half of the 
entire element, schematically. 

In the case of the higher order stresses µ111 it will in 
general make a difference whether η111 was 
calculated by comparison of sub-elements I and II as 
depicted in Figure 3, or from sub-elements III and 

IV. Therefore, µ111 is applied to the upper and lower 
half of the element separately. The higher order 
stresses µ122, µ211, and µ222 are treated in analogous 
style. 

 
Figure 4: The higher order stress µ122 introduces residual 
nodal forces in the element, schematically. 

Figure 4 demonstrates how higher order stresses 
µ122 are applied to the element. It is interesting to 
notice that forces on node 9 are present. This 
demonstrates that higher order stresses are more 
than just normal stresses and surface tractions along 
the outer borders of a volume element. Instead, 
higher order stresses may also act on the inside of 
volume elements. This behavior is a consequence of 
the fact that the tensor of higher order stresses has a 
different rank compared to ordinary stresses. 

According to these rules the residual nodal forces 
of the 9 node elements are a unique function of the 
displacements and vice versa, provided that rigid 
body motion is suppressed by boundary conditions. 
The calculation of nodal forces was shown in detail 
for a somewhat simpler version of strain gradient 
elasticity in reference [14]. 

In addition to the 9 node elements explained here 
also 6 node elements consisting of 2 sub-elements 
are needed in order to mesh the periphery of the 
samples. The interpolation functions of these sub-
elements are the same as for 9 node elements, and 
residual nodal forces are evaluated along the same 
principles. However, with a horizontal 6 node 
element one cannot evaluate η122 and η222, while 
η111 and η211 are not accessible for vertical 6 node 
elements. But this will not disturb the investigation, 
because the corresponding higher order stresses are 
ending at the free sample surface anyway.  
 
2.2 Overlapping Mesh Technique  
In this section the problem of meshing large samples 
is solved. When the elements explained above were 
used together with ordinary mesh technique, then 
one would get unpleasant discontinuities of strains 
at the element boundaries, while the strain gradient 
inside the elements would be underestimated. On 
the other hand, the method described by Shu et al. 
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[4] using additional DOFs related to strain 
components is avoided here, because it does not 
converge precisely. Instead, a linear elastic stiffness 
matrix is constructed which may be solved by 
matrix inversion. For this purpose an overlapping 
mesh is generated as depicted in Figure 5, 
schematically: 

  
Figure 5: Two elements have one sub-element in 
common, which is located in the overlapping area. 

According to this method the whole sample is 
covered twice with elements. Two neighbouring 
elements always have one sub-element in common. 
Thereby, the elements of the overlapping area are 
attached to the same nodes. At the periphery of the 
sample 6 node elements are used in order to fill up 
vacant spaces. In conclusion, the overlapping mesh 
technique results in a material stiffness which is 
twice as high as initially intended. But this was 
compensated by using halved values for Young’s 
modulus and bending moduli at the element level. 
 
 
3 Example: Shear Test 
In order to demonstrate the advantages of the 
present approach, a shear test is simulated. Indeed, 
shear tests are widely used in engineering science, 
for instance for measuring the strength of adhesives 
or solder joints. However, the shear stresses are in 
general non-uniformly distributed over the 
specimen.  According to simulations in the frame of 
classical continuum mechanics one even gets stress 
singularities which cannot easily be interpreted.  

In this example a somewhat simplified shear test 
is performed in two dimensions, where a testing 
material is sheared between two pieces of rigid base 
material. By mesh refinement one can show that the 
FEM solution of classical continuum mechanics 
does not converge, whereas the simulation using 
strain gradient theory converges nicely against a 
finite value. The setup of the shear test is depicted in 
Figure 6, schematically. The material under test is 
here simulated using isotropic elasticity. The 
simulations were carried out with ABAQUS, 

whereby strain gradient effects were implemented 
through user subroutine UEL. The simulations were 
all done in the plane strain approximation. 

 
Figure 6: Setup of the shear test, schematically. The 
specimen connects two pieces, which are modelled as 
rigid bodies. 

The aspect ratio of length to height of the tested 
specimen was 5:1, as may be seen in Figure 6. 
Further, a Young’s modulus of 48 GPa and a 
Poisson ratio of 0.4 were assumed for the specimen. 
In all of the simulations shown hereafter the force 
acting on the upper sample holder was adjusted to 
receive an average shear stress of 1 MPa in the 
classical FEM simulations.  

Realistic values for the bending moduli are not 
easy to obtain. But since they have the dimension of 
a force, the bending stiffness causes a size effect 
where strain gradient effects get more pronounced at 
smaller length scales. It is therefore possible to 
relate the value of bending moduli to the length 
scale of the experiment: Let l be the length of the 
specimen in horizontal direction. Then the bending 
moduli in [N] assumed in our simulation were B1 = 
B2 = B3 = B4 = B5 = 2100 l⋅ , where l has to be 
inserted in [mm]. Thereby, the values for the 
bending moduli were adjusted in order to see an 
onset of the size effect for the mechanical 
properties. In conclusion, the estimated value of l 
should be somewhere in the sub-millimeter range.  

 
Figure 7: Plot of the von Mises stress [MPa] for the 
solution of strain gradient elasticity. A coarse mesh with 
2121 nodes is shown. Top: entire sample. Bottom: 
magnification of left part of the sample. 
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The results derived on the basis of these 
assumptions are depicted in Figures 7, 8 and 9. Only 
the deformable sample was simulated in detail, 
while the rigid base material was considered in the 
boundary conditions. The Figures show plots for the 
von Mises stress, whereby the mesh size was refined 
during consecutive simulations. For comparison, 
Figures 10, 11 and 12 show the corresponding 
results derived from classical FEM simulations. The 
crucial question is whether convergence is achieved 
during mesh refinement.  

 
Figure 8: Plot of the von Mises stress [MPa] after 
reducing the sides of elements by a factor of 10 in 
comparison to Figure 7. The location of a stress 
concentration is shown in magnification. 

 
Figure 9: Plot of the von Mises stress [MPa]. The sides of 
elements were reduced by a factor of 2 compared to 
Figure 8. Thereby, the colour contours have changed very 
little compared to the previous Figure. 

A comparison of Figures 8 and 9 shows that at this 
level a reduction of mesh size by a factor of 2 
changes the results only marginally. In particular, 
the stress maximum increases very little. 

On the other hand, Figures 10, 11 and 12 show 
how the results of FEM simulations according to 
classical continuum theory change during mesh 
refinement. Here, the maximum of stress increases 
significantly, because the stress concentration has 

the features of a stress singularity. Therefore, 
convergence cannot be achieved. 

 
Figure 10: Plot of the von Mises stress [MPa] for the 
solution of classical continuum mechanics. The mesh size 
corresponds to that of Figure 7; i.e. the models have the 
same number of nodes. 

The comparison of Figures 7 and 10 shows that 
hour-glassing and spurious modes are well 
suppressed in strain gradient elasticity, while these 
problems become quite apparent using element type 
CPE4R in ABAQUS. 

 
Figure 11: Plot of von Mises stress [MPa] for classical 
continuum theory using the same mesh size as in Fig. 8.  

 
Figure 12: Plot of the von Mises stress [MPa] for the 
same mesh size as in Figure 9. We see the typical 
characteristics of a stress singularity. 
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It should also be noticed here that the stress 
values of strain gradient elasticity are on the average 
somewhat lower than in classical continuum 
mechanics, because the higher order stresses also 
carry a part of the external load.  
 
 
4 Discussion 
In the preceding section it was demonstrated how 
the Finite Element solution of strain gradient 
elasticity converged for a shear test. However, a 
single example is not sufficient to validate the 
method in general. Therefore, in this section the 
reasons are summarized which lead to the 
conclusion that the approximations of the present 
approach will always converge: 

The FEM simulation of strain gradient elasticity 
may be viewed as the solution of a variational 
calculation. In order to derive the equilibrium 
condition, the internal energy of the model is 
minimized. The whole simulation is linear, and the 
stiffness matrix is symmetric as required by a 
theorem of Maxwell [16]. Consequently, the relation 
between nodal forces and displacements reads as

UKF ⋅= . Further, the stiffness matrix K is 
positive definite. This means that any deformation 
results in an increase of internal energy compared to 
the undeformed state. In consequence, spurious 
modes like hour-glassing do not exist here. Any 
configuration of the model leads to a unique vector 
of nodal forces and vice versa. Therefore, any 
discrete model formulated within this version of 
strain gradient elasticity will certainly converge in 
the sense that residual forces between neighbouring 
elements disappear.  

 
Figure 13: Distorted mesh, linear interpolation function 
and exact displacement curve, schematically. 

Next, the model behaviour during mesh 
refinement is discussed. Let us here for the moment 
assume that the displacement field u(x) of the exact 
solution shall at least be three times differentiable, 
and the absolute value of all derivatives shall have 
an upper bound. Let us further assume that the 
displacements at the nodes of the deformed mesh 

are perfectly matching the displacement field. Then 
the deviations δx and δy between interpolated 
displacement curve and exact solution at the 
integration points, as depicted in Figure 13, are a 
measure for the quality of the approximation. If the 
values of δx and δy converge against zero during 
mesh refinement, then stresses and strains will 
converge as well. However, the convergence of δx 
and δy against zero during mesh refinement is 
obvious, because the curvature of the exact solution 
is limited according to our assumptions. The linear 
interpolation functions of the sub-elements are 
approximating the exact displacement curve by 
polygonal lines, and if the element size gets 
continuously smaller, then δx and δy will eventually 
approach zero. An equivalent statement is true for 
the numerical error of strain gradients obtained by 
the difference method. The comparison of 
neighbouring sub-elements results in correct 
average values for strain gradients, and the 
maximum deviation from the average is limited by 
the second gradient of strains and the element size. 
In conclusion, strains and strain gradients will 
converge against the exact solution during mesh 
refinement. This automatically implies convergence 
of the internal energy.  

So far, it was just assumed that strains and strain 
gradients have an upper bound. Or to put it in other 
words, it was shown that the simulations converge if 
the exact solution of the model has no stress 
singularities. However, it is possible to enhance this 
statement: The stress singularities at sharp edges, at 
cracks or at material transitions, which are common 
in classical continuum theory, are all disappearing in 
the present version of strain gradient elasticity. In 
the vicinity of a hypothetical stress singularity, 
higher order stresses would become extremely 
strong so that the singularity would be suppressed 
there: Let for instance f’(x) have a singularity at x0. 
Then f’’(x) will become singular there as well, and 
close to x0 f’’ will exceed f’ by far. Indeed, even 
f’’/f’ will become singular at x0. But in the present 
approach higher order stresses are always 
counteracting singularities of stress, since the 
bending stiffness tries to distribute the load 
uniformly over the sample. In conclusion, within the 
theory proposed here such a hypothetical singularity 
cannot exist at sharp edges, cracks or material 
transitions. 
 
 
5 Summary and Conclusions 
In the present study, the theory of strain gradient 
elasticity, which was first proposed by Toupin [5, 6] 
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and Mindlin [1, 3], has been reformulated. Instead 
of using an asymmetric stress, a symmetric stress 
tensor was used throughout the model calculations. 
In this way invariance of the theory with respect to 
rotations of the coordinate system was achieved. 
Further, the theory was implemented in the 
commercial Finite Element code ABAQUS through 
user subroutine UEL. In order to demonstrate the 
convergence of this approach, the subroutine was 
applied to a theoretical shear test. Finally, the 
convergence statement was generalized on the 
grounds of theoretical considerations. 
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