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Abstract: - The paper is devoted to improving and simplifying determination of the relaxation and retardation 
spectrum (RRS). A concept is postulated that determination of RRS from some specially selected material 
responses differing from the explicitly defined material functions, such as the real or imaginary parts of 
complex compliance and complex modulus, may improve the recovery performance at the price of better 
measurability of these specific material responses. As one of possible implementations of the postulated 
concept, we propose to recover RRS from the modulus (absolute value) of a complex frequency-domain 
(dynamic) material function, which, compared to the real or imaginary part, can be more accurately and easy 
acquired by measuring the amplitudes of harmonic responses of a material. It is demonstrated that RRS 
recovery problem from the modulus of a complex frequency-domain material function may be interpreted as a 
filtering task with a diffuse magnitude response bounded by the responses of the Mellin deconvolution filters 
corresponding to the minimum (zero) and maximum imaginary parts according to the Kramers-Kronig relation. 
A discrete RRS recovery filter operating with geometrically sampled data is constructed for recovering RRS 
from the modulus and the simulation results are presented. A measurement system is proposed implementing 
RRS recovery through the modulus of a complex frequency-domain material function, where a material under 
test is subjected to multi-harmonic excitation at geometrically spaced frequencies with subsequent measuring 
the amplitudes of multi-harmonic responses and processing them by a discrete RRS recovery filter. 
 
Key-Words: - Relaxation and Retardation Spectrum (RRS), Modulus of a Complex Frequency-Domain 
Function, Complex Compliance, Complex Modulus, Mellin Deconvolution Filter, Diffuse Magnitude Response 
 

1   Introduction 
Relaxation and retardation spectrum (RRS) is one of 
the most fundamental quantities in linear theory of 
viscoelasticity [1-4] and other relaxation theories  
[4-6]. RRS relates to molecular structure of materials 
[7-9], it is independent of loading (excitation) and is 
used in various studies, such as examination of the 
relationship between the molecular weight 
distribution and properties of a material, prediction 
of the behaviour of materials after an arbitrary 
excitation, interconversion of material functions, etc. 
     Traditionally, RRS is determined from various 
experimental time-domain (static) or frequency-
domain (dynamic) material functions, which go by 
different names in specific experiments [1-6]. 
However, in the most cases, these functions represent 
the characteristic responses of a material to the three 
standard excitations (loadings) [10], such as step (the 
Heaviside step function), impulse (the Dirac delta 
function) and harmonic (the steady-state sinusoidal) 
ones, and may be generalized into two categories as 
modulus functions in the case of the displacement 

(strain, charge, etc.) excitation and compliance 
functions in case of the force (stress, voltage, etc.) 
excitation.  
     In its turn, approaches used for RRS 
determination can be classified as parametric and 
non-parametric ones [11,12]. The parametric 
approach presumes an a priori model form for the 
material behaviour and RRS is determined based on 
parametric curve fitting techniques. Contrary, no any 
assumption made about the material behaviour for 
the non-parametric approach, where RRS is 
determined by numerical inversion of the integral 
transforms, which interconnect the material 
responses with the spectrum. These inversions are 
known to be fundamentally ill-posed in the sense that 
small perturbations in the input data can yield 
unrealistic high perturbations in the spectra. 
     Despite that the performance of RRS recovery, 
particularly for non-parametric methods, depends on 
both the experimental stage (input data acquisition) 
and on the data processing stage (RRS recovery), 
determination of RRS is generally considered only as 
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a one-stage operation of construction of a recovery 
algorithm from the explicitly defined material 
functions. 
    Since no processing result is better than the input 
data behind it, we postulate a concept that 
determination of RRS from some specially selected 
material responses differing from traditionally used 
material functions may improve the performance of 
RRS recovery at the price of the better measurability 
of these specific material responses. 
Accomplishment of this concept requires integration 
of the experimental and data processing stages, and 
actually leads to development of RRS measurement 
systems [10]. Usage of optimised excitations may be 
a promising direction for improvement RRS 
recovery in the light of the postulated concept.  
     In presented paper, as one of possible 
implementations of the proposed concept, we 
consider the determination of RRS from the modulus 
(absolute value)1 of complex frequency-domain 
material functions, which, compared to the real or 
imaginary parts, can be more accurately acquired by 
measuring the amplitudes of responses of a material 
to the harmonic excitations [13]. 
 
 

2   Theoretical Background 
If a material under test (MUT) is subjected to 
harmonic steady-state excitation with amplitude Xm 

tXtx mmm ωsin)( = ,  (1) 

it responds by a harmonic response of the same 
frequency ωm but with a different amplitude and 
phase 

)sin()( mmmm tYty ϕω −= ,  (2) 

where Ym is amplitude and φm is phase angle of the 
response with respect to the excitation.  
     Amplitude Ym is proportional to the modulus of a 
complex frequency-domain material function at 
frequency ωm. Thus, for a MUT with complex 

modulus )()()(
~

ωωω GjGG ′′+′= , where )(ωG′  is 

the real part (storage modulus), )(ωG ′′  is the 

imaginary part (loss modulus), and 1−=j , the 
amplitudes of the harmonic excitation and response 
are related as  

                                                           
1 The modulus (absolute value) of a complex 
frequency-domain function may not be confused 
with modulus function representing the response of a 
material to displacement excitation. 
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     Likewise, in the case of a MUT with complex 

compliance )()()(
~

ωωω JjJJ ′′−′= , the amplitudes 
are described by expression similar to that of (3) 
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where  )(ωJ′  and )(ωJ ′′  are the real part (storage 
compliance) and the imaginary part (loss 
compliance), respectively.   
       According to the linear relaxation theories [1-6], 
the real and imaginary parts of complex modulus are 
related to RRS by the following integral transforms: 
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where F(τ) is relaxation spectrum named also function 
of distribution of relaxation times, and G0 is so-called 
static modulus observed for )(ωG′  at zero frequency. 
     Similarly, the following expressions are valid for 
the real and imaginary parts of complex compliance 

∫
∞

∞ +
+=′

0
221

)(
)(

τω
ττ

ω
dF

JJ ,   (7) 

∫
∞

+
=′′

0
221

)(
)(

τω
τωττ

ω
dF

J .  (8) 

In this case, F(τ) is retardation spectrum named also 
function of distribution of retardation times, and J∞ 
represents so-called instantaneous component of 
compliance observed for J′(ω) at infinite frequency. 
    A large number of methods [11,12,14-18] based 
on different ideas have been proposed for inversion 
of integral transforms (5) – (8). We have developed a 
computationally efficient functional filtering 
approach [19-22] for executing a wide variety of 
interconversions between viscoelastic material 
functions, including the ones between the time-
domain and frequency-domain functions, and vice 
versa [23], the interconversion between the real and 
imaginary part of frequency-domain functions [24], 
as well as calculation of RRS [25,26]. The functional 
filtering approach has well grounded basis on the 
advanced signal processing [27] and the 
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interconversions are executed by discrete Mellin 
convolution or deconvolution filters operating with 
geometrically sampled data. 

 
 

3   Functional Filtering Approach   
 
 
3.1 Underlying Idea 
The central idea behind the functional filtering 
approach is based on the following two key points: 
     (i) functions of materials exhibiting relaxational 
behaviour behave monotonically or locally 
monotonically and so are experimentally recorded 
over many decades of time or frequency. For this 
reason, the widely used practice [1-6] is to consider 
these functions on a logarithmic time or frequency 
scale;  
     (ii) interrelations between various material 
functions, including these with RRS, are described 
by the integral transforms having kernels depending 
on the ratio or product of arguments. For example, 
integral transforms (5) – (8) are ones with kernels 
depending on product ωτ.  
     The mentioned transforms can be converted in the 
form of the Mellin convolutions 
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for direct transforms, and 
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for inverse transforms, where x(u) is some 
experimental (recorded) material function (input 
function), y(u) is some unknown function to be 

determined (output function), 
M

*  denotes the Mellin 
convolution, and k(u) is a kernel depending on the 
ratio of arguments u/r, which will be named further 
Mellin kernel.  
     For logarithmic variables, Mellin convolution 
type transforms (9) and (10) alter into the Fourier 
convolution type transforms. Since Fourier 
convolution type transforms describe linear shift-
invariant systems or linear filters [27], the 
interrelations between material functions with 
kernels depending on the ratio or product of 
arguments may be interpreted as ideal filters 
operating on a logarithmic time or frequency scale. 
This builds a theoretical foundation for executing the 
interconversions between material functions by 
discrete and digital filtering techniques approximating 

ideal systems (9) and (10). Since uniformly sampled 
data on the logarithmic time or frequency scale 
manifest as the samples distributed according to 
geometric progression in the linear scale, functional 
filters operate with data at geometrically spaced times 
or frequencies.   
     The functional filtering approach has several 
advantages. Digital filters are computationally 
efficient algorithms working without employing 
numerical integration [27]. Algorithms for the 
interconversions between material functions are 
constructed with uniform structure and 
implementation in software and hardware. Various 
interconversion problems are modified very easy by 
changing filter coefficients without modification of 
the common structure or implementation of the 
algorithm in hardware and software. For correctly 
designed digital filters no stability problems occur 
and they have the guaranteed performance, such as 
accuracy and sensitivity to noise. 
 
 
3.2 Functional Filters for RRS recovery 
In general, determination of RRS relates to inversion 
of Eq. (10). The algorithms for RRS recovery from the 
real and imaginary parts of a frequency-domain 
function have been derived in the form [25,26]: 
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where h[n] is impulse response containing N non-
zero filter coefficients, x(.) represents the real (G′(ω), 
J′(ω)) or imaginary (G″(ω), J″(ω)) parts, q is 
progression ratio specifying the sampling rate in the 
sense that qln  defines the distance between samples 
on the logarithmic frequency scale, i.e. plays 
formally a role of sampling period, whereas its 
reciprocal describes the appropriate sampling 
frequency, and u0 is an arbitrary normalization 
constant usually chosen to be equal to 1. 
     By making substitution mqu0=τ , algorithms (11) 
may be simplified 
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     Filters (11) and (12) have periodic frequency 
responses in the Mellin transform domain 
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∑ −=
n

j qnjnheH )lnexp(][)( µµ , (13) 

which within main period ]ln/,ln/[ qq ππ− , named 
filter bandwidth, approximates non-periodic 
frequency responses 

∫
∞
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of ideal direct filters executing transforms (9), and 

∫
∞

−−=−=
0

1)(/1]);([/1)( duuukjukMjH jµµµ  (15) 

of ideal inverse filters inverting transforms (10). In 
Eqs. (14) and (15), M denotes the Mellin transform 
[28], parameter µ, named Mellin frequency, is 
interpreted [22,25,26] as the angular frequency for a 
function on the logarithmic time or frequency scale, 
and summation index n in Eq. (13) depending on 
evenness or oddness of N runs in accordance with 
Eq. (11) or (12). 
 
 
3.3 Regularization via Sampling Rate 
It is well known that determination of RRS is a 
fundamentally ill-posed problem [29] needed that 
special stabilization or regularization procedures are 
used to minimize the sensitivity to noise. Different 
regularization methods have been proposed [14-16]. 
However, irrespective of the idea and complexity of a 
particular regularization method, stabilization for all 
the methods is attained at the expense of accuracy. 
     As it is shown [30,31], the ill-posedness for linear 
inverse problems, i.e. inverse functional filters comes 
from their increasing magnitude responses )( µjH  

(Fig. 1(a)) causing that noise amplification coefficients 
of the appropriate discrete filters 

∑
n

2 nh = S ][   (16) 

may take the values  much greater than 1. Since noise 
amplification coefficient (16) multiplies variance 2xσ  
of input noise (random error) to give noise variance 

2
yσ  of an output function 

22
xy Sσσ = , 

the filter becomes sensitive to input noise in the case 
when 1>>S . 
     According to the Parseval’s relation [27], the noise 
amplification coefficient can be also determined by 
square integration of the magnitude response of a filter  

∫
−

=
q

q

djHqS
ln/

ln/

2
)()2/(ln

π

π

µµπ . (17) 

From Eq. (17), it follows that, for increasing 
magnitude responses (see Fig. 1(a)), extension of filter 
bandwidth ]ln/,ln/[ qq ππ−  by a decrease of 
progression ratio q enlarges the area (shaded region) 
under the increasing magnitude response and, due to 
squared integration of the   increasing magnitude 
response, causes that the noise amplification 
coefficient tends to infinity ( ∞→S ) when 0ln →q  
or 1→q  (Fig. 1(b)). Therefore, depending on q, 
inversion problem can be well- or ill-conditioned, or, 
in other words, progression ratio q, or the sampling 
rate in general, may be used for controlling noise 
amplification of inverse filters, i.e. for their 
regularization. 
 

 
 
Fig. 1. Increasing magnitude response (a) and noise 
amplification coefficient versus progression ratio (b) 
for an inverse filter. 
 
     The appropriate regularization procedure [32, 33] 
has been developed, which, for available (limited) 
frequency range of input data, searches a 
combination of progression ratio q and a number of 
filter coefficients N providing bandwidth 

]ln/,ln/[ qq ππ− , which ensures desired – previously 
specified – noise amplification coefficient Sdesir (see 
Fig 1(b)). Contrary to other regularization methods 
[14-16,29], where noise amplification for linear 
problems is typically minimized by limiting (in the 
filtering light – distorting) increasing magnitude 
responses at high frequencies, in the proposed 
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regularization, the desired noise amplification is 
attained by eventual violation of the sampling theorem 
[27], i.e. at the expense of decreased accuracy due to 
the eventual aliasing effects. The superiority of the 
proposed method is that it is very simple and so 
computationally efficient. Actually, no special 
denoising takes place for an inverse filter in this 
case. The filter is simply enforced to operate at 
sufficient low sampling rate (sufficient large 
progression ratio qdesir), which guarantees the desired 
noise amplification (see Fig 1(b)). The second 
advantage of the method is its transparency, it allows 
explicit determination of regularization parameter – 
progression ratio qdesir [32,33] at which desired noise 
amplification coefficient Sdesir is attained, while there 
no strong criterion for determination of regularization 
parameters for the traditional regularization methods 
leading that human involvement is necessary to set 
appropriate regularization parameters. 
 
 
3.4 Design of Functional Filters 
Design problem of a RRS recovery filter can be 
formulated as finding filter coefficients h[n], which 
for available or given frequency ranges of input data 
generates maximum accurate spectrum waveforms 
with acceptably low noise amplification. A method 
for designing the functional filters – named 
identification method – has been developed [19,25] 
based on system identification and learning 
principles. The block-diagram the identification 
method is shown in Fig. 2. Contrary to conventional 
design methods of digital filters [27], the 
identification method implements filter design in the 
input-output function domain. A pair of exact 
(theoretical) functions interrelated to each other by an 
integral transform to be performed are used input and 
output ones in the identification process. The method 
implements so-called grey-box modelling, when 
structure of the algorithm to be constructed 
(progression ratio q, number of coefficients N, 
symmetry of coefficients, etc.) is assumed known and 
values of the coefficients are determined by 
minimizing the error between an exact output function 
and that obtained by filtering. 
 

 
 
Fig. 2. Block-diagram of the identification method. 

     An advantage of the identification method is that 
it effectively disposes of various secondary effects 
such as data truncation, rounding-off, etc. and allows 
designing filters of various types, e.g. with and 
without symmetry of the coefficients, etc. Additional 
constraints, such as maximum acceptable noise 
amplification coefficient, can easily be imposed on 
the solution to ensure special targets. 

 
 

4   Recovery of RRS from the Modulus 
of Frequency-Domain Functions 

Due to the operations of rising to the power and taking 
square root in Eqs. (3) and (4), the interrelation 
between the modulus and RRS cannot be written in 
the terms of a Mellin convolution and, consequently, 
the RRS recovery problem from the modulus cannot 
be formally formulated as a functional filtering task. 
 
 
4.1 Limiting Cases for the Modulus 
Since the real and imaginary parts of causal physical 
systems, such as materials are not wholly 
independent but are linked by the Kramers-Kronig 
relations [24,34], two limiting cases can be defined 
for modulus (3) and (4), when:  
     (i) the imaginary parts tend to zero 
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for 00 =G , and 
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for 0=∞J . 
    Cases (18) are associated with very broad RRS, 
whereas RRS is equal to the line or the Dirac delta 
function in cases (19) and (20). For example, in 
Fig. 3, modulus (20) and real part (7) of complex 
compliance are shown corresponding to the Cole-
Cole (CC) relaxation response [35] for different 
values of spectrum parameter α. As it is seen, a 
relatively large difference between the modulus and 
the real part is observed for 1=α  (the Dirac delta 
function spectrum), and it gradually decreases for 
smaller value of  α  (broader spectra). 
 

 
 
Fig. 3. The modulus (solid) and real parts (dashed) of 
complex compliance corresponding to CC relaxation 
model at different values of parameter α (numbers 
near the curves). 
 
    From limiting cases (18), it follows that 
determination of RRS from the modulus for 
materials with the small imaginary parts leads to the 
ideal Mellin deconvolution filters recovering 
relaxation spectrum from the real parts having the 
following frequency responses [25,26] 

2
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π
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j
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where H(jµ) with plus sign relates to the filter for 
determination of the spectrum from J′(ω), while 
H(jµ) with minus sign – to the filter for 
determination of the spectrum from G′(ω). 

    For materials with the large imaginary parts, 
limiting cases (19) and (20) can be also generalized 
as Mellin convolutions. Thus, interrelation between 

|)(
~

| ωG  and )(τF  for limiting case (19) can be 
described by the following Mellin convolution type 
transform 
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with Mellin kernel 21/)( uuuk += . According to 
Eq. (15), inversion of (22) leads to an ideal Mellin 
deconvolution filter with the frequency response  
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where Γ is the Gamma function. 

     Similarly, for complex compliance )(
~
ωJ , 

limiting case (20) can be generalized in the form of 
the following Mellin convolution type transform 
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with kernel 21/1)( uuk += . Inversion of Eq. (24) 
leads to the ideal Mellin deconvolution filter with 
frequency response 
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4.2 Diffuse Magnitude Response 
Frequency responses (21) of the limiting filters for 
determining RRS from the real parts of complex 
modulus and complex compliance differ by signs 
and so have equal magnitude responses )( µjH . 

Frequency responses (23) and (25) of the limiting 
filters for the large imaginary parts of complex 
modulus and complex compliance also have equal 
magnitude responses. The equality of these 
magnitude responses follows from the fact that the 
Mellin kernels for integral transform (22) 

interrelating |)(
~

| ωG  with )(τF , and integral 
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transform (24) interrelating |)(
~

| ωJ  with )(τF , 
differ by multiplier u 

)()(mod uukuk compl= ,  

resulting that their Mellin transforms are the shifted 
functions of one other [28] 

)1()(mod += µµ jHjH compl  

related as 

µµµ j
compl ejHjH )()(mod =  

with equal absolute values )()(mod µµ jHjH compl= . 

 

      
 
Fig. 4. Diffuse magnitude response (shaded area) 
bounded by limiting response of (21) (dashed) and a 
pair of magnitude responses of (23) and (25) (solid). 
 
     In Fig. 4, the magnitude responses are shown for 
the limiting filters corresponding to the minimum 
(zero) and the maximum imaginary parts. As it is 
seen, they are similar – extremely rapidly increasing 
functions located relatively close one another. It can 
assume that the ideal magnitude responses for all other 
cases of determination of RRS from the modulus 
should lie in the lane between the both responses 
(shaded area). Therefore, the problem of 
determination of RRS from the modulus of 
frequency-domain material functions may be 
interpreted as a functional filtering task with a diffuse 
magnitude response bounded by the magnitude 
response for (21) and the magnitude response for 
(23) or (25). A practical conclusion follows that, 
despite that the interrelations between the modulus of 
frequency-domain material functions and RRS are no 
longer a Mellin convolution, RRS likely can be 
recovered from the modulus by the appropriate 
discrete inverse functional filters. 

4.3 RRS Recovery Filters from the 
Modulus 
RRS from the modulus of a frequency-domain 
material function is calculated by the same algorithms 
(11) and (12) used for the real and imaginary parts. 
    According to the symmetry properties of the 
Fourier transform [27], pure imaginary frequency 
response (21) enforces an odd symmetry on impulse 
response h[n] of the filters recovering RRS from the 
real parts [25]. Contrary to this, responses (23) and 
(25) are complex functions of µ, which do not predict 
any symmetry for h[n] of the filters for RRS 
recovery from the modulus of a frequency-domain 
material function. 
     Since all frequency responses (21), (23) and (25) 
have zero values at zero Mellin frequency 
( 0)0( =jH ) (see Fig. 4), the filters cut out zero 
frequency (DC) component of an input function. 
This means that the RRS recovery filters are 
insensitive to bias or bias-invariant of an input 
function, which is very important for practice, 
because no special measure to be taken to separate 
components G0 and J∞ from the whole response 
functions to obtain their relaxing parts. 
 
Table 1. Coefficients h[n] for 6-point filters designed 
for recovering the retardation spectrum from the 
modulus (filter 1) and from the real part (filter 2)  

 
n  

Filter 1 Filter 2 

-3  0.002118 -0.0621334 
-2  0.212985  0.577504 
-1 -1.49284 -2.25364 
0  1.53843  2.25364 
1 -0.271549 -0.577504 
2 0.0108601  0.0621334 

 
     Relatively similar magnitude responses of the 
filters recovering RRS from the modulus of a 
frequency-domain material function to those 
recovering RRS from the real parts (see Fig. 4) 
allows to use approximately the same filter 
specification (q and N) to ensure the desired 
performance (accuracy and noise amplification). 
Thus, the specification with 3.3=q  and 6=N  
proposed in [25,26] has been chosen, which should 
ensure noise amplification coefficient (16) of the 
order of 10. For the mentioned specification, 
algorithm (12) takes the form: 

∑
−=

−−=
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3

5.0 )/3.3(][)(
n

nxnhF ττ . (26) 
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Fig. 5. Magnitude responses of filters 1 and 2. Shaded 
area: ideal diffuse magnitude response.  
 
     Coefficients h[n] for (26) for recovering the 
retardation spectrum from the modulus of complex 
compliance are given in Table 1 (filter 1), which 
according to Eq. (16) ensure actual experimental 
noise amplification coefficient 72.4=S . For 
comparison, the coefficients are also presented in 
Table 1 for a 6-point filter recovering the retardation 
spectrum from the real part [25,26] having 83.10=S  
(filter 2). Fig. 5 illustrates the magnitude responses 
of the both recovery filters. 
 

 
 

Fig. 6. Retardation spectrum for CC model at 9.0=α  
recovered from the modulus by filters 1 (dotted) and 2 
(dashed). Solid line: exact spectrum. 
 
 
4.4 Simulation Results 
The simulations performed have demonstrated that, 
for the narrow spectra ( 8.0>α ), the better results 
give the filters designed for spectrum recovering 
from the modulus, i.e. these be constructed for 
inverting Eq. (24). However, for the broader spectra, 
the accuracy of the filters designed for spectrum 
recovering from the modulus and the real part is 
approximately the same.   
     As an example, in Fig. 6 and 7, the retardation 
spectrum corresponding to CC relaxation model [35] 

with 2=∞J , and 9.0=α  and 8.0=α  are shown 
recovered from noiseless input data by filter 1 and 
filter 2. If filter 2 designed for recovering spectrum 
from the real part gives an oscillating spectrum at 

9.0=α , then already at 8.0=α , the recovery 
results are very similar for the both filters. 
 

 
 
Fig. 7. Retardation spectrum for CC model at 8.0=α  
recovered from the modulus by filters 1 (dotted) and 2 
(dashed). Solid line: exact spectrum. 
 

 
 
Fig. 8. Block diagram of a measurement system 
implementing RRS recovery through the modulus of 
a complex frequency-domain function. 
 
 

5.   RRS Measurement System 
Determination of RRS from the modulus of a 
complex frequency-domain material function gives a 
basis for simplifying RRS measurement system [10]. 
If classical approach of determination of the real or 
imaginary part of a complex frequency-domain 
material function requires such operations as (i) 
measurement of amplitudes of harmonic excitations, 
(ii) measurement of amplitudes of responses, (iii) 
measurement of phase differences between the 
excitations and responses, and (iv) calculation of the 
real or imaginary part, determination of the modulus 
according to Eqs. (3) and (4) leads to measurement 
of harmonic amplitudes only. However, the basic 
impact on improving the performance of RRS 
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recovery comes from the potentially increased 
accuracy of measurement of the amplitudes 
compared to the accuracy of measurement of the real 
part and, particularly, of the imaginary part. 
     For implementation of RRS recovery through the 
modulus of a complex frequency-domain function, 
we propose to develop a RRS measurement system 
[13], which executes an active measurement 
experiment by exciting MUT with multi-harmonic 
excitations, measuring MUT responses and 
processing them by a RRS recovery filter. A general 
block diagram of the system is shown in Fig. 8. 
     A harmonic electrical excitation signals xm(t) 
from a multi-harmonic excitation generator at 
geometrically spaced frequencies ωm  

1
1

−= m
m qωω   (27) 

are transmitted to a sensory system, which produces 
appropriate physical (mechanical, electrical, 
magnetic, thermal, etc.) excitations to MUT and 
detects and converts MUT responses back into 
electrical signals ym(t). The amplitudes of these 
electrical response signals are measured by an 
amplitude meter. To calculate RRS, the measured 
amplitudes are processed by a RRS recovery filter. 
To provide the geometrically spaced frequencies, the 
multi-harmonic excitation generator is controlled by 
a logarithmic clock generating logarithmic clock 
signals for reference frequencies (27). 
 
 

6   Conclusions 
A concept is postulated that determination of RRS 
from certain material responses differing from the 
explicitly defined material functions, such as the real 
or imaginary parts of complex compliance and 
complex modulus, may improve the recovery 
performance of RRS at the price of the better 
measurability of these specific responses. As one of 
possible implementations of the postulated concept, 
it is proposed to recover RRS through the modulus 
(absolute value) of a complex frequency-domain 
(dynamic) material function, which, compared to its 
real or imaginary part, can be more accurately 
acquired by measuring amplitudes of the harmonic 
responses of a material. 
     The problem of determination of RRS from the 
modulus is analysed and solved based on the 
functional filtering approach. While the problem 
cannot be represented in the terms of a Mellin 
convolution due to the operations of rising to the 
power and taking the square root necessary for 
defining the modulus, it formally cannot be 
formulated as a functional filtering task. However, 

two limiting cases for the modulus – corresponding 
to the small (zero) and the large (maximum) 
imaginary parts – can be represented in the form of 
the Mellin convolution, from which it follows that 
two ideal limiting Mellin deconvolution filters can 
be derived for these cases. Based on this, the 
problem of determination of RRS from the modulus 
of a complex frequency-domain material function is 
formulated as a functional filtering task with a 
diffuse magnitude response bounded by the 
magnitude responses of the two limiting 
deconvolution filters. 
     A discrete RRS recovery filter operating with 
geometrically sampled data is designed for 
recovering RRS from the modulus and the simulation 
results are presented. It is shown that the filters 
designed for RRS recovery from the real parts are 
also applicable for recovering RRS from the 
modulus, particularly, for the broader spectra. For 
the narrower spectra, however, the better results give 
the algorithms designed for recovering the spectrum 
from the modulus. 
     A measurement system is proposed implementing 
RRS recovery through the modulus of a complex 
frequency-domain material function, where a 
material under test is subjected to multi-harmonic 
excitations at geometrically spaced frequencies, and 
amplitudes of multi-harmonic responses are 
measured and processed by a RRS recovery filter. 
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