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Abstract: - The propagation of shear waves in an anisotropic fluid saturated porous layer sandwiched between
homogeneous isotropic layer and isotropic half-space with irregularity present at the interface, has been examined.
The dispersion equation for shear waves is derived by using the perturbation technique. The effect of wave
number and irregularity are studied numerically. Also the dispersion curves for different size of irregularity are
compared graphically with the help of MATLAB. This study shows that the phase velocity is significantly

influenced by the wave number and the size of irregularity.
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1 Introduction

The earth has a layered structure, and this exerts a
significant influence on the propagation of elastic
waves. The propagation of elastic waves in
homogeneous layer is of considerable importance in
earthquake engineering and seismology. The study
of wave propagation in elastic medium with
different boundaries is of great importance to
seismologists as well as to geophysicists to
understand and predict the seismic behavior at
different margins of earth. The propagation of shear
waves has been studied by many authors with
assuming different forms of irregularities at the
interface. Bhattacharya [2] discussed the dispersion
curves for Love wave propagation in a transversely
isotropic crustal layer with an irregularity in the
interface. Jones [3] discussed wave propagation in a
two layered medium. Chattopadhyay et al. [4]
studied the propagation of SH guided wave in an
internal stratum with parabolic irregularity in the
lower interface. Konczak [5] derived dispersion
equation for shear waves in a multilayered medium
including a fluid saturated porous stratum. The
influence of irregularity and rigidity on the
propagation of torsional waves has been discussed
by Gupta et al. [6]. Love wave propagation in a
porous rigid layer lying over an initially stressed half
space is discussed by Kundu et al. [7]. For the elastic
and viscoelastic waves, a long list of references is
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available in the monographs of Lamb [8], Victorov
[9], Miklowitz [10] and Kolsky [11].

In this paper we have discussed the
propagation of shear waves in a transversely
isotropic fluid saturated porous layer resting on a
homogeneous elastic half space, lying under an
elastic isotropic and homogeneous layer with
irregularity at the interface. The irregularity is in the
form of rectangle. The perturbation technique
indicated by Erigen and Samuels [1] has been used.
The dispersion curves are depicted by means of
graphs for different size of irregularity and different
values of common wave velocity. The influence of
depth of irregularity on phase velocity and some
special cases have been studied.

2 Formulation of the Problem
A transversely isotropic fluid saturated porous layer
of thickness H, resting on a homogeneous elastic
half space, lying under an elastic isotropic and
homogeneous layer of thickness H; has been
considered. The Cartesian coordinate system (X, y, z)
is chosen with z-axes taken vertically downward in
the half space and x-axes is chosen parallel to the
layer in the direction of propagation of the
disturbance. We assume the irregularity in the form
of a rectangle with length s and depth H". The origin
is placed at the middle point of the interface
irregularity. The source of the disturbance is placed
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on positive z axes at a distance d (d>H") from the
origin. Therefore, the upper layer describes the

medium My—(H,+H,)<z<H,, the
intermediate layer describes the medium M;y:
—H,<z<0 and the homogeneous elastic half

space describes the medium Ms;: 0<z <o0.The
geometry of the problem is shown in figure: 1.

Z=(H+H)

Medium M, H, Isotropic Homogeneous Elastic Layer

=-H;

Medium M H; Transversely Isotropic Fluid Saturated Porous Layer

={ -5/2 0 52 X
H' Homogeneous Elastic Half Space

Source

Medium M;

F4

Figure 1: Geometry of the problem
The interface between the layer and half space is
defined as

7z=¢ h(x) Q)
0;x< —E, >3
where h(x) = 2 23 ?)
f(X);——<x<—
(X) 5
and e=— and e<<1.
S

3 Basic Equations
The basic equations for the medium considered are
as follows:

3.1 For Medium M;
The equations of motion, without body force [12]
are given by:

51)] — p(l) (l) 3)

®

where ¢ jjare the components of stress tensor,

ui(l) are the components of displacement vector, and

p(l)is the density. The comma denotes

differentiation with respect to position and dot
denotes differentiation with respect to time.
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The constitutive relations are given by
® 1) ©)
=178y 0 +2u eIJ , 4)

Where l()and uPare Lame’s elastic coefficients

and &; is the delta

1 1 1 1 1 1
2e()—(u()+u()) e() Igi_e() (5)

Kronecker and

3.2 For Medium M,
The equation of motion for the intermediate fluid
saturated porous layer in the absence of body forces
are [13]:

o = pllu(z) n Ple 2 b” (U 2 U(Z))

i, j
(2) — (2 (2) @ _ 1@

= P +p2U +by (Uj —u;”)
(2)

(6)
(")

where oy~ are the components of stress tensor in

the solid skeleton, o :—fp is the reduced
pressure of the fluid (p is the pressure in the fluid,
and f is the porosity of the medium), u”are the
components of the displacement vector of the solid
skeleton and U are these of fluid.

The stress-strain relations for the transverse-
isotropic fluid saturated porous layer are [13]:

oy =(2C, +C,)e? +C,e? +Cel? +Ce?
0P =Ce? +(2C,+C,)e? +C.e? +C.e®?
05 =Cel? +Cel +2C,e2 +Ce?
0Py =2C.e\2

®31 = 2C,ef?

@, =2Ce)
o =Cgel) +Ceel) +Creld +Cye®?
(8)

2e? = (u? +u®),
where e® =divu® =U{?, )
ey =divu® =u®
and C,,C,,C,,C,,C,,C,,C,,C; are the material
constants.

3.3 For Medium Mj;
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For the lower non-homogeneous half-space the basic
equations of motion, without body force are [12]:
ol = p(3)['ji(3), (20)

1.]
where Gﬁ are the components of stress tensor, u®

are the components of displacement vector, and
p(s) is the density.
The constitutive relations are given by

@) — 130 (®a®
oy =ATe 0y +2ue;”,

(11)
where A®and 4@ are Lame’s elastic coefficients
and are functions of x, y, z and

3 3 3 3) () _ a®
26" = () +ul)), ey =€ (12)

= Uk
In this paper, attention is confined to shear waves
propagating in the xy-plane. The displacements are
parallel to y direction and are independent of the y
coordinate. Thus

u® =w® =, v =v®(x,z,1),
u® =w® =0, v =v@(x,z,1), (13)

u® =w® =0, v® =v®(x,2,1),

and the equations of motion (3), (6), (7) and (10)
with the help of (4), (5) and (8), (9) and (11), (12)
respectively reduce to the form

iJri e _ 1Y (14)
ox* oz’ - pEoat?
1
2 2

Cla—2+C56—2—

woa v@v@ =0  (@5)
{,0 02 +b.0 _(plzatz_bllat)z}

10 T U0

Pzzat2 +0y,0,

il WO Wi @)

2 2 Y 2
oX® oz By ot

The appropriate boundary conditions for the
considered problem are as:

(i) At the free surfacez =—(H, +H,), the shear
stress component vanishes, ie.,

ol (x,z=—(H, +H,),t) =0. (17)

(ii) At the interface Z =—H,, the displacements are
continuous, ie.,
v (x,z=-H,,t) =v?(x,z=—H,,1). (18)

E-ISSN: 2224-3429

64

Ravinder Kumar, Dinesh Kumar Madan
Jitander Singh Sikka

(iii) At the interfacez =—H,, the shear stress
components are continuous, ie.,
o3P (X,z2=-H,,t) =02 (x,z=-H,,t). (19)

(iv) At the interface Z = éh(x) , the displacements are
continuous, i. e.,
v (x,z = eh(x),t) =v®(x,z = eh(x),t).  (20)
(v) The stresses are continuous at the interface
z=éh(x),i.e.,

(2) 2)
.Y
oz OX (21)
ov® 4 v
= —é&h' (X
'u( 0z () OX J
where h'(x) = M
dx

Thus equations (14)-(16) with above boundary
conditions are the governing equations of the
problem considered.

4 Solution of the Problem:
For waves changing harmonically with time t and
propagating in x-direction, we obtain

v (z,x,t) = v’ (z,x)exp(iot), (22)
vi®(z,x,1) =v{? (z,x)exp(iat), -

(23)
V@ (z,x,t) =V (z,x)exp(iwt), (24)
v®(z,x,t) = v (z,x) exp(iawt), (25)

where @ is the angular frequency.

Thus equations of motion (14)-(16) take the form of

GRS
2 2 2 !
OX (574 B (26)
0* o° 2 |, (2 \/ (2
Clax_z"'csﬁ‘*é (Vo 'Vo ):0’ (27)
2,,(3) 2,,(3)
oV’ 07V, a)_zv(3) 0 28)
D S
where
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= +ia,,

a,=Fa’lc,a,=Ra’/c¢,

:1+QZ;/22C'.Q
1+(Qrp)° C

_ (C—7,)Q e
1+(Q7,,)° c

C'=yn _712217/k| :%(kyl =12),

F=F()

R=R(w) (29)

~ oo}
Co = (P —P5 ! pp) " Q="

1
Q is the dimensionless frequency and cis the
velocity of shear wave in the porous layer.

Define the Fourier Transform V" (z,n)of v{’ (z,77)

00

as V" (27) = [v{" (2, x)e'™dx (30)
And inverse Fourier Transform is given by
VO (2,%) = — [V (2.m)e ™ dn, et (31)
2r 7

The Fourier Transform of equations (26)-(28) then

are
RV
7+ 210 =0,
0z (32)
2(2)
V,
aa S+ 12 =0, (33)
A
52\7(2) .
p —+ 1V =0, (34)
/A
62\7(3) 3
82 — 239 =0 (35)
Z
where

2 2

2 w 2 2 Cl[él
=7 W=~

' (f j AN

The solution of equations (32)-(35) is
v® = Acos y,z + Bsin gz,

nzj b4 =[n2—w—2j
- b

(36)
v{? =Ccos y,z+ Dsin y,z, (37)
V,® =Ccos y,z+Dsin g,z, (38)
\70(3) = Eexp(-x;2), (39)

where A, B, A,B, D are functions of n.
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Thus, by inverse Fourier Transform, we obtain

v (z,x) = % '[(Acos;(lz +Bsin y,2)e"™dn,  (40)

0

v (z,x) = % j(C cos y,z+Dsiny,2)e"™dn,  (41)

—0

V2 (z,%) = 1 j((fcos;(zz +Dsin y,z)e"™dn,
o (42)

v¥(z,x) = 1 I(Ee‘?‘aZ 42 gragat )e ™dn,
2r 7
- ; (43)
where the second term in the integrand of v{¥ (z,x)

is introduced due to the source in the lower half
space.

The relations between the constants C, D and C, D
are provided by eq. (15).
We set the following approximations due to small
value of &

A=A +Ae,B=B,+Be,C=C,+Ce,
D=D,+Dg¢,E=E;+Ege.

Since the boundary is not uniform, the terms
A,B,C,D,E inequation (44) are also functions of
¢ . Expanding these terms in ascending powers of
& and keeping in view that gis small and so
retaining the terms up to the first order of ¢,
A B,C,D,Ecan be approximated as in equation

(44). In physical situations, when the depth H' of
the irregular boundary is too small with respect to
the length of the boundary s, the above assumptions
are  justified. Further ~ for  small £

e**" =1+ aeh, cos y,eh =1,sin y,eh = y,éh
where ¢ is any quantity.

(44)

Defining Fourier Transform of h(x) as

h(1) = Th(x)e”xdx, (45)

And the inverse Fourier Transform is

h(x) = % T h(A)e d2, (46)

Therefore,  h'(x) = — .[/1 h(1)e*dA (47)

2
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Now, by using boundary conditions (17)-(21) along
with equations (40)-(41) and (43)-(44) we obtain a
system of ten equations (after equating the absolute
term (terms not containing £ ) and the coefficients of
g):

Aysin(H, + H,)x, + Bycos(H, + H,) , =0 (48)

A,cosH,y, —B,sinH, y,

. (49)
-C,cosH,y, +D,sinH,y, =0
,UZl[AoSin H,x, + B, cos Hzll] (50)
—C.2,[C,sinH,x, + D,cosH,z,]=0
C,—E, _ 2 g (51)
X3
#42Eq +Cs 7, Dy = 24277 (52)

Asin(H,+H,)x, +B,cos(H,+H,)r, =0 (53)
A cosH,y —B;sinH,y,

) (54)
—C,cosH,y,+D;sinH,y, =0.
/U(l[A.L sin H,x, + B, cos HzZl] (55)
—Csxz[Clsin H,x,+D,cosH,x,]=0.
ﬂZsE +CsZz =R, (k) (57)

where R, (k) and R, (k) are given by appendix-A.
Solving the above system of equations for
A, B,.C,, Dy, Ey, A,LB;,C,, D, E and the
corresponding values are given in Appendix-A.

The displacement in the anisotropic layer is

V@ _iw 4ﬂe_lad{1+5(Rz_ﬂZ3R1)ehd/4ﬂ}[Bz+Bg]eikx]dk
o = ,

) E(k)
(58)
where B, and B, are given by appendix-A.
Now from equations (1), (2) and (45), we have
h(1) = 2sins,
A 2 (59)

Using values of R, (k) and R, (k) as given in
appendix-A, we obtain
pk=72) |1
R, — uy,R sn—d/1 60
(R, —uxsR) = J.“’{+¢(k+/1) (60)

where @(k — A) is given in Appendix-A.

Using asymptotic formula of Willis [14] and Tranter
[15] and neglecting the terms containing 2/s and
highest powers of 2/s for large s, we obtain
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c[ok=2) 1 As ) )
LL s l)}— 41 7.20(6) = mi(K).

(61)
Now using equations (60) and (61), we obtain
R, — 1xsR, = sg(k) = —¢(k) (62)

Therefore the dlsplacement in the anisotropic layer
is

17 410" |
v = — - (B, + B, o " dk,
°2r L EMRL-Hy (ke | ok

00

(63)

where w (k) = @
7

The value of this integral depends entirely on the
contribution of the poles of the integrand. The poles
are located at the roots of the equation

E(k){l—H'y (K)e” }=0 (64)
This equation is the dispersion equation for SH
waves.

If ¢ is the common wave velocity of wave
propagating along the surface, then we can set in
equation (64) w =ck (w is the circular frequency
and kis the wave number),
1 =Pk, x, =Pk, y; = P,k where

[ fE
B Bs
1(c? .1 ¢
Pz = \/(C—S(%F(a)) _Clj+ IC_SER(CO)}

Solving equation (64), we obtain
[tan PKH, —tan Pk(H, + H,)]

R (04 PRHY[C,P, + P, tan PH,
o2 {—H 'P,k(C,P, tan P,kH, — uP,) }
[+ tan PkH, tan Pk(H, + H,)]
=| [H'Pk(C.P, + 1P, tan P,kH,)
{+ (1+ P,kH")[C,P, tan PkH, — ,uP3]}
Since the quantity Pz2 is complex, so we have
P, =k, +ik,, (66)

(65)
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where
1
2 2 2 2|2
LI Fw-c, |l + 1.5 R)
k. = 1 Cs \ G Cs G
1,2 —

(67)
Thus, the equation (65) is complex and its real part
gives the dispersion equation for shear waves.

5 Numerical Results

In order to investigate the effect of irregularity
present in the transversely isotropic fluid saturated
porous layer and to compare the results numerically
between the phase velocity and the wave number,
we will use the values of elastic constants given by
Haojiang Ding et al. [16] for medium M, and
Konczak [7] for medium M; and Ms. And by using
MATLAB, we obtain the following graph for
different values of common wave velocity ¢ for two
special cases as:

Case I: - When H,=0, H;=H, that is the wave

propagation in elastic homogeneous layer lying over
a homogeneous half space:

Dimensioniess Phase Velocity

Dimensioniess Wave Number
Figure 2: Variation of the dimensionless phase
velocity (c/cg) against the dimensionless wave

number (kH) for different values of H'/H (0,
0.15, 0.30, 0.45) and common wave velocity c=0.25.
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ess Phase Velocity

7

4 [T 06 o1 T 1] 1
Dimensioniess Wave Number

Figure 3: Variation of the dimensionless phase
velocity (c/cg) against the dimensionless wave

number (kH) for different values of H'/H (0,
0.15, 0.30, 0.45) and common wave velocity ¢=0.5.

Figure d

100} 08

Dimensiont
£
s

1] 08 ] 12 "
Dimensioniess Wave Number

Figure 4: Variation of the dimensionless phase
velocity (c/cg) against the dimensionless wave

number (kH) for different values of H'/H (0,
0.15, 0.30, 0.45) and common wave velocity c=0.75.

Case Il: - When H;=0, H,=H, that is the wave
propagation in a transversely isotropic fluid
saturated porous layer lying over a homogeneous
half space:
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Dimensioniess Phase Velocity

]! 1
2

] 45 5
Dimensionless Wave Number

Figure 5: Variation of the dimensionless phase
velocity (c/cg) against the dimensionless wave

number (kH) for different values of H'/H (0,
0.15, 0.30, 0.45) and common wave velocity ¢=0.25.

e

205

ase Velocity

Dimensicniess Ph.

y | | |
#] 25 3 35 4 45 5
Dimensioniess Wave Number

Figure 6: Variation of the dimensionless phase
velocity (c/cg) against the dimensionless wave
number (kH) for different values of H'/H (0,
0.15, 0.30, 0.45) and common wave velocity ¢=0.5.
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AT

] IT ;
Diménsioniess Wave Number

Figure 7: Variation of the dimensionless phase
velocity (c/cg) against the dimensionless wave

number (kH) for different values of H'/H (0,
0.15, 0.30, 0.45) and common wave velocity ¢=0.75.

The dimensionless phase velocity (C/Cg ) is

plotted against the dimensionless wave number (kH
) in Figures 2-7. It is clear from above figures that
the phase velocity decreases with increase in wave
number and also increase in the value of H'/ H .

6. Conclusions

Propagation of shear waves in a transversely
isotropic  fluid saturated porous layer with
irregularity over a homogeneous isotropic half space
and lying under an elastic isotropic and
homogeneous layer has been studied. The Eringen’s
perturbation method is applied to find the dispersion
equation and displacement field in the layer. The
effect of dimensionless wave number on dispersion
curve is shown graphically for different cases.
Variation of phase velocity for different ratio of
irregularity depth to the layer width is studied and
shown graphically. It has been observed that:

e In general the phase velocity of shear waves
in transversely isotropic fluid saturated
porous layer over a homogeneous half space
with irregularity decreases with the increase
in wave number.

e  Phase velocity is a function of wave number
as well as layer width and depth of
irregularity.
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Thus, it is concluded that the phase velocity in
transversely isotropic fluid saturated porous layer
sandwiched between isotropic layer and half space
with irregularity at the interface is significantly
affected by not only the depth of irregularity , but
also by wave number and ratios of the depth of the
irregularity to layer width and layer structure.
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Appendix-A
R = [[(Doza + Engry - 267 )] R2)2
T —00

_{C ZC 2 2 ~74d }I]Zk—l

L= (CsxzCo + 1B+ 27:67)

Rolk) =5 h(4)dA

,(K) 27 > —ﬂ,k{COCl+Iu(E0+£e—13d)} (2)
= Z3

A = 4,ue’)‘3d Cs 1, Seczlez +2uy, tanlez]COS}(sz

E(k)cos y,H,

B, =

__4pe’13d tan(H, + Hz);(l[CS;(2 sec’ JoH, +2uy, tan Zsz]cos;{zH2

E(k)cos z,H,

4.7 {W(l tan Zsz(tan xH;—tan x(H + Hz))}
C

+C,z,(1+tan yH, tan y,(H, + H,))

. E(K)
4ye’“d W(l(tan)(le_tan Ja(H + Hz))
~C,z,tan y,H,(1+tan y,H, tan z,(H, + H,))
27 E(k)

{,u;(l(tan H,—tan y,(H, + Hz))}

B 2e % (ﬂZg tan y,H, - C5Zz)

* " EK) +{C5;52(1+tan 2H, tan z (H, + Hz))} '
(Cslz tan y,H, + ,Uls)

[(ngz + iy, tan Zsz) ]

"‘tanZsz(CsZz tanlz"'z‘ﬁ%) |

A= (Rz _,uZaRi)COSZsz
E(k)cos yH,
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(R, — uxsR,) (C5Z2 + pystan Zsz)
dan y,(H, +H,) | +tan »,H,
B — .C0S y,H, -(Cslz tan y,H, _,uﬂfa)
! E(k)cos z,H,
Cslz(1+ tan y,H, tan y, (H, + Hz))
R, — uy.R tan y,H
(R, = ux;R) _,Ulltan)(sz[ Ay J
c - —tan 7, (H, + H,)
' E(k) ,
R R) ﬂ)(l(tan xH, —tan y(H, + Hz))_
D, = e M5 —-Cyy,tan y,H, ,

! E (k)
(L+tan y,H, tan y,(H, + H,))

[1+tan H, j

R,-C tan y,H
E Gy, (R, —Csx,R)tan y,H, tan z,(H, + H,)

' EK) '
+ /UﬁRl(tan xH, —tan z (H, + Hz))
where
_,U)( {(tan 7 H, —tan y (H, + Hz))}
1
tan y,H, +C
E(k) = (,uls VAARY! 5?(2)

c {(1+tan 7.H, tan x, (H, + HZ))}
. (0512 tan y,H, _ﬂls)

B, = iy (tanlle_tanll(Hl"'Hz))
*| (sin y,z—tan y,H, cos y,2)

5 _c (1+tan y,H, tan z,(H, + H,))
3= vk (cos y,z—tan y,(H, + H,))sin z,z
pk—-1)=A, + A,

A, =Cs2;C, _luls(lzDo _49_”)
+—e 4

A, = —ﬂk{Clco -I-,U(EO 2 H
X3
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