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Abstract: Transition from laminar flow to turbulent flow occurs very often and plays a crucial role in many 

practical engineering flows. There are many different kinds of transition and broadly speaking they can be 

classified into three categories: classical transition in attached boundary; bypass transition in attached 

boundary layer and separated boundary layer transition. This paper presents a comparative study of separated 

boundary layer transition on a flat plate with a blunt/semi-circular leading edge. 

    Boundary layer may separate due to an adverse pressure gradient or due to flow geometry. In the current 

study the geometry is a flat plate with two different leading edges: a blunt one and a semi-circular one. The 

main purpose of the study is to identify how similar or how different the transition process is with two 

different leading edges. This study shows that for both cases (blunt and semi-circular leading edges) the 

primary two-dimensional instability originates from the free shear layer of the separation bubble via the 

Kelvin-Helmholtz mechanism.  Three-dimensional motions develop under any small spanwise disturbances 

and similar coherent structures have been observed from flow visualization in both cases, strongly indicating 

that the transition process is very similar. 
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1   Introduction 
Transition from laminar boundary layer flow to 

turbulent boundary layer flow occurs in a wide 

range of practical engineering applications. The 

transition process has a great influence on the flow 

development downstream and it is very important to 

have a good understanding of the flow physics 

involved in order to predict it accurately, and to 

control it when needed. However, our current 

understanding of transition is far from complete, 

especially for separated boundary layer transition 

where the instability usually initiates from the free 

shear layer of a separation bubble.  

   Boundary layer may separate due to either an 

adverse pressure gradient such as aerofoil flow or 

due to flow geometry such as flows over vehicles, 

humps and other forms of localized surface 

curvature variations. Even at relatively low 

Reynolds numbers free shear layer in a separated 

laminar boundary layer may become inviscidly 

unstable and hence it undergoes a transition to 

turbulence. It is usually difficult to study it either 

experimentally (limited temporal and spatial 

resolution of flow parameters and hence a thorough 

description of the transition process is very hard) or 

theoretically (limitation imposed by nonlinearity of 

the transition process at later stages). It is also 

extremely hard, if not impossible, to study and 

predict the transition process accurately employing 

the conventional Reynolds-Averaged-Navier-Stokes 

(RANS) approach with several different methods 

since it only predicts the time- or ensemble-

averaged flow field [1]. An alternative approach is 

called Large-Eddy Simulation (LES) first proposed 

by Smagorinsky [2] which computes large scale 

motions (large eddies) of transitional/turbulent flow 

directly and only small scale motions, called Sub-

Grid Scale (SGS), are modelled whereas in the 

RANS approach all scale motions are modelled. 

Hence LES is more accurate than the RANS 

approach and computationally much cheaper than 

another approach called Direct Numerical 

Simulation (DNS) which computes fluid motions at 

all scales down to the smallest scale using very fine 

mesh. DNS is far too expensive for any practical 

engineering calculations and only used as a research 

tool for low Reynolds number flows.  

   Flow separation triggered by a blunt leading edge 

occurs in many practical situations such as flow over 

vehicles and flow over buildings while in many 

other cases flow separation is triggered by a smooth 

leading edge such as flow over aircraft wings and 
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flow over compressor/turbine blades. Many studies, 

both experimentally and numerically, have been 

carried out on blunt leading edge separation flows 

[3, 4, 5, 6, 7, 8] and smooth leading edge separation 

flows [9, 10, 11]. It is reasonably well understood 

for a bluff body that smooth edges could improve 

the aerodynamics characteristic of the body. 

However, it is not clear how different or similar the 

transition process could be with different leading 

edges. This paper presents a numerical study of the 

transition process in a separated boundary layer on a 

flat plate with two different leading edges (blunt and 

semi-circular) using LES.     

 

 

2 Mathematical Formulation 
 

2.1 Governing Equations 
The governing equations for any fluid flow can be 

derived from the fundamental conservation laws for 

mass, momentum and energy. Generally speaking 

those conservation equations are three dimensional 

and time dependent, and may take different 

mathematical forms depending on the co-ordinates 

used. In LES only large eddies (large scale motions) 

are computed directly and hence a so called low-

pass spatial filter is applied to the instantaneous 

conservation equations to formulate the 3D 

unsteady governing LES equations. When the finite 

volume method is employed the equations are 

integrated over control volumes, equivalent to 

convolution with a top-hat filter, hence there is no 

need to apply a filter to the instantaneous equations 

explicitly and in this case it is called implicit 

filtering. The governing LES equations are fairly 

standard and can be found in many text books [12, 

13, 14] and papers [15, 16, 17, 18] so that they will 

only be very briefly presented here. 

   The governing LES equations expressing 

conservation of mass and momentum in a  

Newtonian incompressible flow in Cartesian form 

can be written as 
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   The SGS viscosity needs to be calculated from a 

SGS model [19, 20] and the most basic model is the 

one originally proposed by Smagorinsky [2]: 
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   SC is the Smagorimsky constant and typical value 

used for it is 0.1. This simple model has been used 

widely and proved surprisingly successful although 

it has clear shortcomings such as that it is too 

dissipative and the Smagorinsky constant should be 

different for different flows. One way to improve 

this simple SGS model was proposed by Germano, 

Piomelli, Moin and Cabot [21] – a dynamic SGS 

model, which allows the model constants
 SC

 
to be 

determined locally in space and in time during the 

simulation. Generally speaking if the mesh is fine in 

LES then SGS models may not play an important 

role at all as most of the turbulent motions will be 

computed directly. However, Reynolds number in 

representative engineering flows is usually quite 

high and hence it would be very expensive if a fine 

mesh is used, or when very fine mesh cannot be 

afforded. Therefore the SGS modelling of small-

scale turbulence is of primary importance in LES for 

industrial flows, especially at high Reynolds 

numbers when relatively coarse grids are being used. 

Unfortunately all current available SGS models are 

not satisfactory when coarse mesh is used in LES so 

that it is highly necessary to develop advanced SGS 

models that are capable of handling practical 

engineering turbulent flow at high Reynolds 

numbers. 

   The Poisson equation for pressure can be derived 

by taking the divergence of (2) 
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             (5) 

 

and using equation (1) one finally obtains 
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where 
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It is computationally very expensive to solve 

equation (6) for 3D high Reynolds flows and one 

way to speed up the solution is to Fourier transform 

the equation in z direction to obtain a set of 

decoupled 2D equations: 
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Provided flow is homogeneous in z direction so that 

a periodic boundary condition can be applied. zk  is 

the discrete Fourier wave number given as 
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  (9) 

 

The two-dimensional equation (8), one for each 

value of zk  can be solved very quickly even when 

the geometry is complex as long as flow is 

homogeneous in z direction. 

 

2.2 Numerical Method 
The numerical method used in the present study is 

direct descendant of well-known finite-volume 

techniques successfully used for many high-

Reynolds-number LES studies. A standard dynamic 

SGS model is used to approximate the unknown 

SGS stresses. The explicit second order Adams-

Bashforth scheme is used for temporal discretisation 

and the spatial discretisation is the second-order 

central differencing which is widely used in LES 

owing to its non-dissipative and conservative 

properties. The Poisson equation for pressure is 

solved using an efficient hybrid Fourier multi-grid 

method. Details of the numerical method and the 

dynamic subgrid-scale model have been reported 

elsewhere by Yang & Voke [9, 17]. 

 

2.3 Computational Details 
Two numerical simulations of separated boundary 

layer transition under zero free stream turbulence on 

a flat plate have been performed, one with a blunt 

leading edge and the other one with a smooth semi-

circular leading edge. Figure 1 shows the 

computational domain and mesh.  

   For the semi-circular leading edge case, the 

circular inflow boundary and the lateral boundaries 

are 8H distant from the surface, corresponding to a 

blockage ratio of 16, H is the plate thickness, also 

equal to the diameter of the leading edge circular 

diameter (0.01m). A free-slip but impermeable 

boundary is applied on the lateral boundaries. On 

the outflow boundaries, 9.5H downstream of the 

leading edge, a convective boundary condition is 

applied. The spanwise dimension of the domain is 

4H and a periodic boundary condition is applied in 

this direction. The mesh points are 408 (streamwise, 

wrapped round the leading edge) by 72 (wall-

normal, clustered in the near wall region) and by 64 

(spanwise). The inflow velocity U0 is uniform and 

aligned with the plate. The Reynolds number based 

on the inflow velocity and the plate leading-edge 

diameter is 3450. In terms of wall units based on the 

shear layer downstream of reattachment at x/xR = 

2.5 (xR is the mean separation bubble length), the 

streamwise mesh sizes vary from ∆x+ = 10 to 30.5, 

∆z+ is about 20, nearest to the wall the minimum 

∆y+ = 1 so that no-slip wall boundary condition is 

directly applied at the plate surface without the need 

of wall functions and the maximum ∆y+ = 90. The 

time step used in the simulation is 0.005H/U0. 

Statistics were gathered by averaging in time once 

the simulation reached a statistically stationary state 

and also over the span direction and on both sides of 

the plate. The simulation was run initially for 

40,000 time steps to allow the transition and 

turbulent boundary layer to become established, and 

the mean quantities were then gathered over a 

further 60,000 steps with a sample taken every 20 

time steps (3,000 samples).  

 

 
    

 Fig. 1 computational domain and mesh. 

 

   For the blunt leading edge case, the computational 

domain is 25H along the x direction (streamwise), 

16H in the y direction (normal) and 4H in the z 

direction (spanwise), H is the plate thickness and is 

the same as in the semi-circular leading edge case 

(0.01m). The inflow boundary is 5H from the 

leading edge whereas the outflow boundary is 20H 

downstream the leading edge. The lateral 

boundaries are at 8H from the surface, 

corresponding to a blockage ratio of 16 which is the 

same as in the semi-circular leading edge case. The 
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mesh points are 256 along the x direction, 212 in the 

y direction and 64 in the z direction. In terms of 

wall units based on the friction velocity downstream 

of reattachment at x/xR = 2.5, the streamwise mesh 

sizes vary from ∆x+ = 9.7 to 48.5, ∆z+ is around 20 

and nearest to the wall the minimum ∆y+ = 2 and 

the maximum ∆y+ = 50. The Reynolds number 

based on the inflow velocity and plate thickness is 

6500 and the time step used in the simulation is 

0.001885H/U0. Similar boundary conditions as in 

the semi-circular leading edge case are employed. 

The simulation initially was run for 70,000 time 

steps to allow the transition and turbulent boundary 

layer to become established, and the averaged 

results were then gathered over a further 399,000 

steps with a sample taken every 10 time steps 

(39,900 samples) and averaged over the spanwise 

direction too.  

 

 

3   Results and Discussion 
 

3.1  Mean variables 
One of the most important parameter characterizing 

a separated/reattached flow is the time mean 

position of the reattachment, i.e. time-averaged 

separation bubble length so that it is important to 

calculate it accurately. Usually there are four 

methods to determine the mean reattachment point, 

i.e., (a) by the location at which the mean velocity is 

zero at the first grid point away from the wall or 

where velocity changes from negative to positive; 

(b) by the location of zero wall-shear stress; (c) by 

the location of the mean dividing streamline; (d) by 

a p.d.f method in which the mean reattachment 

point is indicated by the location of 50% forward 

flow fraction. The first three methods have been 

found usually to give the reattachment point within 

0.1% difference, and are about 2% different for the 

p.d.f results. In the present study the first method 

was used and for the semi-circular leading edge 

case the simulated mean separation bubble length is 

about 2.6H (H is the plate thickness, the same as the 

leading edge diameter) and the measured mean 

bubble length is about 2.75H. The simulated mean 

bubble length agrees well with the experimental one 

and the small discrepancy is likely due to different 

blockage ratios (blockage ratio of the experiment is 

about twice that of the simulation). For the blunt 

leading edge case the measured mean bubble length 

is about 7.7H (H is the plate thickness) while the 

simulated one is about 6.5H. A reasonably good 

agreement is also obtained and again the 

discrepancy is mainly due to different blockage 

ratios (blockage ratio of the experiment in this case 

is about 4 times that of the simulation). It also worth 

pointing out that the mean separation bubble length 

is much larger in the blunt leading edge case which 

is understandable as the flow in this case is forced 

to turn almost 900 from horizontal direction to 

vertical direction at the leading edge, leading to a 

much bigger separation bubble.  

   The predicted mean velocity and turbulence 

quantities compare well with the corresponding 

experimental data in both cases, especially for the 

smooth leading edge case. Figures 2(a) and 2(b) 

show the mean and r.m.s. fluctuating parts of the 

streamwise velocity compared with experiment 

(Coupland, private communication) at seven 

streamwise stations for the smooth leading edge 

case. The profiles are plotted as functions of y/xR at 

corresponding values of x/xR. As can be seen from 

figure 2(a) excellent agreement between the 

experimental data and the simulated results has been 

obtained for the mean streamwise velocity profiles. 

Differences in the free stream arise entirely from the 

differences in the blockage ratio. The agreement for 

the r.m.s. fluctuations, as shown in figure 2(b), is 

also good, except that the simulation shows higher 

peaks of u’ occurring closer to the wall at two 

stations in the bubble, especially at x/xR = 0.66 

where the discrepancy between the peak values is 

about 25%, but lack of experimental data (taken 

with a single hot-wire probe) in the near wall region 

makes detailed comparisons difficult. After the 

reattachment, the agreement is much better. 

      (a) 

 
                 U/U0 

      (b) 

 
    u’/U0 
 

Fig. 2 Mean axial velocity and r.m.s profiles at 

seven axial locations measured from the blend point 

for the smooth leading edge case. Left to right, x/xR 

= 0.22, 0.44, 0.66, 1.09, 1.64, 2.55. Solid line, LES; 

symbols, experimental data. 
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      (a) 

 

                U/U0   

                   (b) 

 
               u’/U0 

 

Fig. 3 Mean axial velocity and r.m.s profiles at five 

axial locations measured from the leading edge for 

the blunt leading edge case. Left to right, x/xR = 0.2, 

0.4, 0.6, 0.8, 1.0. Solid line, LES; symbols, 

experimental data. 

 
Figures 3(a) and 3(b) show the comparison between 

the predicted mean streamwise velocity  and r.m.s 

profiles and the experimental data [3] at five 

streamwise locations for the blunt leading edge 

case. The profiles are plotted as functions of y/xR at 

corresponding values of x/xR, with the velocity and 

r.m.s values normalised by the free stream velocity. 

The experiment was carried out at a higher 

Reynolds number (26,000) and hence the flow was 

turbulent rather than transitional in the experiment.  

The LES results show a reasonably good agreement 

with the experimental data, not as good as for the 

smooth leading edge case. The predicted peak and 

the free stream values of the velocity are bigger than 

those measured whereas the r.m.s values at the first 

two stations are smaller. Those discrepancies are 

due to the differences in blockage ratio (nearly 4 

times in the experiment as in the current study), due 

to the Reynolds number differences (26,000 in the 

experiment and 6500 in the current study) and 

maybe mainly due to the fact that it was turbulent 

separation at the leading edge in the experiment 

while it is laminar separation in the current study.  

 

 

3.2  Transition Process 
The transition process can be clearly seen from 

figure 4 which shows two snapshots (one for the 

semi-circular leading edge case and the other one 

for the blunt leading edge case) of instantaneous 

spanwise vorticity in the (x, y) plane at the mid-

span location (it looks very similar at different 

spanwise locations). Snapshots at other times are 

also very similar and hence will not be presented. It 

is evident that transition processes are very similar 

for both cases and it occurs earlier in the blunt 

leading edge case. At early stage of the separation 

bubble a steady free shear layer develops associated 

with formation of two-dimensional spanwise 

vortices; the free shear layer is inviscidly unstable 

and any small disturbances present grow 

downstream causing the deformation and distortion 

of the initial two-dimensional spanwise vortices. 

Further downstream those two-dimensional vortices 

become more distorted and deformed, and roll up 

leading to streamwise vorticity formation associated 

with significant three-dimensional motions, 

eventually breaking down at about the reattachment 

point and developing rapidly into a turbulent 

boundary layer. This process can be seen more 

clearly in figure 7 which shows three-dimensional 

coherent structures. Again it can be seen clearly that 

transition processes in both cases are very similar 

with almost identical coherent structures: two-

dimensional vortices, usually called Kelvin-

Helmholtz vortices or billows, at early stage and 

three-dimensional vortical structures called hairpin 

or Λ-shaped vortices further downstream before 

breaking down to small scale turbulence. 

 

 
 

 
 Fig. 4 Instantaneous spanwise vorticity in the (x, y)  

plane, above: smooth leading edge; below: 

blunt leading edge. 

 

   It is clear from the above discussion that 

qualitatively the transition processes in both cases 

are very similar and the free shear layer becomes 

unstable via an inviscid instability which is most 

likely the Kelvin-Helmholtz instability. Detailed 
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quantitative analysis will be carried out here to 

clarify this point. 

 

3.3  Instability of the Free Shear Layer 
The Kelvin-Helmholtz instability was originally 

derived from two parallel stream of fluids with 

different velocity and density. Hence there are 

discontinuities in density and velocity at the 

interface. Chandrasekhar [22] considered the case of 

continuous variation of velocity and certain 

distribution of ρ (characterized by the Richardson 

number) and concluded from the inviscid linear 

stability analysis that, for any values of the 

Richardson number, there are always bands of 

wavelengths for which the Kelvin-Helmholtz 

instability occurs. In particular, when the 

Richardson number is zero, i.e. for constant density, 

the condition for the Kelvin-Helmholtz instability to 

occur is 0 < Kh < 1.2785 where K is the wave 

number and h is the shear layer thickness. Both K 

and h can be extracted from LES data in the present 

study and for the semi-circular leading edge case 

Kh = 0.984 and for the blunt leading case Kh = 

1.1245 (h is the shear layer thickness where the 

unsteadiness first becomes apparent and K = 2πf/c, f 

is the characteristic frequency which is obtained 

from the spectra analysis as shown in figure 5 and c 

is the wave speed equal to the velocity at the critical 

layer, i.e., the streamwise velocity at the inflection 

point). Hence it can be concluded that the free shear 

layer in both cases becomes unstable via the same 

instability, Kelvin-Helmholtz instability.   

 
 

3.4  Vortex Shedding 
It has been evident from experimental studies [3, 4, 

5] that separated-reattached flows in a blunt leading 

edge are associated with vortex shedding and the 

measured average shedding frequency is about 0.6 – 

0.7U0/xR (U0 is the free stream velocity and xR is the 

mean separation bubble length). In addition, there is 

a low frequency peak according to the experimental 

data. Figure 5 presents the velocity spectra for the 

semi-circular leading edge and the blunt leading 

edge cases and it can be seen clearly that there is a 

peak band of frequencies for both cases, not 

periodic in the sense that there is only a single 

frequency. The shedding process occurs within a 

narrow band of frequencies and for the semi-

circular leading edge case the predicted average 

frequency can be estimated at about 0.74U0/xR. For 

the blunt leading edge case the predicted average 

frequency is about 0.78U0/xR, both values are close 

to the experimental data, indicating that the 

simulations capture the flow physics of vortex 

shedding well and also confirm that the shedding 

process in both cases are very similar. The low 

frequency peak observed in many experimental 

studies are not apparent in the present study 

although in the semi-circular leading edge case a 

low frequency peak band was visible further 

upstream as shown in figure 6 and an explanation 

was given regarding how it happens [9]. However, 

this low frequency has not been observed in the 

LES studies for the blunt leading edge case [7, 8] 

and further investigation is needed in this area to 

fully understand this phenomenon. 

 

 
 

 

 

 

 

 

 

 

 

              
 

Fig. 5 Velocity spectra, above: semi-circular leading 

edge at x/xR = 0.7 and y/xR = 0.04; below: blunt 

leading edge at x/xR = 0.5 and y/xR = 0.13. 

 

    
                f (Hz) 

 

Fig. 6  Power spectrum of u’ at x/xR = 0.35 and y/xR 

= 0.04 for the semi-circular leading edge case. 
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3.5  Large-Scale Vortex Structures 
It has been well established that large scale 

structures, usually called coherent structures, exist 

in many transitional and turbulent flows. The 

topology and range of scales of those large scale 

structures vary from flow to flow such as counter-

rotating vortices in wake flows, streaks and hairpin 

vortices in turbulent boundary layer. In the present 

study the flow visualisation reveals various kinds of 

large scale 2D and 3D structures as shown in figure 

7.  

 

 
 

 
 

Fig. 7 Low-pressure iso-surfaces showing the 

transformation of Kelvin-Helmholtz rolls into 

hairpin or Λ-shaped vortices, above: semi-circular 

leading edge; below: blunt leading edge. 

 
  The free shear layer becomes unstable due to 

Kelvin-Helmholtz instability and the two-

dimensional Kelvin-Helmholtz rolls are shed 

downstream of the plate leading edge and become 

distorted as they travel downstream. The Kelvin-

Helmholtz rolls are subjected to approximately 

sinusoidal undulation (waviness) along the 

spanwise. It can clearly be seen that the axis of the 

the spanwise rolls remains perpendicular to the flow 

direction thus keeping their coherency and two-

dimensionality nature up to a certain distance 

downstream. Further downstream the above 

described 2D spanwise coherent vortical structures 

become more distorted (specially the initially shed 

roll) leading to the appearance of a well-organised 

array of streamwise vortices originating from the 

initially shed vortical tube, and transform into three-

dimensional vortical structures called Λ-vortices as 

shown in figure 7. This process is quite similar in 

both cases. 

   The 2D Kelvin-Helmholtz rolls can be 

transformed into 3D vortical structures called Λ-

vortices as shown in figure 7. However it is also 

possible that those 2D rolls can be transformed into 

another form of 3D vortical structures called ribs 

[23] as shown in figure 8 below. It can be seen from 

these figures that the Kelvin-Helmholtz rolls have 

been transformed into streamwise ribs connecting a 

totally distorted and torn apart spanwise vortical 

structures. It is quite tempting to assume that these 

ribs are actually originating from Lambda-shaped 

vortices which are subjected to more stretching 

along the axial direction leading to the 

disintegration of its legs. 

 

 

 
 

Fig. 8 Low-pressure iso-surfaces displaying the 

transformation of 2D Kelvin-Helmholtz rolls into 

streamwise large-scale vortical structures called ribs 

for the blunt leading edge case. 

 

   The transition process is usually very complicated 

and can follow many possible routes. For attached 

boundary layer transition the transition process can 

be divided into the following several stages [24]:  

   1). Receptivity stage – how the disturbances are 

projected into growing eigenmodes, or how they 

enter or otherwise induce disturbances in a 

boundary layer. 

   2).   Linear growth stage (primary instability) – 

small disturbances are amplified till they reach a 

size where nonlinear growth starts. This 

amplification can be in the form of exponential 
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growth of eigenmodes, nonmodal growth of optimal 

disturbances, or nonmodal responses to forcing. 

   3). Secondary instability – Usually once a 

disturbance reaches a finite amplitude it often 

saturates and transform the flow into a kind of new, 

possibly steady state. Very rarely the primary 

instability can lead the flow directly in a turbulent 

state and the new steady or quasi-steady flow 

becomes a base on which secondary instability can 

occur. This secondary instability can be viewed as a 

new instability of a more complicated flow. 

   4). The breakdown stage – nonlinearities and 

possibly higher instabilities excite an increasing 

number of scales and frequencies in the flow. This 

stage is more rapid than both the linear stage and 

the secondary instability stage. 

   However, for the separated boundary layer flow 

the transition process is less well understood 

compared with the attached boundary layer 

transition. It is proposed [6] that this transformation 

of the Kelvin-Helmholtz rolls into the three-

dimensional vortical structures is likely due to a 

secondary instability, the helical pairing instability, 

which is a kind of two-dimensional subharmonic 

Eckhaus-type secondary instability [24]. The result 

is the growth of a disturbance with twice the 

wavelength of the initial vortices, producing a 

pairing of two vortices into a row of vortices, which 

can be seen from figure 9.   

 

 
 

 
 
 

Fig. 9 Pairing of 2D Kelvin-Helmholtz rolls, 

indicating a kind of 2D subharmonic secondary 

instability for the blunt leading edge case.   

 
   Another possibility is that the 2D Kelvin-

Helmholtz vortices can experience the so called 

three-dimensional elliptic-type secondary instability 

[24] and the result is the growth of spanwise 

disturbances on the 2D vortices in conjunction with  

the appearance of secondary streamwise vortices 

connecting the original spanwise vortices. Once the 

three-dimensional disturbance reaches a finite 

amplitude it leads to a bending of the core of the 2D 

vortices in the streamwise direction, eventually 

resulting in the so called rib vortices as shown in 

figure 8. It is not entirely clear which secondary 

instability is more dominant as both the pairing of 

vortices and the rib vortices have been observed in 

the present study, especially in the blunt leading 

edge case and further study is needed to clarify this 

point. 

   The breakdown stage occurs around the 

reattachment point and it happens rapidly as 

mentioned above, associated with irregular vortex 

shedding and the instantaneous reattachment point 

is moving upstream and downstream greatly. The 

instantaneous reattachment point can move about 

50% of the mean bubble length. Immediately after 

the reattachment point a turbulent boundary layer 

forms quickly but it takes a quite long distance 

downstream for the log law and inner turbulence 

structures to develop as reported by many studies 

[25, 26, 27]. Since the final stage of breakdown is 

very complicated and involves strong nonlinearities 

and possibly higher instabilities so that both 

experimental and theoretical studies have their 

limitations and the most promising tools to study 

this is numerical simulations.  

 

 

4   Conclusion 
This paper presents a comparative study of 

transition process of a separated boundary layer on 

a flat plate with two different leading edges (blunt 

and semi-circular). The entire transition process, 

starting from initial instability in the free shear layer 

of the separation bubble and eventually leading to 

breakdown to turbulence has been visualized for 

both cases. It can be seen clearly that transition 

processes in both case are very similar with similar 

two-dimensional Kelvin-Helmholtz rolls and three-

dimensional vortical structures (Λ-vortices) 

observed at various stages of the transition process 

in both cases. From detailed quantitative analysis of 

the LES data it has been shown that the free shear 

layer formed in the separation bubble is inviscidly 

unstable via the Kelvin-Helmholtz instability 

mechanism in both cases. These initial two-

dimensional instability waves grow downstream 

linearly, with slow development of three-

dimensional motions via possibly a secondary 
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instability mechanism responsive to any small 

spanwise disturbance. Further downstream the 

distorted spanwise two-dimensional vortices roll up, 

leading to the formation of three-dimensional 

vortical structures. Breakdown to turbulence occurs 

around the mean reattachment point and the flow 

develops into a turbulent boundary layer rapidly 

after the reattachment.  

   Similar vortex shedding from the separated free 

shear layer has been observed in both cases. This is 

not periodic in the sense that a unique frequency 

exists, and the predicted average characteristic 

shedding frequencies in both cases are close to the 

measured value indicating that the numerical 

simulations have captured the flow physics well. 

Nevertheless the low frequency peak observed in 

several experimental studies of separated flow over 

a blunt plate is not apparent in the simulations. 

   The transformation of two-dimensional Kelvin-

Helmholtz rolls into three-dimensional vortical 

structures may be due to a secondary instability,  a 

kind of two-dimensional subharmonic Eckhaus-type 

secondary instability or a three-dimensional elliptic-

type secondary instability, and further studies are 

needed to clarify this. Other factors which can 

influence the transition process in a separated 

boundary layer such as free stream turbulence have 

not been discussed at all in the present paper. The 

final breakdown stage to turbulence is far from fully 

understood and further research in this area is much 

needed. 
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