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Abstract:The transformation of a Hamiltonian (connected to a quantum mechanical many-body system) in positive
semidefinite form represents an important procedure in a powerful tool used in deducing exact results for non-
integrable systems. Motivated by this fact, we report in this paper the exact transformation of a Hubbard type of
Hamiltonian (describing in the presented case an itinerant fermionic quadrilateral chain) in positive semidefinite
form, in a such a way that the kinetic and interaction energy terms of the Hamiltonian are treated similarly together,
and are provided by the same positive semidefinite expression. For this reason, non-linear fermionic contributions
are used in block operators from which the positive semidefinite forms are constructed. The transformation is
possible to be done when a system of nonlinear equations, called matching equations, are satisfied. The procedure
of solving the matching equations is also indicated.
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1 Introduction

1.1 About exact results in quantum theory of
many-body systems

Exact theoretical results represent milestones in
physics [1] since based on them, it is possible to test
approximations, to probe numerical codes, to evalu-
ate model predictions, approach qualities, or physi-
cal interpolations, extend or develop model descrip-
tions by comparison to experiment, or even to test
the quality of a given theoretical model. Starting
from these premises, techniques providing exact re-
sults for physical systems have an extremely broad
literature and a livelong history. Since in our neigh-
borhood many-body systems abound, and their behav-
ior in most cases is embedded even at room temper-
ature in quantum mechanics, such cases atract main
interest, hence the majority of methods have been de-
veloped for quantum mechanical many-body systems,
e.g. electrons [2].

However, till now, in the development of tech-
niques providing exact results, mainly only integrable
models were considered [1, 2]. The integrability is
a model property, which enhances the deduction of
complete exact solutions by requiring supplementary
constrains to the model. These constrains, in a simple
view, demand an equal number of degrees of freedom

(Ndf ) and constants of motion(Ncm) [3, 4]. How-
ever, in the majority of many-body cases,Ndf (e.g. the
independentr-space coordinates), as order of magni-
tude is around the Avogadro’s numberNdf ∼ 6∗1026,
and contrary to this,Ncm (e.g. energy, the compo-
nents of the total momentum, and total angular mo-
mentum) usually attainNcm ∼ O(10). Consequently,
integrable systems are extremely rare, and mostly only
one dimensional special models are placed in this cat-
egory. Because of this reason, 99% of the many-body
systems in nature are non-integrabale, hence a strong
demand is present for techniques able to provide exact
results for non-integrable systems.

1.2 Exact results for non-integrable systems:
positive semidefinite operator technique

However exact results for non-integrable systems have
been deduced by other means as well [5], the method
based on positive semidefinite operator properties
seems to be one of the most succeesful techniques
(for an extended review see [6, 7]). The interest for
positive semidefinite operators in the field goes back
several decades [8], the method had several prelimi-
nary versions connecting also the variational principle
in the procedure [9, 10, 11, 12], but in the current ver-
sion which concentrates on a fixed given system, the
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technique casts first the system Hamiltonian (Ĥ) in a
positive semidefinite form̂H = P̂ + C, whereP̂ is
a positive semidefinite operator andC a scalar, and
obtaines the exact ground state by deducing the most
general Hilbert space vector|Φg〉 which satisfies the
equationP̂ |Φg〉 = 0. This technique has lead to exact
result in circumstances unimaginable befor in the con-
text of exact solutions, as in the case of two [13] and
three-dimensional [14] strongly interacting electron
systems, disordered systems in two dimensions [15],
delocalization effects in two dimension [16], stipes or
droplets in two dimensions [17], interaction-created
effective bands [18], or exact results for different non-
integrable chain structures [19, 20, 21].

Besides its success, the technique is still in ex-
tensive development, being far from a complete and
closed method, whose know-how informations are all
well known. For example, up to this moment, the
transformation of the kinetic energy (Ĥkin) and inter-
action energy (̂Hint) parts ofĤ in positive semidef-
inite forms has been separately performed, the ob-
tained results restricting in this manner the parameter
space regions and the type of ground state wave func-
tions that were possible to be covered. In the present
work we correct this inconvenience, and demonstrate
that it is possible to chose positive semidefinite opera-
tors such to obtaint simultaneously both theĤkin and
Ĥint terms of the Hamiltonian from the same expres-
sion in exact terms.

The remaining part of the paper is constructed as
follows: Section 2 presents the studied system and its
Hamiltonian, Section 3 introduces the used block op-
erators and defines the matching equations, Section
4 presents the transformation in positive semidefinite
form, Section 5 specifies how the matching equations
preserving the transformation can be solved, and fi-
nally, Section 6, containing the summary and conclu-
sions closes the presentation.

2 The system under consideration
The analyzed system is a quadrilateral chain with ex-
ternal hoppings. The unit cell of the system has three
sites:jn, jn+ r1, jn+ r2, and the chain is obtained by
translating a given sitei by the Bravais vectora, hence
jn = i + na. The obtained system hasNc cells, and
periodic boundary conditions are used, i.e.jNc+1 = i.
The chain is considered quantum mechanical, and the
Hamiltonian, written in second quantized form, is de-
fined as follows

Definition 1 The system Hamiltonian̂H = Ĥkin +
Ĥint is defined of Hubbard type, containing in the ki-
netic energy termĤkin hopping contributionstj2,j1

from an arbitrary site j1 to an arbitrary nearest-
neighbor sitej2, and on-site one-particle potentialsǫj
at each sitej. The interaction energy term̂Hint con-
tains only contributions given by the local Coulomb
repulsionUj ≥ 0 at each sitej.

Written in explicit terms one has

Ĥ =
∑

i,σ

{[t1(ĉ
†
i,σ ĉi+r1,σ + ĉ

†
i+r1,σ

ĉi+a,σ +

ĉ
†
i+a,σĉi+r2,σ + ĉ

†
i+r2,σ

ĉi,σ) + t2(ĉ
†
i−a+r1,σ

×

ĉi+r1,σ + ĉ
†
i−a+r2,σ

ĉi+r2,σ) +H.c.] + (ǫ1n̂i+r1,σ +

ǫ2n̂i+r2,σ + ǫ0n̂i,σ)}+
∑

i

(U1n̂i+r1,σn̂i+r1,−σ +

U2n̂i+r2,σn̂i+r2,−σ + U0n̂i,σn̂i,−σ). (1)

In this expression̂c†j,σ, (ĉj,σ), creates, (annihilates) an
electron withσ spin projection at the sitej, andn̂j,σ =

ĉ
†
j,σ ĉj,σ is the particle number operator. Thet1 =
ti+r1,i = ti+r2,i andt2 = ti+r1,i+a+r1 = ti+r2,i+a+r2

parameters are hopping matrix elements,ǫm = ǫi+rm

with m = 0, 1, 2 and conventionr0 = 0 are one-
particle on-site potentials, whileUm = Ui+rm repre-
sent the on-site local Coulomb repulsion values. The
physical parameters in each cell are considered the
same, and since thêcj,σ operators are fermionic, they
satisfy standard canonical anticommutation rules.

3 Preliminaries for the transforma-
tion of the Hamiltonian

3.1 The used block operators
For each cell defined at an arbitrary lattice sitei one
introduces 9 block operators containing each besides
linear terms also nonlinear fermionic operator contri-
butions acting on the sites of the block. One has

Definition 2 The nine block operators defined at fixed
but arbitrary spin projectionσ for each cell at the site
i are linear combinations of all site contributionsSj,σ

present in the block, a given site contribution being of
the formSj,σ = (αĉj,σ + αnĉj,σn̂j,−σ), whereα,αn

are numerical coefficients. Given by the second term
in Sj,σ, the introduced block operators are non-linear
expressions of the canonical Fermi operators.

For the explicit expressions of the defined block oper-
ators one has

Âi,σ = (a1ĉi−a+r2,σ + a1,nĉi−a+r2,σn̂i−a+r2,−σ) +

(a2ĉi+r2,σ + a2,nĉi+r2,σn̂i+r2,−σ) + (a3ĉi+r1,σ +

a3,nĉi+r1,σn̂i+r1,−σ) + (a4ĉi−a+r1,σ + a4,nĉi−a+r1,σ
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n̂i−a+r1,−σ)(a5ĉi,σ + a5,nĉi,σn̂i,−σ),

B̂i,σ = (b3ĉi+r1,σ + b3,nĉi+r1,σn̂i+r1,−σ) +

(b4ĉi−a+r1,σ + b4,nĉi−a+r1,σn̂i−a+r1,−σ) +

(b5ĉi,σ + b5,nĉi,σn̂i,−σ),

Ĉi,σ = (c1ĉi−a+r2,σ + c1,nĉi−a+r2,σn̂i−a+r2,−σ)

+(c2ĉi+r2,σ + c2,nĉi+r2,σn̂i+r2,−σ) +

(c5ĉi,σ + c5,nĉi,σn̂i,−σ),

D̂i,σ = (d1ĉi−a+r2,σ + d1,nĉi−a+r2,σn̂i−a+r2,−σ)

+(d4ĉi−a+r1,σ + d4,nĉi−a+r1,σn̂i−a+r1,−σ) +

(d5ĉi,σ + d5,nĉi,σn̂i,−σ),

Êi,σ = (e2ĉi+r2,σ + e2,nĉi−a+r2,σn̂i−a+r2,−σ)

+(e3ĉi+r1,σ + e3,nĉi+r1,σn̂i+r1,−σ) +

(e5ĉi,σ + e5,nĉi,σn̂i,−σ),

F̂i,σ = (f2ĉi+r2,σ + f2,nĉi+r2,σn̂i+r2,−σ) +

(f3ĉi+r1,σ + f3,nĉi+r1,σn̂i+r1,−σ) + (f4ĉi−a+r1,σ

+f4,nĉi−a+r1,σn̂i−a+r1,−σ),

Ĝi,σ = (g1ĉi−a+r2,σ + g1,nĉi−a+r2,σn̂i−a+r2,−σ)

+(g2ĉi+r2,σ + g2,nĉi+r2,σn̂i+r2,−σ) +

(g3ĉi+r1,σ + g3,nĉi+r1,σn̂i+r1,−σ),

Ĥi,σ = (h1ĉi−a+r2,σ + h1,nĉi−a+r2,σn̂i−a+r2,−σ)

+(h2ĉi+r2,σ + h2,nĉi+r2,σn̂i+r2,−σ) +

(h4ĉi−a+r1,σ + h4,nĉi−a+r1,σn̂i−a+r1,−σ),

Ĵi,σ = (j1ĉi−a+r2,σ + j1,nĉi−a+r2,σn̂i−a+r2,−σ)

+(j3ĉi+r1,σ + j3,nĉi+r1,σn̂i+r1,−σ) +

(j4ĉi−a+r1,σ + j4,nĉi−a+r1,σn̂i−a+r1,−σ). (2)

As can be seen, one has 8 block operators defined on
different triangles, and one block operator defined on
a quadrilater containing a site also in its middle. The
9 block operators contain totally 58 coefficients, i.e.
block operator parameters. We note that the block op-
erator coefficients are indexed by the in-cell site index
ℓ of the site to which they are connected. The possible
in-cell notationsℓ = 1, 2, 3, 4, 5 correspond in order
to the sitesi− a+ r2, i+ r2, i+ r1, i− a+ r1, i.

We would like to note that the blocks are not
randomly choosen, but with a well defined strategy.
On this line we mention that, the block operators
B̂m,i,σ, where m is a discrete index (i.e. in our

casem = 1, 2, ..., 9, for which B̂ becomes in or-
der A,B,D, ...,J ), are introduced with the aim to
construct positive semidefinite operators from them.
IndeedP̂m,i,σ = B̂†

m,i,σB̂m,i,σ are positive semidef-
inite operators. The blocks are such chosen to lead
in the explicit expression of̂Pm,i,σ (obtained after

effectively calculating the product̂B†
m,i,σB̂m,i,σ) to

terms of the form present in the starting Hamilto-
nian (1). That is why higher blocks as those present
in (2) are missing, since long-range hopping terms
are not present in (1). Furthermore, even if care is
take while choosing the blockŝBm,i,σ as specified
above, several, called correlated hopping terms (i.e.
terms of the formĉ

†
j1,σ

ĉj2,σn̂j1,−σ, ĉ
†
j1,σ

ĉj2,σn̂j2,−σ,

ĉ
†
j1,σ

ĉj2,σn̂j1,−σn̂j2,−σ) missing in (1) emerge from the

expression ofP̂m,i,σ. These are present on bonds
(j1, j2), and in order to eliminate these contributions
(since are not present into the startingĤ), one needs
at least three different block operators to provide con-
tributions on the same bond. This condition fixes the
number of blocks to 9.

It is important to underline that theαnĉj,σn̂j,−σ

non-linear fermionic contribution is present in block
operators inside theSj,σ term, because viâPm,i,σ it
reproduces the interaction part of the Hamiltonian.
Indeed, for example the product̂B†

m,i,σB̂m,i,σ leads

to terms of the form(αnĉj,σn̂j,−σ)
†(αnĉj,σn̂j,−σ) =

|αn|
2n̂j,σn̂j,−σ, whose operator̂nj,σn̂j,−σ exactly co-

incides to the form of the interaction energy operator
in Ĥ. Consequently, the presence of the non-linear
contributionsαnĉj,σn̂j,−σ in block operators opens
the doors for reproducing simultaneously both the ki-
netic and interaction parts of the Hamiltonian from the
same positive semidefinite form.

3.2 The matching equations
Let us start by defining the equations under discus-
sion, called matching equations.

Definition 3 Matching equations are equalities con-
necting the parameters of the starting Hamiltonian to
the parameters of the block operators. These equal-
ities arise from collecting fromP̂ =

∑
m,i,σ P̂m,i,σ

all contributions which provide the same operatorÔn

present in the expression of̂H from (1) as well. If
in P̂ , a given collected operator̂On gives rise to the
contributionVn,blockÔn, whereVn,block is a scalar de-
pending on block operator parameters, and the same
operator Ôn appears in (1) asWn,HÔn, where the
scalarWn,H depends on the Hamiltonian parameters,
than then-th matching equation is given by the equal-
ity Vn,block = Wn,H .
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Taking into account all contributions present inP̂ , one
finds 42 matching equations as follows

a∗3a5 + b∗3b5 + e∗3e5 = t3,5 = t1,

a∗3,na5 + b∗3,nb5 + e∗3,ne5 = 0,

a∗3a5,n + b∗3b5,n + e∗3e5,n = 0,

a∗3,na5,n + b∗3,nb5,n + e∗3,ne5,n = 0,

a∗4a5 + b∗4b5 + d∗4d5 = t4,5 = t1,

a∗4,na5 + b∗4,nb5 + d∗4,nd5 = 0,

a∗4a5,n + b∗4b5,n + d∗4d5,n = 0,

a∗4,na5,n + b∗4,nb5,n + d∗4,nd5,n = 0,

a∗1a5 + c∗1c5 + d∗1d5 = t1,5 = t1,

a∗1,na5 + c∗1,nc5 + d∗1,nd5 = 0,

a∗1a5,n + c∗1c5,n + d∗1d5,n = 0,

a∗1,na5,n + c∗1,nc5,n + d∗1,nd5,n = 0,

a∗2a5 + c∗2c5 + e∗2e5 = t2,5 = t1,

a∗2,na5 + c∗2,nc5 + e∗2,ne5 = 0,

a∗2a5,n + c∗2c5,n + e∗2e5,n = 0,

a∗2,na5,n + c∗2,nc5,n + e∗2,ne5,n = 0,

a∗3a4 + b∗3b4 + f∗
3 f4 + j∗3j4 = t3,4 = t2,

a∗3,na4 + b∗3,nb4 + f∗
3,nf4 + j∗3,nj4 = 0,

a∗3a4,n + b∗3b4,n + f∗
3 f4,n + j∗3j4,n = 0,

a∗3,na4,n + b∗3,nb4,n + f∗
3,nf4,n + j∗3,nj4,n = 0,

a∗2a1 + c∗2c1 + g∗2g1 + h∗2h1 = t2,1 = t2,

a∗2,na1 + c∗2,nc1 + g∗2,ng1 + h∗2,nh1 = 0,

a∗2a1,n + c∗2c1,n + g∗2g1,n + h∗2h1,n = 0,

a∗2,na1,n + c∗2,nc1,n + g∗2,ng1,n + h∗2,nh1,n = 0,

a∗2a3 + a∗1a4 + d∗1d4 + e∗2e3 + f∗
2 f3 +

g∗2g3 + h∗1h4 + j∗1j4 = t2,3 = t⊥ = 0,

a∗2,na3 + a∗1,na4 + d∗1,nd4 + e∗2,ne3 +

f∗
2,nf3 + g∗2,ng3 + h∗1,nh4 + j∗1,nj4 = 0,

a∗2a3,n + a∗1a4,n + d∗1d4,n + e∗2e3,n +

f∗
2 f3,n + g∗2g3,n + h∗1h4,n + j∗1j4,n = 0,

a∗2,na3,n + a∗1,na4,n + d∗1,nd4,n + e∗2,ne3,n +

f∗
2,nf3,n + g∗2,ng3,n + h∗1,nh4,n + j∗1,nj4,n = 0,

a∗3a1 + g∗3g1 + j∗3j1 = t3,1 = 0,

a∗3,na1 + g∗3,ng1 + j∗3,nj1 = 0,

a∗3a1,n + g∗3g1,n + j∗3j1,n = 0,

a∗3,na1,n + g∗3,ng1,n + j∗3,nj1,n = 0,

a∗4a2 + f∗
4 f2 + h∗4h2 = t4,2 = 0,

a∗4,na2 + f∗
4,nf2 + h∗4,nh2 = 0,

a∗4a2,n + f∗
4f2,n + h∗4h2,n = 0,

a∗4,na2,n + f∗
4,nf2,n + h∗4,nh2,n = 0,

ǫ0 = |a5|
2 + |b5|

2 + |c5|
2 + |d5|

2 + |e5|
2 − p,

ǫ1 = |a3|
2 + |a4|

2 + |b3|
2 + |b4|

2 + |d4|
2 +

|e3|
2 + |f3|

2 + |f4|
2 + |g3|

2 + |j3|
2 +

|j4|
2 + |h4|

2 − p,

ǫ2 = |a1|
2 + |a2|

2 + |c1|
2 + |c2|

2 + |d1|
2 +

|e2|
2 + |g1|

2 + |g2|
2 + |f2|

2 + |h1|
2 +

|h2|
2 + |j1|

2 − p,

U1 = 2[(a∗3a3,n + a∗3,na3 + |a3,n|
2) +

(a∗4a4,n + a∗4,na4 + |a4,n|
2) + (b∗3b3,n +

b∗3,nb3 + |b3,n|
2) + (b∗4b4,n + b∗4,nb4 +

|b4,n|
2) + (d∗4d4,n + d∗4,nd4 + |d4,n|

2) +

(e∗3e3,n + e∗3,ne3 + |e3,n|
2) + (f∗

3 f3,n +

f∗
3,nf3 + |f3,n|

2) + (f∗
4 f4,n + f∗

4,nf4 +

|f4,n|
2) + (g∗3g3,n + g∗3,ng3 + |g3,n|

2) +

(j∗4j4,n + j∗4,nj4 + |j4,n|
2) + (j∗3j3,n +

j∗3,nj3 + |j3,n|
2) + (h∗4h4,n + h∗4,nh4 +

|h4,n|
2)],

U2 = 2[(a∗1a1,n + a∗1,na1 + |a1,n|
2) +

(a∗2a2,n + a∗2,na2 + |a2,n|
2) + (c∗1c1,n +

c∗1,nc1 + |c1,n|
2) + (c∗2c2,n + c∗2,nc2 +

|c2,n|
2) + (d∗1d1,n + d∗1,nd1 + |d1,n|

2) +

(e∗2e2,n + e∗2,ne2 + |e2,n|
2) + (g∗2g2,n +

g∗2,ng2 + |g2,n|
2) + (g∗1g1,n + g∗1,ng1 +

|g1,n|
2) + (f∗

2 f2,n + f∗
2,nf2 + |f2,n|

2) +

(h∗1h1,n + h∗1,nh1 + |h1,n|
2) + (h∗2h2,n +

h∗2,nh2 + |h2,n|
2) + (j∗1j1,n + j∗1,nj1 +

|j1,n|
2)],

U0 = 2[(a∗5a5,n + a∗5,na5 + |a5,n|
2) +

(b∗5b5,n + a∗b,nb5 + |b5,n|
2) + (c∗5c5,n +

c∗5,nc5 + |c5,n|
2) + (d∗5d5,n + d∗5,nd5 +

|d5,n|
2) + (e∗5e5,n + e∗5,ne5 + |e5,n|

2)]. (3)

Some observations must be added to Eq.(3). First,
group of four equations are connected to different
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bonds in the first 36 equations (i.e. 9 group of 4 equa-
tions connected to 9 different bonds). The hopping
matrix elementstj2,j1 along the bonds(j2, j1) are de-
noted for simplicity bytℓ(j2),ℓ(j1) = tj2,j1 , so the in-
cell ℓ index of the sitesj2 andj1 (e.g. in the first line
of (3), t1 = ti+r1,i = t3,5, etc.). Second, for reasons
which will be clarified in the next section, the on-site
Hamiltonian contributions are consideredǫ′n = ǫn+p
insteadǫn present in the starting Hamiltonian from
Eq.(1), see Eq.(7).

4 The transformation of the Hamil-
tonian in positive semidefinite form

Given by the nonlinear structure of the block opera-
tors, both the kinetic and the interacting part of the
Hamiltonian will be contained in the same positive
semidefinite operators after the exact transformation
of the Hamiltonian in positive semidefinite form. In
order to show this, first we analyze a Lemma.

Lemma 4 All Hamiltonians describing physical sys-
tems can be written in positive semidefinite formĤ =
P̂ + C, whereP̂ is a positive semidefinite operator
andC a constant scalar.

Proof: Indeed, all Hamiltonians describing physical
systems have a spectrum bounded below [22]. The
lower bound of the spectrum is the ground state energy
Eg, hence, since do not has negative eigenvalues, the
operatorĤ − Eg is positive semidefinite, i.e.Ĥ −

Eg = P̂ , whereP̂ is a positive semidefinite operator.
FurthermoreEg = C is a scalar, consequentlŷH =

P̂ + C holds. Q.E.D.

Theorem 5 At constant number of total electronsN ,
and if the matching equations (3) hold (and allow so-
lutions) the Hamiltonian from Eq.(1) can be exactly
transformed in the positive semidefinite form

Ĥ = P̂ − pN̂ , (4)

whereN̂ =
∑

i,σ n̂i,σ represents the operator of the
total number of electrons,p is a scalar, and the posi-
tive semidefinite operator̂P has the form

P̂ =
∑

i,σ

[Â†
i,σÂi,σ + B̂

†
i,σB̂i,σ + Ĉ

†
i,σĈi,σ

+ D̂
†
i,σD̂i,σ + Ê

†
i,σÊi,σ + F̂

†
i,σF̂i,σ + Ĝ

†
i,σĜi,σ

+ Ĥ
†
i,σĤi,σ + Ĵ

†
i,σĴi,σ]. (5)

Proof: First, given by Lemma 1, since describes a
physical system, the Hamiltonian from Eq.(1) can be

transformed in positive semidefinite form̂H = P̂+C.
One shows below thatC is of the formC = −pN and
P̂ is of the form (5).

i) We observe that since the total number of
electrons in the system is a constant number N (i.e.
N̂ is a constant of motion, hence commutes with
Ĥ) , all eigenfunctions ofĤ, namely Ĥ|Ψn〉 =

En|Ψn〉 provide the same eigenvalueN for N̂ via
N̂ |Ψn〉 = N |Ψn〉. Furthermore, since the eigenvec-
tors ofĤ build up a base{|Ψn〉} for the Hilbert space
of the problem, all normalized wave vectors|Ψ〉 =∑

n cn|Ψn〉, wherecn are numerical coefficients, pro-
vide N̂ |Ψ〉 = N |Ψ〉, henceN̂ can be changed toN .
Consequently in (4),C = −pN holds.

ii) From Eq.(4) is seen that̂P = Ĥ +pN̂ . Taking
into account the expression of̂N given in Theorem 5,
and expression of̂H in (1) one obtains

Ĥ + pN̂ =
∑

i,σ

{[t1(ĉ
†
i,σ ĉi+r1,σ + ĉ

†
i+r1,σ

ĉi+a,σ +

ĉ
†
i+a,σĉi+r2,σ + ĉ

†
i+r2,σ

ĉi,σ) + t2(ĉ
†
i−a+r1,σ

×

ĉi+r1,σ + ĉ
†
i−a+r2,σ

ĉi+r2,σ) +H.c.] + (ǫ′1n̂i+r1,σ +

ǫ′2n̂i+r2,σ + ǫ′0n̂i,σ)}+
∑

i

(U1n̂i+r1,σn̂i+r1,−σ +

U2n̂i+r2,σn̂i+r2,−σ + U0n̂i,σn̂i,−σ), (6)

whereǫ′m = ǫm + p, andm = 0, 1, 2. Consequently,
if we introduce the notation̂H ≡ Ĥ(ǫm), then simply
Ĥ + pN̂ ≡ Ĥ(ǫ′m) holds, and the transformation in
Eq.(4) means in fact

Ĥ(ǫ′m) = P̂ . (7)

But the matching equations from Eq.(3) have been
constructed exactly based on the equality (7). Indeed,
effectuating the calculations in the right side of (5)
and taking into account (3) we recover the equality
(7). For example the operatorĉ†i+r1,σ

ĉi,σ which repre-
sents the hopping along the bondi+ r1, i described in
Ĥ by the hopping matrix elementt3,5 = t1, emerges
in P̂ only from three contributions, namely: from
Â

†
i,σÂi,σ, with the coefficienta∗3a5; from B̂

†
i,σB̂i,σ,

with coefficientb∗3b5; and finally fromÊ
†
i,σÊi,σ, with

coefficient e∗3e5. Using the notations of Definition
3, one has forÔn = ĉ

†
i+r1,σ

ĉi,σ the expressions
Vn,block = a∗3a5 + b∗3b5 + e∗3e5, Wn,H = t3,5 = t1,
consequently, from the equalityVn,block = Wn,H one
finds the matching equationa∗3a5 + b∗3b5 + e∗3e5 =
t1, which is placed on the first row of (3). The
following three rows are related to the correlated
hopping terms along the same bond, of the form
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Ôn1
= ĉ

†
i+r1,σ

ĉi,σn̂i+r1,−σ, Ôn2
= ĉ

†
i+r1,σ

ĉi,σn̂i,−σ,

and Ôn3
= ĉ

†
i+r1,σ

ĉi,σn̂i+r1,−σn̂i,−σ. The cor-
respondingV value of these contributions in or-
der becomesVn1,block = a∗3,na5 + b∗3,nb5 + e∗3,ne5,
Vn2,block = a∗3a5,n + b∗3b5,n + e∗3e5,n, andVn3,block =
a∗3,na5,n+b∗3,nb5,n+e∗3,ne5,n. Since such type of corre-
lation hopping operators are missing from the Hamil-
tonian (1), one hasWn1,H = Wn2,H = Wn3,H = 0,
hence the second, third and fourth rows of (3) arise.
All equalities from (3) are similarly obtained. Q.E.D.

5 How the matching equations can
be solved

The transformation (4) can be effectively used if the
block operator parameters, together with the scalar
p are explicitly known. For this to be possible, we
must solve the matching equations. These, present
in (3), are coupled non-linear equations whose un-
known variables are the block operator parameters and
p, while whose known variables are the parameters
of the startingĤ in (1), namely thet1, t2, ǫm, Um,
m = 0, 1, 2 values. Since it is difficult to provide so-
lutions for a huge coupled non-linear system of equa-
tions as (3), below we indicate how this can be done.

In order to provide solutions for (3) we used a
stochastic numerical code. This works as follows: 26
block operator parameters, namely

a5, b5, e5, e3, a3,n, b3,n, a5,n, b5,n, d4, d5,

a4,n, b4,n, a1,n, c1,n, d1,n, d1, e2, c2,n, g1,

g3, j1, g3,n, f2, f4, h2, f4,n, (8)

are statistically generated. Once numbers are given to
the parameters from (8), the rows 1-24 together with
the rows 29-36 of (3) become together a block diago-
nal non-homogenous linear system of equations, from
which the remaining 32 block operator parameters can
be deduced, namely

a3, b3, e3,n, e5,n,

a4, b4, d4,n, d5,n,

a1, c1, c5, c5,n,

a2, c2, e2,n, a2,n,

j3, j1,n, j3,n, g1,n,

h4, h4,n, f2,n, h2,n,

g2, h1, g2,n, h1,n,

f3, j4, f3,n, j4,n. (9)

Because of the block diagonal nature mentioned
above, in order, each row of (9) can be deduced only
from 4 linear non-homogenous equations provided by

(3) as follows: the first line of (9), from the 4 equa-
tions related tot3,5 [lines 1-4 from (3)]; the second
line of (9), from the 4 equations related tot4,5 [lines
5-8 from (3)]; the third line of (9), from the 4 equa-
tions related tot1,5 [lines 9-12 from (3)]; the fourth
line of (9), from the 4 equations related tot2,5 [lines
13-16 from (3)]; the fifth line of (9), from the 4 equa-
tions related tot3,1 [lines 29-32 from (3)]; the sixth
line of (9), from the 4 equations related tot4,2 [lines
33-36 from (3)]; the 7th line of (9), from the 4 equa-
tions related tot2,1 [lines 21-24 from (3)]; and finally,
the 8th line of (9), from the 4 equations related tot3,4
[lines 17-20 from (3)]. After this step the parameterp
is expressed from the 37th row of (3), i.e. the equation
for ǫ0.

At this moment 33 equations from (3) are satis-
fied, all unknown variables (i.e. all block operator pa-
rameters andp) have (stochastic) values, and only 9
equations remained [lines 25-28, and lines 38-42 from
(3)], namely those written for thet2,3 group of 4 re-
lations and the equations forǫ1, ǫ2, U1, U2, U0, which
have to be checked. The results of the checking is in-
troduced in a cost functionK =

∑
k=1,9 |Lk − Rk|,

whereLk, (Rk) represents the left (right) side of the
checkedk = 1, 2, .., 9 equations. The stochastic gen-
eration of the parameters from (8) is driven by the
minimization of the cost function K.

6 Conclusion

The exact transformation in positive semidefinite form
of a Hubbard type of Hamiltonian describing in the
present case a non-integrable fermionic itinerant chain
with quadrilateral cell is presented in details. The
transformation has the peculiarity that both the ki-
netic and interaction parts of the Hamiltonian are pro-
vided by the same positive semidefinite operators.
These last are constructed from block operators which
contain besides linear fermionic operator contribu-
tions, also nonlinear contributions written from three
fermionic operators. The transformation holds when
the matching equations, a coupled non-linear alge-
braic system of equations are satisfied, whose solv-
ing technique is also indicated. We note that also ex-
act diagonalization steps have been used for check-
ing different results. The procedure works in princi-
ple for Hubbard type of Hamiltonian describing other
systems as well independent on dimensionality.

We underline, that such transformations are
important since Hamiltonians written in positive
semidefinite form are objectives of a powerful tech-
nique which allows the deduction of exact results for
non-integrable quantum mechanical many-body sys-
tems.
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