
IN many applications, the value of a spatiotemporal
variable needs to be predicted for some time in the

future based on previously measured data at the same lo-
cation and neighboring locations. Some well-known ap-
plications include the prediction of economic indicators,
such as stock prices, GDP or unemployment figures. In
this paper, we take a look at predicting the number of
cases of the Covid-19 pandemic [1], which is a novel type
of pandemic with no well-tested prediction algorithms
for it. Earlier epidemics prediction algorithms exist but
they often require extra information like infected ani-
mals that are not available or applicable in this case [2].
Therefore, we focus on the Covid-19 pandemic in this
paper, although our novel spatiotemporal interpolation
algorithm may also be applicable to other spatiotempo-
ral interpolation problems [3].

There are only a few publications that use Covid-
19 data together with geographic information. Liu et
al. [4] analyzes the combination of Covid-19 data and
travel data in Wuhan, China and showed that travel re-
strictions were useful in curbing the spread of the pan-
demic. Thakar [5] generates an approximate density map
for Covid-19 patients using location information such as
school or work location from publicly available news ar-

ticles in Washington State. Wang et al. [6] developed an
algorithm that can estimate if a ship contains a risk of
Covid-19 infections based on some information about the
ships and their travel paths. These works are applicable
only when the required patient address or travel data are
available. In contrast, our prediction algorithms work
without the need for such detailed information. Thomas
et al. [7] presented a Covid-19 diffusion model based
on interpersonal contact networks. While this may give
more accurate predictions than other pandemic models,
it requires interpersonal contact information, which is
not generally available.

The rest of this paper is organized as follows. Sec-
tion II. reviews some previously proposed prediction
methods. Section III. presents a novel spatiotemporal
prediction method. Section IV. presents an experiment
that compares the various prediction methods on Covid-
19 data from the state of New York. Section gives a
discussion of the results. Finally, Section VI. presents
some conclusions and future work.

In this section we review previous prediction meth-
ods. The prediction methods include temporal extrapo-
lation methods (Section A.), spatial extrapolation meth-
ods (Section B.), and neural networks (Section C.). In
addition, Section D. reviews the concept of moving aver-
age. Finally, Section E. reviews the error measures used
in this paper. Every interpolation method has a function
that can be applied to any temporal value even a value
higher than all the values in the raw data. In this way, an
interpolation method can be also used for extrapolation,
that is, for predicting the outcome in the future.
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Let yi be the number of cases of the Covid-19 pan-
demic at some location i days ago. Hence y1 is the num-
ber of cases yesterday, and y2 is the number of cases the
day before yesterday etc. Then the Best Fit Cubic and
the Lagrange interpolation methods [8] can be used to
predict the number of cases of the Covid-19 pandemic at
that location. These methods derive interpolation func-
tions into which we can place any future time instance
to get a prediction value. In addition, the exponential
decay temporal method, which was highly accurate for
predicting election outcomes [9], can be used to get an
estimate for the current day using the following formula,
which assumes that we know the number of cases during
the six previous days:
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The above formula can be extended for more num-
bers of days. The important feature is that the weights
are successively diminishing by half except in the last
instance, where the last weight is equal to the previous
weight. Note that in this way, the sum of all the weights
is exactly one. Finally, another prediction method that
was proposed by Revesz [10] uses the following formula
to predict the number of cases of the Covid-19 pandemic,
where t is the number of days ahead from the last data.
In other words, if the last data is for yesterday, then pre-
dicting for today means t = 1 and for tomorrow t = 2
etc.
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2
y3 (2)

Inverse Distance Weighting (IDW) [11] is a common
spatial interpolation method. It is used when the inter-
polated variable at a location has a weighted relationship
with its neighbors and when that relationship varies with
distance. If a neighbor is closer than another neighbor,
then the weight of the former will be higher than the
weight of the latter. We use λi as the weight, yi as
the interpolated variable, and di as the distance to the
ith neighbor [12]. Then the Inverse Distance Weighting
equation for the interpolated variable y at a location can
be written in terms of its neighbors as follows:

y =

N∑
i=1

λi × yi (3)

where the equation for calculating λi can be written
as follows:

λi =

(
1
di

)P
∑N

k=1

(
1
di

)P (4)

The p (power) value can be any number ≥ 1. For
simplicity, in this paper we assume that p = 1.

Kriging is based on the work of Krige [13]. Different
from IDW, Kriging not only considers the distance, but
also find the spatial structure inside the data. The basic
formula for Kriging is the following:

Z(x0) =
[
z1 ... zn

]
∗

w1

...
wn

 (5)

Where Z(x0) is the predicted value at location x0,
z1...zn are the values of the neighbors of x0, and w1...wn

are the weights of the neighbors, which can be calculated
as follows:

w1

...
wn

 =

c(x1, x1) ... c(x1, xn)
... ... ...

c(xn, x1) ... c(xn, xn)

−1

∗

c(x1, x0)
...

c(xn, x0)


where c(x, y) is the covariance function, that is,

c(x, y) = Cov(Z(x), Z(y)).

C. Neural Networks

We use two different types of neural networks in this
paper: backpropagation neural networks and recurrent
neural networks.

Backpropagation (BP) is a learning algorithm that
has been used very often in neural networks. Backprop-
agation first appeared in the work of Rumelhart et al.
[14] in 1988. Their work shows that applying backprop-
agation often results in useful discoveries using gradi-
ent descent. During the training, when the hidden layer
passes the values to the output layer, the backpropaga-
tion method will calculate the differences between the
hidden layer values and the actual values. Backpropaga-
tion will then adjust the weight on the edges between the
two layers and repeat passing the values back to hidden
layer until the error is small enough to make sure that
the neural network can produce an accurate prediction.

Figure 1 shows the example of backpropagation struc-
ture. Where:

Hidden1 = In1 ×W1 + In2 ×W4 + In3 ×W7

OutHidden1 =
1

1 + e−Hidden1

We can define the values of the output values of the other
hidden nodes similarly to the above. Finally, the outputs
of the neural network is defined as follows.

Out1 = OutHidden1 ×W10 +OutHidden2 ×W13

+ OutHidden2 ×W16 (6)

The goal of this step is to find the best weights (Wi)
for the neural network to learn.

2.1 Temporal Extrapolation Methods 

2.2 Spatial Extrapolation Methods 

2.3.1 Backpropagation 
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Fig. 1: Backpropagation example.

Recurrent Neural Networks (RNNs) [15] improve
backpropagation with the goal of better predicting the
outcomes of a time series, such as in motor control and
rhythm detection. Figure 2 shows the architecture of the
RNN, which differs from other neural networks in that
RNN contains one or more than one loop between nodes.
RNN has a limit when dealing with back-propagated er-
ror. One of the extensions of RNN called LSTM (Long
Short-Term Memory) allows the users to specify a limit.
Different from Traditional RNN, LSTM only reads the
input from the current time when doing a time series pre-
diction which makes it more efficient than the traditional
RNN [15].

LSTM is widely used to forecast data in many areas.
Kong et al. [16] used LSTM to forecast short-term resi-
dent load. Their experiment showed that among all the
prediction methods they selected, LSTM has the most
accuracy. Huang et al. [17] used the past PM 2.5 con-
centration and weather report data to predict the PM
2.5 concentration in the future. The result proves the
ability of LSTM to predict PM 2.5. Sagheer et al. [18]
developed a model based on LSTM that can deal with
most time-series prediction problems. They verified ex-
perimentally that their model works well on time series
problems regarding petroleum production.

A moving average is applied for smoothing the raw
data. That means that rather than using the raw data
for a single day, we use the moving average value for
seven days. For example, in the county of Albany in the
state of New York, the number of Covid-19 cases for the
days from July 1 to July 7 were the following in order:
2112, 2125, 2130, 2145, 2152, 2160 and 2164. Hence the
seven day moving average centered on July 4th is the
average of these seven values divided by the population
of that county, which is 0.3 million, which gives 7008.5
cases per million people.

To experimentally evaluate the accuracy of the in-
terpolation methods, we use the Mean Absolute Error
(MAE) and the Root Mean Square Error (RMSE) mea-
sures, which are defined as follows, where Fi is the pre-
dicted value and Ai is the corresponding actual value
and N is the number of items:

MAE =

∑N
i=1 |Fi −Ai|

N
(7)

RMSE =

√∑N
i=1(Fi −Ai)2

N
(8)

Intuitively, a lower value of these error measures im-
ply a higher quality interpolation and extrapolation or
prediction. Conversely, a higher value of these error mea-
sures implies a lower quality.

In this section we propose a novel spatiotemporal in-
terpolation method that works in general for many types
of data, including cumulative Covid-19 pandemic data.
Before describing our spatiotemporal extrapolation algo-
rithm, we remark that not all temporal and spatial ex-
trapolation methods can be applied to cumulative data.
In fact, we can show the following.

Theorem 1. The exponential decay extrapolation
method underestimates the real value when the mea-
sured value is monotonically increasing.

Proof: When the measured value is monotonically in-
creasing, then we have the following conditions:

y > y1 > y2 > y3 > y4 > y5 > y6 (9)

Equation 9 implies the following:
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2.3.2 Recurrent Neural Networks 

2.4 Moving Average 

2.5 Error Measures 

3. Proposed Spatiotemporal Extrapolation 
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Fig. 2: Architecture of Recurrent Neural Network.

The above implies the following:
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< y1 (10)

By Equation 1, the exponential decay extrapolation
method’s estimate for y is the left side of the above in-
equality. Hence the estimate for y is less than y1, whereas
y > y1 because the measured value is monotonically in-
creasing. Therefore, the exponential decay extrapolation
method underestimates the value of y.

Theorem 1 implies that the exponential decay extrap-
olation method is not applicable for estimating cumula-
tive data, which are inherently monotonically increas-
ing. This theorem serves as a caution in applying known
methods to our task.

Next we describe how we calculate the distances be-
tween neighboring locations. In the example below we
consider the counties within the State of New York. Sec-
ond, we calculate the distance between two counties i and
j based on their centroids considering that they lie on the
surface of the 3-dimensional earth, as follows. First, let
R = 6368 kilometers (radius of the earth), and then take:

xi = R× cos(longi)× sin(90◦ − lati)
yi = R× sin(longi)× sin(90◦ − lati)

zi = R× cos(90◦ − lati) (11)

Similarly, we have:

xj = R× cos(longj)× sin(90◦ − latj)
yj = R× sin(longj)× sin(90◦ − latj)

zj = R× cos(90◦ − latj) (12)

Finally, the Euclidean distance in 3-dimensions be-
tween the two centroids can be found as follows:

distance =
√

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2 (13)

Intuitively, the number of cases of the Covid-19 pan-
demic can be better estimated by considering both tem-
poral and spatial interpolations. If a county C has a very
high number of Covid-19 cases, then the situation in its
neighbors may not affect the development of the number
of cases much and could even be ignored because most
residents of C will catch the disease from other residents
within county C. Therefore, the best temporal interpola-
tion based on just that state’s previous cases, denoted as
Et,C , likely would give the best prediction for the future.

On the other hand, if a county C has few Covid-19
cases relative to its neighbors, then the situation in its
neighbors has to be carefully considered because in that
case most residents of C could be infected by neighboring
county residents when they travel and meet. Therefore,
a spatial interpolation of the neighbors’ future cases, de-
noted as Es,C , likely would give the best prediction for
the future cases in county C.

Preliminary experiments suggested that the above
still needs to be refined because if one of the neighbors
experiences an explosion in the number of cases, then
it may not immediately cause an explosion in county C
too. In other words, there is some time delay instead of
an immediate effect. Therefore, in such cases the tem-
poral interpolation Et,S , would still likely give the most
accurate prediction, while the spatial interpolation Es,S

would be likely to give an overestimate of the number of
Covid-19 pandemic cases. Therefore, we need to place
some limit on the difference between the two estimates
and ignore the spatial estimate if it is excessively larger
than the temporal estimate. By testing values of multi-
ples of ten, we found that 30 and 280 work best as the
lower and upper bound values, respectively. Therefore,
we refine the above formula as follows:

ES =

{
Es,C if 30 < Es,C − Et,C < 280

Et,C otherwise
(14)

3.1 Calculation of Distances between
 Neighboring Counties 

3.2 Combining Spatial and Temporal Extrapolation 

Methods to Form Spatiotemporal Methods 
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In this section, we describe a computer experiment
that compares several temporal, spatial and spatiotem-
poral extrapolation methods that are applicable to pre-
dicting the number of cumulative Covid-19 cases. This
section is organized as follows. Section A. describes the
data sources. Section B. describes the implementation
of the algorithms that were tested. Section C. explains
the experimental procedure and results.

First, we collected population data for each county
of New York State from the World Population Review
website [19]. Second, we obtained the centroid latitude
and longitude of each county from the United State Cen-
sus Bureau website [20]. Table 1 shows the latitude and
the longitude of the centroid and the population of each
county of New York State.

Next, we also obtained data about the cumulative
number of Covid-19 cases in the counties of New York
State during July 2020 from the New York Times [21].
The raw data show some fluctuations in the daily in-
creases in the number of Covid-19 cases. Some of these
fluctuations may reflect the true expansion of the disease.
On the other hand, some fluctuations may be due to the
differences between weekdays and weekends when more
people are more likely to go for Covid-19 testing. Hence,
it makes sense to smoothen the data by taking a moving
average. We computed a seven day moving average based
on the raw data and divided it by the population of each
county. The seven day moving average was calculated as
explained in Section D..

We implemented the temporal, IDW, and the spa-
tiotemporal interpolation methods in MATLAB. For
Kriging, we obtained the MATLAB function code
from [22]. We obtained a MATLAB implementation of
the LSTM recurrent neural network program from [23].
We adjusted the neural network structure to have an in-
put layer with six nodes, a hidden layer with ten nodes,
and an output layer with one nodes. We modified the
code so that the recurrent neural network can accept six
inputs and give one output.

For the backpropagation neural network, we used the
program from [24]. We adjusted the neural network
structure to have an input layer with six nodes, a hid-
den layer with ten nodes, and an output layer with one
node. We modified the code so that the backpropaga-
tion neural network can accept six inputs and give one
output.

We did some preliminary experiments to fine tune the
parameters used in all of the algorithms. In particular,
we compared the accuracies of the methods using the
raw, the five days moving average and the seven days
moving average data. In general, all methods performed
best with the seven days moving average except for the
Revesz method. We also compared 3 versus 6 previous

days’ values as inputs for the Lagrange method with the
result that it was more accurate with only 3 inputs. For
the neural networks we also considered using a single
neural network for each county versus using sixteen dif-
ferent neural networks for each county, where each neural
network predicted for a particular number of days ahead
between one and sixteen. In general, using sixteen differ-
ent neural networks was more accurate for most counties.
We also experimented with five, ten and fifteen hidden
nodes in the neural networks. There was a significant
improvement from five to ten hidden nodes but little or
no improvement from ten to fifteen hidden nodes. There-
fore, we used ten hidden nodes in the hidden layer of all
the neural networks.

Table 2 shows the accuracy of training with 50, 100,
200 and 300 epochs for both neural networks. There
was a significant improvement from 100 epochs to 200
epochs but little improvement 200 epochs to 300 epochs
for backpropagation. There was a significant improve-
ment from 50 epochs to 100 epochs but little improve-
ment from 100 epochs to 200 epochs. and even smaller
improvement from 200 to 300 epochs for recurrent neural
network. To avoid overtraining, we used 200 epochs for
both backpropagation and the recurrent neural network
for training and the testing results.

Finally, for fine tuning the parameters of our spa-
tiotemporal method, we tested multiples of ten for pos-
sible upper and lower bounds. The lower bound of 30
and the upper bound of 280 produced the most accurate
result.

After fine tuning, our goal was to compare how well
the various prediction methods predicted the moving av-
erage centered on days 7/10 (1 day ahead), 7/11 (2 days
ahead), . . . , and 7/25 (16 days ahead). For our testing
we divided the prediction methods into two groups based
on the number of inputs that they use.

The first group used six inputs, which were the mov-
ing average data centered on days from 7/4 to 7/9. The
first group included the Best Fit Linear, the Best Fit
Quadratic and the Best Fit Cubic methods. The second
group used only three inputs, which were the moving
average data centered on days 7/7, 7/8 and 7/9. The
second group included the Lagrange and the Revesz [10]
methods. The Lagrange method was put into the second
group because preliminary experiments showed that the
Lagrange method with three inputs was more accurate
than the Lagrange method with six inputs. On the other
hand, the Best Fit Cubic and Best Fit Quadratic meth-
ods were better with six inputs than with three inputs.
The Revesz method requires three inputs by definition.

A spatial interpolation-based way to predict n days
ahead in county Ci the number of cumulative Covid-19
cases is the following two-step process. First, we predict
n days ahead in all the neighbors of Ci the number of
cumulative Covid-19 cases using the Best Fit Linear ex-
trapolation. Second, we use either IDW or Kriging to
predict n days ahead in county Ci the number of cumu-
lative Covid-19 cases.

Our novel spatiotemporal prediction method chooses

4. Results 

4.1 Data Sources 

4.2 Implementation of the Algorithms 

4.3 Testing Procedure and Results 
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Table 1: Latitude, longitude and population (in millions) of the counties in New York State. The data for New York
City combine five counties.

County Latitude Longitude Population County Latitude Longitude Population
Albany 42.58824 -73.97401 0.31 Niagara 43.456731 -78.792142 0.21
Allegany 42.247853 -78.026153 0.05 Oneida 43.242727 -75.434282 0.23
Broome 42.161977 -75.830283 0.19 Onondaga 43.006516 -76.196134 0.46
Cattaraugus 42.239099 -78.662332 0.08 Ontario 42.856357 -77.303497 0.11
Cayuga 43.008546 -76.574587 0.08 Orange 41.40241 -74.306252 0.38
Chautauqua 42.304216 -79.407595 0.13 Orleans 43.502287 -78.229726 0.04
Chemung 42.15528 -76.747179 0.08 Oswego 43.461443 -76.209262 0.12
Chenango 42.478024 -75.602241 0.05 Otsego 42.629776 -75.028841 0.06
Clinton 44.752712 -73.705643 0.08 Putnam 41.427907 -73.743861 0.10
Columbia 42.247729 -73.626806 0.06 Rensselaer 42.710421 -73.513845 0.16
Cortland 42.594039 -76.07624 0.05 Rockland 41.154628 -74.024662 0.33
Delaware 42.193986 -74.966728 0.04 Saratoga 43.106135 -73.855387 0.23
Dutchess 41.75477 -73.740041 0.29 Schenectady 42.817552 -74.043559 0.16
Erie 42.752759 -78.778192 0.92 Schoharie 42.591294 -74.438172 0.03
Essex 44.109601 -73.778431 0.04 Schuyler 42.419776 -76.938603 0.02
Franklin 44.594376 -74.31067 0.05 Seneca 42.782294 -76.827088 0.03
Fulton 43.115609 -74.423678 0.05 St. Lawrence 44.488112 -75.074311 0.11
Genesee 43.00091 -78.192778 0.06 Steuben 42.266725 -77.385525 0.10
Greene 42.279821 -74.142025 0.05 Suffolk 40.943554 -72.692218 1.48
Hamilton 43.657879 -74.502456 0.00 Sullivan 41.719993 -74.771577 0.08
Herkimer 43.407489 -75.011683 0.06 Tioga 42.178057 -76.297456 0.05
Jefferson 43.996389 -76.052968 0.11 Tompkins 42.453006 -76.473483 0.10
Lewis 43.782681 -75.44414 0.03 Ulster 41.947212 -74.265458 0.18
Livingston 42.727485 -77.769779 0.06 Warren 43.555105 -73.838139 0.06
Madison 42.910026 -75.663575 0.07 Washington 43.312377 -73.439428 0.06
Monroe 43.464484 -77.664658 0.74 Wayne 43.458758 -77.063164 0.09
Montgomery 42.900891 -74.435357 0.05 Westchester 41.152686 -73.745753 0.97
Nassau 40.729612 -73.589414 1.36 Wyoming 42.701363 -78.228567 0.04
New York C. 40.776642 -73.970187 8.18 Yates 42.638237 -77.104324 0.02

Table 2: Training accuracy
Number of epochs

50 100 200 300
BP 76.37% 89.88% 95.58% 95.83%
RNN 87.33% 97.02% 98.54% 99.12%

between either the above IDW-based prediction or the
prediction n days ahead in county Ci of the number of
cumulative Covid-19 cases using the Best Fit Linear ex-
trapolation. The choice is guided by the conditions de-
scribed in Section B.. The spatial interpolation-based
and the novel spatiotemporal prediction methods are
classified as belonging to the first group because they
use the Best Fit Linear extrapolation method.

For the backpropagation and the recurrent neural
networks, we collected raw data from 6/1 to 6/28 too.
Then for each county, we generated moving average data
divided by the population of the county from 6/4 to 6/25.
Next we trained 16 separate neural networks for each
county on the following set of training data, which are
sequences with length 7:

For one day ahead, the training data includes:

1) input: 6/4 - 6/9 output: 6/10

2) input: 6/5 - 6/10 output: 6/11

3) input: 6/6 - 6/11 output: 6/12

For testing, we use 7/4 - 7/9 as input and expect the
neural network to output data for 7/10.

For two days ahead, the training data includes:

1) input: 6/4 - 6/9 output: 6/11

2) input: 6/5 - 6/10 output: 6/12

3) input: 6/6 - 6/11 output: 6/13

For testing, we use 7/4 - 7/9 as input and expect the
neural network to output data for 7/11.

We continue in this way until 16 days ahead, where
the training data includes:

1) input: 6/4 - 6/9 output: 6/25

2) input: 6/5 - 6/10 output: 6/26

3) input: 6/6 - 6/11 output: 6/27

For testing, we use 7/4 - 7/9 as input and expect the
neural network to output data for 7/25.

Table 3 shows the MAE of each day for the training.
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Table 3: The MAEs of neural network training
Method 1 2 3 4 5 6 7 8
BP 350.34 78.03 478.80 305.96 148.13 595.34 189.46 41.98
RNN 101.20 101.48 101.75 102.02 102.29 102.56 102.84 103.11
Method 9 10 11 12 13 14 15 16
BP 22.22 144.01 252.39 256.51 340.12 435.33 628.30 115.00
RNN 103.38 103.65 103.94 104.23 104.54 104.85 105.16 105.48

Table 4: The RMSEs of the prediction methods
Type Method 1 2 3 4 5 6 7 8
Temporal BP 764.00 752.14 766.07 779.29 755.01 776.73 760.16 803.16
Temporal RNN 739.05 737.25 736.12 739.49 734.88 725.25 709.70 706.03
Temporal Lagrange 5.37 14.00 26.37 41.62 61.34 85.30 115.56 148.90
Temporal Revesz 3.93 11.11 21.90 35.42 53.27 75.30 103.52 134.72
Temporal Cubic 5.21 15.68 33.48 58.37 93.23 140.86 203.05 279.79
Temporal Quadratic 6.19 14.64 27.13 43.15 63.81 88.13 115.28 143.85
Temporal Linear 10.46 18.65 27.99 38.28 47.67 56.23 64.05 72.80
Spatial Kriging 8375.16 8378.97 8383.33 8388.87 8394.33 8400.20 8405.39 8410.06
Spatial IDW 3095.06 3096.19 3097.57 3099.77 3103.11 3107.46 3111.47 3115.72
Spatiotemp. ST 17.74 23.75 30.46 38.49 45.93 52.73 58.68 65.76
Type Method 9 10 11 12 13 14 15 16
Temporal BP 865.63 791.65 807.15 797.66 825.19 813.24 838.31 824.05
Temporal RNN 693.19 673.95 660.75 664.77 648.16 621.20 619.60 610.54
Temporal Lagrange 186.94 228.66 274.96 323.36 375.64 430.90 490.15 553.12
Temporal Revesz 170.73 210.31 254.58 300.98 351.24 404.64 461.87 522.89
Temporal Cubic 374.79 490.02 625.62 782.50 963.68 1170.01 1403.81 1668.21
Temporal Quadratic 175.38 209.64 247.25 287.34 330.52 376.87 428.01 483.01
Temporal Linear 79.96 85.56 92.34 101.31 111.24 122.12 132.42 142.67
Spatial Kriging 8412.73 8414.49 8415.58 8416.22 8416.68 8417.35 8418.45 8419.48
Spatial IDW 3120.70 3125.66 3130.19 3133.49 3136.67 3139.77 3142.59 3145.07
Spatiotemp. ST 71.99 77.42 84.11 92.94 102.85 113.87 123.84 133.71

Table 5: The MAEs of the prediction methods
Type Method 1 2 3 4 5 6 7 8
Temporal BP 607.27 622.97 622.86 623.81 610.59 631.40 622.78 637.66
Temporal RNN 589.97 593.11 596.91 602.48 601.95 596.83 587.78 585.18
Temporal Lagrange 3.56 9.42 17.56 27.97 41.81 58.24 78.11 99.69
Temporal Revesz 2.65 7.64 15.02 24.23 36.76 51.75 70.59 90.99
Temporal Cubic 7.33 21.17 44.84 78.47 125.58 190.35 275.01 379.09
Temporal Quadratic 4.37 10.35 19.34 31.21 46.26 63.74 83.43 103.68
Temporal Linear 7.01 12.94 19.99 27.07 34.13 41.21 47.70 54.52
Spatial Kriging 3951.21 3960.78 3970.85 3981.79 3992.73 4003.48 4013.01 4021.52
Spatial IDW 2003.26 2005.42 2007.66 2010.24 2013.33 2017.80 2022.77 2027.74
Spatiotemp. ST 9.69 15.36 21.34 27.09 32.78 38.77 44.38 50.53
Type Method 9 10 11 12 13 14 15 16
Temporal BP 687.62 639.76 653.17 645.82 662.54 673.61 690.58 676.13
Temporal RNN 574.30 569.64 554.03 561.33 543.66 527.51 525.57 523.69
Temporal Lagrange 124.45 151.33 180.32 211.49 244.58 279.46 316.52 355.91
Temporal Revesz 114.58 140.01 168.08 198.13 230.07 263.94 299.85 338.04
Temporal Cubic 506.55 659.14 839.51 1047.27 1286.93 1559.27 1867.56 2214.14
Temporal Quadratic 126.21 150.58 177.11 205.77 236.75 269.58 305.65 344.20
Temporal Linear 60.32 64.46 69.33 76.27 83.59 91.32 99.75 108.71
Spatial Kriging 4028.28 4033.79 4038.63 4043.29 4047.75 4052.93 4059.25 4065.45
Spatial IDW 2032.73 2036.99 2040.92 2043.76 2046.84 2049.61 2052.07 2054.57
Spatiotemp. ST 55.85 59.71 64.30 71.16 78.39 86.04 94.19 102.87
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Fig. 3: RMSE of Temporal Methods.

Fig. 4: MAE of Temporal Methods.

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2021.20.31 Junzhe Cai, Peter Z. Revesz

E-ISSN: 2224-2880 307 Volume 20, 2021



Fig. 5: RMSE of spatiotemporal Methods.

Fig. 6: MAE of spatiotemporal Methods.
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There are 58 counties and 16 neural networks for each,
which is a total of 928 sequences in the training data set.
During testing, we gave as an input to the neural network
the moving average data centered on days 7/4 ... 7/9.

For all methods, we compared the predictions for the
moving average centered on days 7/10 (1 day ahead),
7/11 (2 days ahead), . . . , and 7/25 (16 days ahead) with
the actual values. We evaluated the root mean square
error (RMSE) and the mean absolute error (MAE) mea-
sures for each prediction method as defined in Section E..

Table 4 shows the root mean square error (RMSE)
for each prediction method when they were used to pre-
dict 1-16 days ahead. Similarly, Table 5 shows the mean
absolute error (MAE) for each prediction method when
they were used to predict 1-16 days ahead.

The average of the seven day moving averages cen-
tered on July 25 is 7952.15. Hence the ST method’s
MAE of 102.87 is equivalent to about a 1.29 percent er-
ror. For testing the spatial interpolation, we use the pre-
dict result of the Best Fit Linear since it has the highest
accuracy among all temporal method we tested. The
result for the spatial Interpolation shows that for IDW,
the predict result for Dutchess and Tompkins counties,
the overall result for IDW has lower error than the the
Best Fit Linear method in those three states. For Krig-
ing, the predict result for Tompkins and Yates county,
the overall result for Kriging has lower error than Revesz
method in those two states but IDW has the lowest error.
The Figures 5 and 6 show the RMSE and MAE of the
combined spatiotemporal method. The experiment indi-
cates that our spatiotemporal prediction method works
well for cumulative Covid-19 cases.

We analyzed different upper bounds and lower
bounds to find the best way of combining the results
of the best fit linear and IDW methods. After searching
by a step size of 10 in the range from 10 to 350, we found
that the lower bound of 30 and the upper bound of 280
gave the best combination of the two methods in terms of
the lowest RMSE and MAE among all the upper bounds
and lower bounds we tested.

We also analyzed the results for New York State in
further detail by considering separately the counties that
are mostly metropolitan areas versus the other coun-
ties that are mostly rural areas. For the spatiotempo-
ral method, Tables 6 and 7 show the MAEs and RM-
SEs of the mostly metropolitan counties, which are Erie,
Monroe, New York City, Onondaga, Schenectady and
Westchester, and rest of the counties, which are mostly
rural. Table 6 also shows the absolute difference between
the metropolitan and the rural MAEs. The absolute dif-
ferences are always below 17 with a mean of 9.7 over the
sixteen days. The average number of Covid-19 cases for
all counties ranged from 6603.73 to 6950.04.

The last row of Table 6 shows that the absolute dif-
ferences in the MAEs make up only a small percent of
the average number of Covid-19 cases. These percent-
ages fluctuate slightly from 0.10% for one day ahead to
0.02% for twelve days ahead and to 0.24% for sixteen

days ahead. The last row of Table 7 shows that the
absolute differences in the RMSEs also make up only a
small percent of the average number of Covid-19 cases
and also fluctuate slightly from 0.22% for one day ahead
to 0.04% for thirteen days ahead and to 0.31% for six-
teen days ahead. Hence according to both the MAE
and the RMSE measures there was no significant differ-
ences between the mostly metropolitan and the mostly
rural counties within New York State. This suggests that
similar accuracies can be obtained when the method is
applied to other states, including mostly metropolitan
states such as Rhode Island and mostly rural states like
most states in the Mid-West.

This paper compared ten prediction methods for cu-
mulative Covid-19 cases in the counties of New York
State. The number of methods was greatly extended
compared to our earlier conference paper [25] and a
smoothening of the raw data using a seven day mov-
ing averages and a new neural networks testing proce-
dure was also introduced. One of the methods is a novel
spatiotemporal method that combines a temporal ex-
trapolation method with the IDW spatial interpolation
method. Overall, this novel spatiotemporal prediction
method was the best according to both the MAE and
the RMSE error measures.

It remains to be seen whether the prediction method
can be further improved. Generally, the spatial predic-
tion methods are more accurate with denser spatial loca-
tions with measurement data. Hence the IDW method
could improve if we have more than a single location
for each county. Each county may be subdivided into
smaller districts with their own separate measurements.
With increased accuracy of the IDW method, our spa-
tiotemporal interpolation method could also improve.

In addition, further improvements could be obtained
by a direct assessment of test results from population
surveys, as is done in the REal-time Assessment of Com-
munity Transmission (REACT) study in England [26].
The REACT study collected not only samples but in a
survey additional information about the subjects, such as
age, race, gender, occupation, mobility, and contact with
infected persons. Such information facilitates a deeper
analysis of the pandemic. For example, Ward et al.
[26] could identify a two-to three-fold higher prevalence
rate among health and care workers compared with non-
essential workers and similarly higher prevalence rate in
people of Black or South Asian than white ethnicity.
Such detailed results have important implications for ef-
fectively fighting the pandemic. However, such detailed
data is not available in all locations, for example in New
York State. In such situations, our method can still give
a prediction of the total number of expected cases with-
out breaking down the cases by occupation and race.
It would be an interesting future work to extend our
method to the case when such detailed data is available.

Finally, we would like to suggest some future work.
Our spatiotemporal algorithm was fine tuned by finding

5. Discussion 

6. Conclusions and Future Work 
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Table 6: The spatiotemporal method’s MAEs for the Metropolitan and Rural counties
County 1 2 3 4 5 6 7 8
Metropolitan MAE 3.65 5.92 10.76 16.26 22.29 28.68 34.58 39.23
Rural MAE 10.39 16.45 22.56 28.34 33.99 39.93 45.51 51.83
Absolute Difference of MAEs 6.73 10.53 11.80 12.09 11.70 11.25 10.93 12.60
Average Number of Cases 6603.74 6627.28 6652.34 6677.43 6701.85 6725.55 6748.49 6771.51
Percentage Difference 0.10% 0.16% 0.18% 0.18% 0.17% 0.17% 0.16% 0.19%
County 9 10 11 12 13 14 15 16
Metropolitan MAE 45.38 52.06 60.62 69.88 81.41 93.24 106.20 118.10
Rural MAE 57.06 60.59 64.72 71.30 78.04 85.21 92.80 101.11
Absolute Difference of MAEs 11.68 8.53 4.11 1.42 3.36 8.03 13.39 16.99
Average Number of Cases 6793.62 6814.36 6835.62 6858.13 6881.07 6904.41 6927.87 6950.04
Percentage Difference 0.17% 0.13% 0.06% 0.02% 0.05% 0.12% 0.19% 0.24%

Table 7: The spatiotemporal method’s RMSEs for the Metropolitan and Rural counties
County 1 2 3 4 5 6 7 8
Metropolitan RMSE 4.01 6.97 13.04 20.45 28.99 38.51 47.03 54.04
Rural RMSE 18.68 24.97 31.87 40.05 47.50 54.13 59.87 66.98
Absolute Difference of RMSEs 14.68 18.00 18.83 19.60 18.52 15.62 12.84 12.94
Average Number of Cases 6603.74 6627.28 6652.34 6677.43 6701.85 6725.55 6748.49 6771.51
Percentage Difference 0.22% 0.27% 0.28% 0.29% 0.28% 0.23% 0.19% 0.19%
County 9 10 11 12 13 14 15 16
Metropolitan RMSE 60.11 66.30 75.22 85.54 100.28 117.22 135.66 153.01
Rural RMSE 73.24 78.60 85.08 93.76 103.15 113.48 122.41 131.30
Absolute Difference of RMSEs 13.13 12.30 9.86 8.22 2.87 3.74 13.25 21.71
Average Number of Cases 6793.62 6814.36 6835.62 6858.13 6881.07 6904.41 6927.87 6950.04
Percentage Difference 0.19% 0.18% 0.14% 0.12% 0.04% 0.05% 0.19% 0.31%

the lower and upper bound values of 30 and 280. These
values may be dependent on the characteristics of the
raw data in each state. It would be good to build a
program that generation different set of upper bounds
and lower bounds and to automatically find the best set
of upper bound and lower bound that produce the lowest
RMSE and MAE.

In addition, if scientists find a vaccine against the
Covid-19 virus, then a more complex model could be
developed that takes into consideration the percentage
of the population that was vaccinated or already had
the disease and developed some immunity to it.

A further complication that the mutation of the
Covid-19 virus with the introduction of new strains. The
newer strains may be more virulent and deadly than the
original strain of the Covid-19 virus. Moreover, people
who have been vaccinated for the original strain may not
have an immunity for the emerging strain. The degree of
immunity against the new strains is vaccine dependent,
that is, some of the currently available vaccines by Pfizer,
Moderna, Johnson & Johnson provide varied degrees of
immunity against the new strains. On the other hand,
the pharmaceutical companies are expected to develop
newer vaccines against Covid-19. Many epidemiologists
believe that the Covid-19 pandemic could be a recurring
pandemic that would need a new vaccination each year
similar to the common flu.

While the consideration of these extra statistics and
complications could refine each of the prediction meth-

ods, we expect the improvements to be about the same
percentage for all of the prediction methods. Hence
our main conclusion that spatiotemporal extrapolation
yields the most accurate prediction method will likely
continue to hold with these extension too. We hope
that the main ideas behind our spatiotemporal predic-
tion method will be adopted by epidemiologists in their
work.
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