
1 Introduction

The element of uncertainty involved in various fields of study are

often analyzed by means of various well known classical proba-

bility models like gamma family, Weibull, lognormal, Gompertz,

Burr distributions, generalized exponential etc. Such models

have positive probability over half real line. However, in many

physical phenomena, we often encounter characteristics like av-

erage rainfall in a geographical area, mean and variance of in-

dividuals, score values of aptitude tests, control indices of a

process which lie on bounded interval [see also [31]]. In recent

years several new probability models with finite support have

been introduced, see, [23], [28] and [29]. Thus it is of practical

interest to consider probability distributions with finite support

to derive better inferences for unknown quantities. Besides, it is

significant to have models proposed on finite interval for plau-

sible results, especially in case of measurement of reliability as

percentage or ratio. Motivated by this rationale, [30] studied

unit Weibull (UW) distribution and reported various properties.

The pdf of UW distribution is given by

𝑓𝑋 (𝑥, 𝛼, 𝛽) = 𝛼𝛽(− ln 𝑥)𝛽−1 𝑥−1 𝑒−𝛼(− ln 𝑥)𝛽 , 0 < 𝑥 < 1, 𝛼 > 0, 𝛽 > 0;

(1)

and cdf is

𝐹𝑋 (𝑥) = 𝑒−𝛼(− ln 𝑥)𝛽 , 0 < 𝑥 < 1, 𝛼 > 0, 𝛽 > 0. (2)

Here 𝛼 and 𝛽 reflect shape parameters. From now on wards,

we use the notation 𝑈𝑊 (𝛼, 𝛽) for above model. Its density

function can acquire various shapes such as unimodal and

anti-unimodal, increasing or decreasing. The corresponding

hazard rate is either constant or increasing or bathtub-shaped

depending upon range of its parameters. This distribution is

used as an alternative probability rule to many established

distributions with positive support on finite range such as

beta and Kumaraswamy distributions. Its percentile can be

easily computed. It is to be noted that, if 𝛼 = 𝛽 = 1, the

UW distribution gives uniform distribution with support on

unit intervals (0, 1), if 𝛽 = 1, the UW distribution reduces to

power function distribution while if 𝛽 = 2 the UW distribution

produces to unit-Rayleigh distribution. Hence, it is obvious
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that the new model is inter related to established models and

therefore it can be very useful in many studies.

In this paper, we evaluate various estimators of reliability

based on unit Weibull distribution when data are observed

using a given censoring. This progressive censoring is applied

in various life test studies to derive important inferences. We

briefly describe this scheme for better comprehension: Let 𝑀

systems each having 𝐾 components be subjected to a test.

The corresponding data are derived as follows. When first

failure occurs, then 𝑔1 live items are removed from remaining

active 𝑀 − 1 systems. At this stage 𝑓1 components are also

taken away from the active 𝐾 − 1 components. Similarly, when

second observations occurs, 𝑔2 systems are removed from the

remaining active 𝑀 − 𝑔1 − 2 units. Also 𝑓2 components are

taken away from the active 𝐾 − 𝑓1 − 2 components. This

sequence of observations stops at 𝑚th failure and by this the

failure times of 𝑘 components are recorded. The remaining

active items 𝑔𝑚 = 𝑀 − 𝑚 − 𝑔1 − . . . − 𝑔𝑚−1 are withdrawn along

with 𝑓𝑘 = 𝐾 − 𝑘 − 𝑓1 − . . . − 𝑓𝑘−1 components from life testing.

thus such a censoring consists of 𝑚, and (𝑔1, 𝑔2, · · · , 𝑔𝑚), such
that 𝑔1 + 𝑔2 + · · · + 𝑔𝑚 = 𝑀 − 𝑚. This scheme contains Type-II

censoring as a particular case (when 𝑔1 = · · · = 𝑔𝑚−1 = 0 and

𝑔𝑚 = 𝑀 − 𝑚) and complete sample scheme (when 𝑀 = 𝑚 and

𝑔1 = · · · = 𝑔𝑚 = 0) is also a special case. This method has

attracted attention of many researchers, see, [3], [4],[5], [10],

[11], [24], [27], [33].

In many studies, better inference procedures is required for

unknown parametric functions such as inference problems

involving estimation of multicomponent system reliability

which has received great attention in literature recently.

Multicomponent system is a system having more than one

component. Studies on system reliability was first carried out

by [8]. Deriving useful inferences for multicomponent system

reliability is of practical interest in many applications such as

analysis and design of bridge structures, communication engi-

neering, building defence systems, reliability engineering, radio

communications, industrial experiments etc. Such a system

with 𝑘0 strength (independent) variables like 𝑋1, 𝑋2, . . . , 𝑋𝑘

performs adequately if at least 𝑠− 𝑜𝑢𝑡 − 𝑜 𝑓 − 𝑘 of such variables

overcome random stress 𝑇 experienced by the structures. This

is known as (𝑠 − 𝑜𝑢𝑡 − 𝑜 𝑓 − 𝑘 : 𝐺) system where 𝑠 ≤ 𝑘. Based

on complete sample, several researchers have derived inferences

for multicomponent system reliability. Some recent studies in

this field are: [2], [12], [13], [17], [19], [21], [20]. Despite plenty

of work done on multicomponent system reliability based

on complete sample, however, inferences on multicomponent

reliability based on censoring are scanty. The very few that

we are aware of are: [22] evaluated different estimators of

multicomponent reliability based on progressive censored data

assuming Kumarswamy distribution. The author mentioned

that such inferences can be applied in some other context of

reliability applications. Different other censoring methods can

also be applied to obtain similar inferences. Using progressively

censored observations, [26] derived inference for reliability when

the stress-strength follow Burr XII distribution. Various useful

estimates of parametric function are discussed. Their behavior

is assessed via simulations. Recently, [17] obtained different

estimates for the multicomponent system reliability assuming

unit Gompertz distribution. Such investigation can also be

extended to the situation where stress and strength variables

are not taken from same probability distribution. One may also

refer to [1] and [18] for some further literature on such problems.

Motivation of this work is three-fold: First objective is to

obtain MLEs, the asymptotic confidence interval and two

bootstarp confidence intervals of 𝑅𝑠,𝑘 when both the shape

parameters are unknown and one of the shape parameter is

known. Second objective is to obtain the Bayes estimates

of 𝑅𝑠,𝑘 when both the shape parameters are unknown and

one of the shape parameter is known by using Lindley’s

approximation and the MCMC methods under quadratic loss

function using independent gamma priors. In addition, the

highest posterior density (HPD) credible interval for 𝑅𝑠,𝑘 is

constructed. Third objective is to obtain uniformly minimum

variance unbiased estimator (UMVUE) of system reliability

𝑅𝑠,𝑘 when common shape parameter is known. As far as we

know, no study has attempted to study multicomponent system

reliability under progressively type II censored data based

on unit Weibull distribution using above methods of estimation.

In Section 2, estimation of proposed parametric function is

considered when parameters (𝛼1, 𝛼2 and 𝛽) are unknown. Par-

ticularly, maximum likelihood estimator (MLE), approximate

confidence and bootstrap intervals are obtained. The Bayes

estimators are evaluated against quadratic loss function when

priors of unknown parameters follow gamma distributions. In

the sequel, the HPD interval is evaluated from MH samples. In

Section 3, MLE and approximate interval are obtained under

known common parameter. We further evaluate the UMVUE

of system reliability. Section 4 deals with simulation study

where performance of proposed procedures is evaluated and

findings are illustrated in tabular forms. Jute fibre strength

data has been analyzed for illustrative purposes in Section 5.

In Section 6, concluding remarks are given.
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2 Reliability estimation under un-

known common parameter

Here we obtain various point estimates of the unknown

parametric function. Interval estimation is also discussed.

Let (𝑋𝑖1, 𝑋𝑖2, . . . , 𝑋𝑖𝑘), 𝑖 = 1, . . . , 𝑚, be the censored

data taken from UW(𝛼1, 𝛽) distribution using the scheme

(𝐾, 𝑘, 𝑔1, 𝑔2, . . . , 𝑔𝑘). Further assume that (𝑇1, 𝑇2 . . . , 𝑇𝑚) are

a likewise data from the UW(𝛼2, 𝛽) distribution obtained from

the scheme (𝑀,𝑚, 𝑓1, 𝑓2, . . . , 𝑓𝑚). The associated system relia-

bility of the model is then obtained as

𝑅𝑠,𝑘 =

𝑘∑︁
𝑖=𝑠

(
𝑘

𝑖

) ∫ ∞

−∞
[1 − 𝐹𝑋 (𝑡)]𝑖 [𝐹𝑋 (𝑡)]𝑘−𝑖 𝑑𝐹𝑇 (𝑡)

=

𝑘∑︁
𝑖=𝑠

𝑖∑︁
𝑗=0

(
𝑖

𝑗

) (
𝑘

𝑖

)
(−1) 𝑗 𝛼2 [𝛼1 ( 𝑗 + 𝑘 − 𝑖) + 𝛼2]−1.(3)

2.1 Maximum likelihood estimation

In order to obtain MLE of the system reliability, we first evalu-

ate MLEs of 𝛼1, 𝛼2 and 𝛽 based on progressive type II censored

samples. Suppose that a total of 𝑀 systems are subjected to

a test. Each of these consists of 𝐾 components. Subsequently

failure times of 𝑚 systems each consisting 𝑘 components are

recorded. Then stress-strength samples are obtained as follows:©«
𝑋11 𝑋12 . . . 𝑋1𝑘
...

...
. . .

...

𝑋𝑚1 𝑋𝑚2 . . . 𝑋𝑚𝑘

ª®®®¬ and

𝑇1
...

𝑇𝑚

 .
The likelihood function of 𝛼1, 𝛼2 and 𝛽 is

𝐿 (𝛼1, 𝛼2, 𝛽; data) ∝
∏𝑚
𝑖=1

(∏𝑘
𝑗=1 𝑓 (𝑥𝑖 𝑗 )

[
1 − 𝐹 (𝑥𝑖 𝑗 )

]𝑔 𝑗

)
𝑓 (𝑡𝑖) [1 − 𝐹 (𝑡𝑖)] 𝑓𝑖 .

For considered stress-strength model, we have

𝐿 (𝛼1, 𝛼2, 𝛽; data) ∝
∏𝑚
𝑖=1

(∏𝑘
𝑗=1 𝛼1𝛽(− ln 𝑥𝑖 𝑗 )𝛽−1 𝑥−1𝑖 𝑗 𝑒−𝛼1 (− ln 𝑥𝑖 𝑗 )𝛽 (1 − 𝑒−𝛼1 (− ln 𝑥𝑖 𝑗 )𝛽 )𝑔 𝑗

)
𝛼2𝛽(− ln 𝑡𝑖)𝛽−1 𝑡−1𝑖 𝑒−𝛼2 (− ln 𝑡𝑖)𝛽 (1 − 𝑒−𝛼2 (− ln 𝑦𝑖)𝛽 ) 𝑓𝑖 .

The log-likelihood is given by

𝑙 (𝛼1, 𝛼2, 𝛽, data) = (𝑚𝑘) log 𝛼1 + 𝑚(log 𝛼2) + (𝑘 + 1)𝑚 log 𝛽

+
𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

log(𝑥−1𝑖 𝑗 )

+(𝛽 − 1)
𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

log(− log 𝑥𝑖 𝑗 )

+
𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑔 𝑗 log(1 − 𝑒−𝛼1 (− ln 𝑥𝑖 𝑗 )𝛽 )

+
𝑚∑︁
𝑖=1

log(𝑡−1𝑖 ) + (𝛽 − 1)
𝑚∑︁
𝑖=1

log(− log 𝑡𝑖)

+
𝑚∑︁
𝑖=1

𝑓𝑖 log(1 − 𝑒−𝛼2 (− ln 𝑡𝑖)𝛽 )

−𝛼1
𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

(− log 𝑥𝑖 𝑗 )𝛽 − 𝛼2
𝑚∑︁
𝑖=1

(− log 𝑡𝑖)𝛽 .

(4)

The likelihood equations of parameters are obtained as

𝜕𝑙

𝜕𝛼1
=

𝑚𝑘

𝛼1
+

𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑔 𝑗
𝑒−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽 (− ln 𝑥𝑖 𝑗 )𝛽

(1 − 𝑒−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽 )

−
𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

(− log 𝑥𝑖 𝑗 )𝛽 = 0, (5)

𝜕𝑙

𝜕𝛼2
=
𝑚

𝛼2
+
𝑚∑︁
𝑖=1

𝑓𝑖
𝑒−𝛼2 (− ln 𝑡𝑖)𝛽 (− ln 𝑡𝑖)𝛽

(1 − 𝑒−𝛼2 (− ln 𝑡𝑖)𝛽 )
−

𝑚∑︁
𝑖=1

(− log 𝑡𝑖)𝛽 = 0, (6)

and

𝜕𝑙

𝜕𝛽
=

(𝑚𝑘 + 𝑚)
𝛽

+
𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

log(− log 𝑥𝑖 𝑗 ) +
𝑚∑︁
𝑖=1

log(− log 𝑡𝑖)

+
𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝛼1𝑔 𝑗
𝑒−𝛼1 (− ln 𝑥𝑖 𝑗 )𝛽 (− ln 𝑥𝑖 𝑗 )𝛽

(1 − 𝑒−𝛼1 (− ln 𝑥𝑖 𝑗 )𝛽 )
log(− log 𝑥𝑖 𝑗 )

+
𝑚∑︁
𝑖=1

𝛼2 𝑓𝑖
𝑒−𝛼2 (− ln 𝑡𝑖)𝛽 (− ln 𝑡𝑖)𝛽

(1 − 𝑒−𝛼2 (− ln 𝑡𝑖)𝛽 )
log(− log 𝑡𝑖)

−𝛼1
𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

log(− log 𝑥𝑖 𝑗 ) (− log 𝑥𝑖 𝑗 )𝛽

−𝛼2
𝑚∑︁
𝑖=1

log(− log 𝑡𝑖) (− log 𝑡𝑖)𝛽 = 0. (7)

These three equations are not solvable analytically. We use a

numerical method to evaluate respective MLEs (𝛼1, 𝛼2, 𝛽) of

parameters (𝛼1, 𝛼2, 𝛽). The maximum likelihood estimator of

system reliability is then obtained as

𝑅𝑀𝑠,𝑘 =

𝑘∑︁
𝑖=𝑠

𝑖∑︁
𝑗=0

(
𝑖

𝑗

) (
𝑘

𝑖

)
(−1) 𝑗 �̂�2 [�̂�1 ( 𝑗 + 𝑘 − 𝑖) + �̂�2]−1.

2.2 Asymptotic interval

In this subsection, asymptotic interval of unknown paramet-

ric function is derived using the censored data. The expected

Fisher information matrix is given by 𝐽 (𝜃) = −𝐸 (𝐼 (𝜃)), where
𝐼 (𝜃) = [𝐼𝑖 𝑗 ] =

[
− 𝜕2𝑙
𝜕𝜃𝑖𝜕𝜃 𝑗

]
, 𝑖, 𝑗 = 1, 2, 3. The elements of this

matrix are evaluated as follows:

𝐼11 = −𝑚𝑘
𝛼21

−
𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑔 𝑗 (− log 𝑥𝑖 𝑗 )2𝛽
𝑒−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽

(1 − 𝑒−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽 )2

𝐼22 = − 𝑚
𝛼22

−
𝑚∑︁
𝑖=1

𝑓𝑖 (− log 𝑡𝑖)2𝛽
𝑒−𝛼2 (− log 𝑡𝑖)𝛽

(1 − 𝑒−𝛼2 (− log 𝑡𝑖)𝛽 )2
,

𝐼21 = 0, 𝐼12 = 0,

𝐼13 =

𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑔 𝑗 𝑒
−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽 (− log 𝑥𝑖 𝑗 )𝛽 ×

(− log 𝑥𝑖 𝑗 )
(1 − 𝛼1 (− log 𝑥𝑖 𝑗 )𝛽)
(1 − 𝑒−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽 )

×

−
𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

log(− log 𝑥𝑖 𝑗 ) (− log 𝑥𝑖 𝑗 )𝛽 ,
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𝐼23 =

𝑚∑︁
𝑖=1

𝑓𝑖 𝑒
−𝛼2 (− log 𝑡𝑖)𝛽 (− log 𝑡𝑖)𝛽 (− log 𝑡𝑖)

(1 − 𝛼2 (− log 𝑡𝑖)𝛽)
(1 − 𝑒−𝛼2 (− log 𝑡𝑖)𝛽 )

−
𝑚∑︁
𝑖=1

log(− log 𝑡𝑖) (− log 𝑡𝑖)𝛽 ,

𝐼33 = −𝑚(1 + 𝑘)
𝛽2

+
𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑔 𝑗 𝛼1 (log(− log 𝑥𝑖 𝑗 )) 𝑒−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽

(− log 𝑥𝑖 𝑗 )𝛽 (− log 𝑥𝑖 𝑗 )
(1 − 𝛼1 (− log 𝑥𝑖 𝑗 )𝛽)
(1 − 𝑒−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽 )

+
𝑚∑︁
𝑖=1

𝑓𝑖 𝛼2 (log(− log 𝑡𝑖)) 𝑒−𝛼2 (− log 𝑡𝑖)𝛽 (− log 𝑡𝑖)𝛽 (− log 𝑡𝑖)

(1 − 𝛼2 (− log 𝑡𝑖)𝛽)
(1 − 𝑒−𝛼2 (− log 𝑡𝑖)𝛽 )

− 𝛼1
𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

(log(− log 𝑥𝑖 𝑗 ))2 (− log 𝑥𝑖 𝑗 )𝛽

−𝛼2
𝑚∑︁
𝑖=1

(log(− log 𝑡𝑖))2 (− log 𝑡𝑖)𝛽 .

The MLE 𝑅𝑠,𝑘 is normally distributed having average value 𝑅𝑠,𝑘

and variance

𝜎2
𝑅𝑠,𝑘

=

(
𝜕𝑅𝑠,𝑘

𝜕𝛼1

)2
𝐽−111 +

(
𝜕𝑅𝑠,𝑘

𝜕𝛼2

)2
𝐽−122 + 2

(
𝜕𝑅𝑠,𝑘

𝜕𝛼1

) (
𝜕𝑅𝑠,𝑘

𝜕𝛼2

)
𝐽−112 ,

where
𝜕𝑅𝑠,𝑘

𝜕𝛼1
=

𝑘∑︁
𝑖=𝑠

𝑖∑︁
𝑗=0

(
𝑘

𝑖

) (
𝑖

𝑗

)
(−1) 𝑗+1𝛼2 ( 𝑗 + 𝑘 − 𝑖) ×

[𝛼1 ( 𝑗 + 𝑘 − 𝑖) + 𝛼2]−2

𝜕𝑅𝑠,𝑘

𝜕𝛼2
=

𝑘∑︁
𝑖=𝑠

𝑖∑︁
𝑗=0

(
𝑘

𝑖

) (
𝑖

𝑗

)
(−1) 𝑗 (𝑘 − 𝑖 + 𝑗) 𝛼1 ×

[𝛼1 (𝑘 − 𝑖 + 𝑗) + 𝛼2]−2.
Now a 100(1 − 𝜂)%, 0 < 𝜂 < 1, interval of the reliability is

computed as (𝑅𝑠,𝑘 ± 𝑞𝜂/2�̂�𝑅𝑠,𝑘
), where 𝑞𝜂/2 denotes the uper

(𝜂/2)th of 𝑁 (0, 1) .

2.3 Bootstrap intervals

Now boot-p and boot-t intervals of the reliability are evaluated

based under progressive type II censoring. Such intervals are

highly popular in statistical literature. Readers may refer to

[14] and [15] for detailed discussion on these methods.

2.3.1 Boot-P Method

1. Simulate data
(
𝑡∗1, . . . , 𝑡

∗
𝑚

)
of size 𝑚. Further generate data(

𝑥∗
𝑖1, . . . , 𝑥

∗
𝑖𝑘

)
, 𝑖 = 1, 2, . . . , 𝑚, of size 𝑛𝑘. Bootstrap estimate

of 𝑅𝑠,𝑘 is evaluated as 𝑅∗
𝑠,𝑘

.

2. Repeat this step sufficient number of times.

3. Let 𝐹∗ (𝑥) be the empirical cdf of bootstrap estimate 𝑅∗
𝑠,𝑘

.

Consider 𝑅𝑏𝑝
𝑠,𝑘

(𝑥) = 𝐹∗−1 (𝑥), then 100 (1 − 𝜂)% boot-p in-

terval turns out to be (𝑅𝑏𝑝
𝑠,𝑘

( 𝜂
2

)
, 𝑅

𝑏𝑝

𝑠,𝑘
(1 − 𝜂

2 )).

2.3.2 Boot-T Method

1. Generate data
(
𝑡∗1, . . . , 𝑡

∗
𝑚

)
of size 𝑚. Further generate

data
(
𝑥∗
𝑖1, . . . , 𝑥

∗
𝑖𝑘

)
𝑖 = 1, 2, . . . , 𝑚, of size 𝑚𝑘. Bootstrap

estimate of 𝑅𝑠,𝑘 is evaluated as 𝑅∗
𝑠,𝑘

. Compute 𝑇∗ =(√︃
𝑉 (𝑅∗

𝑠,𝑘
)
)−1

(𝑅∗
𝑠,𝑘

− 𝑅𝑠,𝑘).

2. Repeat these two steps sufficient number of times.

3. Let 𝐻𝑇∗ (𝑥) be the empirical cdf of 𝑇∗ and also 𝑅𝑏𝑡
𝑠,𝑘

(𝑥) =

𝑅𝑠,𝑘 (𝑥) + 𝐻−1
𝑇∗ (𝑥)

√︃
𝑉 (𝑅𝑠,𝑘). The required boot-t interval

turns out to be (𝑅𝑏𝑡
𝑠,𝑘

( 𝜂2 ), 𝑅
𝑏𝑡
𝑠,𝑘

(1 − 𝜂

2 )).

2.4 Bayesian inference

In this subsection, Bayesian approach is applied for estimating

the reliability. Bayesian analysis is a natural way to combine the

observed information with the prior distribution which makes

it reasonably useful in reliability, lifetime study, survival analy-

sis. To simplify the Bayesian analysis, we consider independent

gamma priors for 𝛼1, 𝛼2 and 𝛽 with parameters (𝑝𝑖 , 𝑞𝑖), where
𝑝𝑖 and 𝑞𝑖 are the shape and scale parameters, 𝑖 = 1, 2, 3. Thus

the prior distribution is of the form

𝑓 𝑖 (𝑥) = 𝑞
𝑝𝑖
𝑖

Γ (𝑝𝑖) 𝑥
𝑝𝑖−1𝑒−𝑥𝑞𝑖 , 𝑥 > 0, 𝑝𝑖 > 0, 𝑞𝑖 > 0, 𝑖 = 1, 2, 3.

Subsequently joint posterior is of the following form:

𝜋(𝛼1, 𝛼2, 𝛽 | data) ∝ 𝛼𝑚𝑘+𝑝1−11 𝛼
𝑚+𝑝2−1
2 𝛽𝑚(𝑘+1)+𝑝3−1

𝑒
−𝛼1 (𝑞1+

∑𝑚
𝑖=1

∑𝑘
𝑗=1 (− log 𝑥𝑖 𝑗 )𝛽) 𝑒−𝛼2 (𝑞2+

∑𝑚
𝑖=1 (− log 𝑡𝑖)𝛽)

𝑒
∑𝑚

𝑖=1

∑𝑘
𝑗=1 𝑔 𝑗 log(1−𝑒−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽 )

𝑒
∑𝑚

𝑖=1 𝑓𝑖 log(1−𝑒−𝛼2 (− log 𝑡𝑖 )𝛽 )

𝑒
−𝛽 (𝑞3−

∑𝑚
𝑖=1

∑𝑘
𝑗=1 (− log 𝑥𝑖 𝑗 )−

∑𝑚
𝑖=1 (− log 𝑡𝑖)) . (8)

Note that normalizing constant is not helpful in evaluating the

Bayes estimate. The estimate of 𝑅𝑠,𝑘 is computed under the

quadratic loss function where desired estimate is the posterior

mean of 𝑅𝑠,𝑘 . Subsequently the desired estimator from above

posterior is obtained as

𝑅𝐵𝑠,𝑘 =

∫ ∞

0

∫ ∞

0

∫ ∞

0
𝑅𝑠,𝑘 𝜋(𝛼1, 𝛼2, 𝛽 | data) 𝑑𝛼1𝑑𝛼2𝑑𝛽. (9)

This estimator is the ratio of two integrals. We are not able

to solve it explicitly as the posterior distribution is intractable

form, thus we use Lindley’s approximation method (see, [25])

and MH algorithm (see, [32], [16]) to compute the estimate 𝑅𝐵
𝑠,𝑘

of 𝑅𝑠,𝑘 .

2.4.1 Lindley’s approximation method

Now the required estimate of 𝑅𝑠,𝑘 is evaluated using the Lind-

ley’s method. Consider the posterior expectation of the function

𝑢(𝜃) such as 𝐸 (𝑢(𝜃) | 𝑥, 𝑦) =
∫
𝑢(𝜃)𝑒𝑙 (𝜃)+𝜌(𝜃)𝑑𝜃/

∫
𝑒𝑙 (𝜃)+𝜌(𝜃)𝑑𝜃,

where 𝑙 (𝜃) and 𝜌(𝜃) are log-likelihood function of 𝜃 and loga-

rithm of prior distribution, respectively and 𝜃 = (𝛼1, 𝛼2, 𝛽). The
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Bayes estimate turns out to be as follows:

𝑅𝑠,𝑘 = 𝑢(𝜃) + (𝑢1𝑎1 + 𝑢2𝑎2 + 𝑢3𝑎3 + 𝑎4 + 𝑎5) +
0.5

[
(𝜎11𝑙111 + 2𝜎12𝑙121 + 2𝜎13𝑙131 + 2𝜎23𝑙231 +

𝜎22𝑙221 + 𝜎33𝑙331) (𝑢1𝜎11 + 𝑢2𝜎12 + 𝑢3𝜎13) +
(
𝜎11𝑙112

+2𝜎12𝑙122 + 2𝜎13𝑙132 + 2𝜎23𝑙232 +
𝜎22𝑙222 + 𝜎33𝑙332

)
(𝑢1𝜎21 + 𝑢2𝜎22 + 𝑢3𝜎23)

+(𝜎11𝑙113 + 2𝜎12𝑙123 + 2𝜎13𝑙133 + 2𝜎23𝑙233 +
𝜎22𝑙223 + 𝜎33𝑙333) (𝑢1𝜎31 + 𝑢2𝜎32 + 𝑢3𝜎33)

]
. (10)

Respective quantities are defined as 𝑎𝑖 = 𝜌1𝜎𝑖1 + 𝜌2𝜎𝑖2 +
𝜌3𝜎𝑖3, 𝑖 = 1, 2, 3, 𝑎4 = 𝑢12𝜎12 + 𝑢13𝜎13 + 𝑢23𝜎23, 𝑎5 =

0.5(𝑢11𝜎11 + 𝑢22𝜎22 + 𝑢33𝜎33), 𝜌1 =
𝑝1−1
𝛼1

− 𝑞1, 𝜌2 =
𝑝2−1
𝛼2

−
𝑞2, 𝜌3 =

𝑝3−1
𝛽

− 𝑞3, 𝜎𝑖𝑘 is given as [−𝑙𝑖𝑘]−1, 𝑖, 𝑘 = 1, 2, 3. We

further take 𝑢(𝜃) as 𝑅𝑠,𝑘 . All quantities evaluated at maxi-

mum likelihood estimates. Other quantities of Eqn. (10) are

presented below:

𝑙1 =
𝑚𝑘

𝛼1
+
𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑔 𝑗
𝑒−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽 (− ln 𝑥𝑖 𝑗 )𝛽

(1 − 𝑒−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽 )
−

𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

(− log 𝑥𝑖 𝑗 )𝛽

𝑙2 =
𝑚

𝛼2
+

𝑚∑︁
𝑖=1

𝑓𝑖
𝑒−𝛼2 (− ln 𝑡𝑖)𝛽 (− ln 𝑡𝑖)𝛽

(1 − 𝑒−𝛼2 (− ln 𝑡𝑖)𝛽 )
−

𝑚∑︁
𝑖=1

(− log 𝑡𝑖)𝛽

𝑙3 =
(𝑚𝑘 + 𝑚)

𝛽
+

𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

log(− log 𝑥𝑖 𝑗 ) +
𝑚∑︁
𝑖=1

log(− log 𝑡𝑖)

+
𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝛼1𝑔 𝑗
𝑒−𝛼1 (− ln 𝑥𝑖 𝑗 )𝛽 (− ln 𝑥𝑖 𝑗 )𝛽

(1 − 𝑒−𝛼1 (− ln 𝑥𝑖 𝑗 )𝛽 )
log(− log 𝑥𝑖 𝑗 )

+
𝑚∑︁
𝑖=1

𝛼2 𝑓𝑖
𝑒−𝛼2 (− ln 𝑡𝑖)𝛽 (− ln 𝑡𝑖)𝛽

(1 − 𝑒−𝛼2 (− ln 𝑡𝑖)𝛽 )
log(− log 𝑡𝑖)

−𝛼1
𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

(log(− log 𝑥𝑖 𝑗 ))2 (− log 𝑥𝑖 𝑗 )𝛽

−𝛼2
𝑚∑︁
𝑖=1

(log(− log 𝑡𝑖))2 (− log 𝑡𝑖)𝛽 .

Also 𝑙11, 𝑙22, 𝑙33, 𝑙13, 𝑙23 are evaluated in Section 2.2. Note also

𝑙12 = 0 and 𝑙21 = 0. Further

𝑙111 =
2𝑚𝑘

𝛼31

+
𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑔 𝑗 [1 + 𝑒−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽 ]

𝑒−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽 (− ln 𝑥𝑖 𝑗 )3𝛽

(1 − 𝑒−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽 )3

𝑙222 =
2𝑚

𝛼32

+
𝑚∑︁
𝑖=1

𝑓𝑖 [1 + 𝑒−𝛼2 (− log 𝑡𝑖)𝛽 ] 𝑒
−𝛼2 (− log 𝑡𝑖)𝛽 (− ln 𝑡𝑖)3𝛽

(1 − 𝑒−𝛼2 (− log 𝑡𝑖)𝛽 )3

−𝑙113 =

𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑔 𝑗 (− ln 𝑥𝑖 𝑗 )2𝛽 log(− ln 𝑥𝑖 𝑗 ) 𝑒−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽

(1 − 𝑒−𝛼2 (− log 𝑥𝑖 𝑗 )𝛽 )−3{
[2 − 𝛼1 (− ln 𝑥𝑖 𝑗 )𝛽] [1 − 𝑒−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽 ]

−2𝛼1 𝑒−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽 (− ln 𝑥𝑖 𝑗 )𝛽
}

−𝑙223 =

𝑚∑︁
𝑖=1

𝑓𝑖 (− ln 𝑡𝑖)2𝛽 log(− ln 𝑡𝑖) 𝑒−𝛼2 (− log 𝑡𝑖)𝛽

(1 − 𝑒−𝛼2 (− log 𝑡𝑖)𝛽 )−3{
[2 − 𝛼2 (− ln 𝑡𝑖)𝛽] [1 − 𝑒−𝛼2 (− log 𝑡𝑖)𝛽 ]

−2𝛼2 𝑒−𝛼2 (− log 𝑡𝑖)𝛽 (− ln 𝑡𝑖)𝛽
}

𝑙333 =

𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝛼1 𝑔 𝑗 (− ln 𝑥𝑖 𝑗 )𝛽 (− ln 𝑥𝑖 𝑗 ) (log(− ln 𝑥𝑖 𝑗 ))2

𝑒−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽 (1 − 𝑒−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽 )−2{
[1 − 2𝛼1 (− ln 𝑥𝑖 𝑗 )𝛽 − 𝛼1 (− ln 𝑥𝑖 𝑗 )𝛽 (1 − 𝛼1 (− ln 𝑥𝑖 𝑗 )𝛽)]

[1 − 𝑒−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽 ]
−𝛼1 (− ln 𝑥𝑖 𝑗 )𝛽 𝑒−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽 (1 − 𝛼1 (− ln 𝑥𝑖 𝑗 )𝛽)

}
+2𝑚(𝑘 + 1)

𝛽3
+

𝑚∑︁
𝑖=1

𝛼2 𝑓𝑖 (− ln 𝑡𝑖)𝛽 (− ln 𝑡𝑖)

(log(− ln 𝑡𝑖))2 𝑒−𝛼2 (− log 𝑡𝑖)𝛽 (1 − 𝑒−𝛼2 (− log 𝑡𝑖)𝛽 )−2{
[1 − 2𝛼2 (− ln 𝑡𝑖)𝛽 − 𝛼2 (− ln 𝑡𝑖)𝛽

(1 − 𝛼2 (− ln 𝑡𝑖)𝛽)] [1 − 𝑒−𝛼2 (− log 𝑡𝑖)𝛽 ]
−𝛼2 (− ln 𝑡𝑖)𝛽 𝑒−𝛼2 (− log 𝑡𝑖)𝛽 (1 − 𝛼2 (− ln 𝑡𝑖)𝛽)

}
−𝛼1

𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

(log(− log 𝑥𝑖 𝑗 ))3 (− log 𝑥𝑖 𝑗 )𝛽

−𝛼2
𝑚∑︁
𝑖=1

(log(− log 𝑡𝑖))3 (− log 𝑡𝑖)𝛽

𝑙331 =

𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑔 𝑗 (− ln 𝑥𝑖 𝑗 )𝛽 (− ln 𝑥𝑖 𝑗 ) (log(− ln 𝑥𝑖 𝑗 ))

𝑒−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽 (1 − 𝑒−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽 )−1{
[1 − 2𝛼1 (− ln 𝑥𝑖 𝑗 )𝛽 − 𝛼1 (− ln 𝑥𝑖 𝑗 )𝛽 (1 − 𝛼1 (− ln 𝑥𝑖 𝑗 )𝛽)]

[1 − 𝑒−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽 ]−1
}

−
𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

log(− log 𝑥𝑖 𝑗 )2 (− log 𝑥𝑖 𝑗 )𝛽

𝑙332 =

𝑚∑︁
𝑖=1

𝑓𝑖 (− ln 𝑡𝑖)𝛽 (− ln 𝑡𝑖) (log(− ln 𝑡𝑖)) 𝑒−𝛼2 (− log 𝑡𝑖)𝛽

(1 − 𝑒−𝛼2 (− log 𝑡𝑖)𝛽 )−1{
[1 − 2𝛼2 (− ln 𝑡𝑖)𝛽 − 𝛼2 (− ln 𝑡𝑖)𝛽 (1 − 𝛼2 (− ln 𝑡𝑖)𝛽)]

[1 − 𝑒−𝛼2 (− log 𝑡𝑖)𝛽 ]−1
}

−
𝑚∑︁
𝑖=1

log(− log 𝑡𝑖)2 (− log 𝑡𝑖)𝛽

𝑙132 = 𝑙122 = 𝑙123 = 𝑙231 = 𝑙221 = 𝑙112 = 𝑙121 = 0,

Considering 𝑢(𝜃) = 𝑅𝑠,𝑘 , we have

𝑢1 =
𝜕𝑅𝑠,𝑘

𝜕𝛼1
=

𝑘∑︁
𝑖=𝑠

𝑖∑︁
𝑗=0

(
𝑘

𝑖

) (
𝑖

𝑗

)
(−1) 𝑗+1 𝛼2 ( 𝑗 + 𝑘 − 𝑖)

[𝛼1 ( 𝑗 + 𝑘 − 𝑖) + 𝛼2]2
,
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𝑢2 =
𝜕𝑅𝑠,𝑘

𝜕𝛼2
=

𝑘∑︁
𝑖=𝑠

𝑖∑︁
𝑗=0

(
𝑘

𝑖

) (
𝑖

𝑗

)
(−1) 𝑗 𝛼1 ( 𝑗 + 𝑘 − 𝑖)

[𝛼1 ( 𝑗 + 𝑘 − 𝑖) + 𝛼2]2

𝑢11 =
𝜕2𝑅𝑠,𝑘

𝜕𝛼21

=

𝑘∑︁
𝑖=𝑠

𝑖∑︁
𝑗=0

(
𝑘

𝑖

) (
𝑖

𝑗

)
(−1) 𝑗 2𝛼2 ( 𝑗 + 𝑘 − 𝑖)2

[𝛼1 ( 𝑗 + 𝑘 − 𝑖) + 𝛼2]3
,

𝑢22 =
𝜕2𝑅𝑠,𝑘

𝜕𝛼22

=

𝑘∑︁
𝑖=𝑠

𝑖∑︁
𝑗=0

(
𝑘

𝑖

) (
𝑖

𝑗

)
(−1) 𝑗+1 2𝛼1 ( 𝑗 + 𝑘 − 𝑖)

[𝛼1 ( 𝑗 + 𝑘 − 𝑖) + 𝛼2]3
,

𝑢3 =
𝜕𝑅𝑠,𝑘

𝜕𝛽
= 0, 𝑢33 = 𝑢13 = 𝑢23 = 0,

𝑢12 = 𝑢21 =
𝜕2𝑅𝑠,𝑘

𝜕𝛼1𝜕𝛼2
=

𝑘∑︁
𝑖=𝑠

𝑖∑︁
𝑗=0

(
𝑘

𝑖

) (
𝑖

𝑗

)
(−1) 𝑗+1 ( 𝑗 + 𝑘 − 𝑖) [𝛼1 ( 𝑗 + 𝑘 − 𝑖) − 𝛼2]

[𝛼1 ( 𝑗 + 𝑘 − 𝑖) + 𝛼2]3
.

This Lindley method is very popular for deriving point esti-

mates of various unknown parameters, however, it is not very

useful for evaluating credible intervals. We next discuss MH

algorithm which is widely used for computing Bayes point and

interval estimates of unknown parametric functions.

2.4.2 MH algorithm

Here we apply this method to evaluate Bayes estimate of the

system reliability, 𝑅𝑠,𝑘 and credible intervals under the given

censored data. We see that marginal distributions of 𝛼1, 𝛼2 and

𝛽 may not be available in known forms. These marginals are

evaluated using normal proposal distributions. The following

algorithm is used for computations purposes.

Step 1: Consider initial guess (𝛼10 , 𝛼20 , 𝛽0 ) of (𝛼1, 𝛼2, 𝛽) and

set 𝑑 = 1.

Step 2: Generate 𝛽(𝑑) from 𝑁 (𝜇𝑑−1, 𝜎2) at 𝑑th step.

Step 3: Generate 𝛼1(𝑑) using 𝑁 (𝛼1(𝑑−1) , 𝜎2).
Step 4: Generate 𝛼2(𝑑) using 𝑁 (𝛼2(𝑑−1) , 𝜎2).
Step 5: Compute 𝑅(𝑑) =

∑𝑘
𝑖=𝑠

∑𝑖
𝑗=0

( 𝑖
𝑗

) (𝑘
𝑖

)
(−1) 𝑗 𝛼2(𝑑) [𝛼1(𝑑) ( 𝑗+

𝑘 − 𝑖) + 𝛼2(𝑑) ]−1.
Step 6: Set 𝑑 = 𝑑 + 1.

Step 8: Iterate steps 2-6, 𝑛0 times.

Bayes estimator of 𝑅𝑠,𝑘 is now obtained as

𝑅𝑀𝑠,𝑘 =
1

𝑛0

𝑛0∑︁
𝑖=1

𝑅(𝑑)𝑠,𝑘 .

The 100(1 − 𝜂)% HPD interval of 𝑅𝑠,𝑘 is evaluated using the

procedure of [9].

3 Reliability estimation under known

common parameter

Now estimation of 𝑅𝑠,𝑘 is considered when 𝛽 is known and data

are progressive type II censored. We take 𝛽 = 𝛽0, 𝛽0 is known

constant. Different estimators are discussed in this case also.

3.1 Maximum likelihood estimation

Here we obtain MLE of unknown parametric function using the

observe censored data when 𝛽 is known. The likelihood function

turns out to be

𝐿 (𝛼1, 𝛼2, data) ∝
𝑚∏
𝑖=1

( 𝑘∏
𝑗=1

𝛼1 (− ln 𝑥𝑖 𝑗 )𝛽0−1 𝑥−1𝑖 𝑗

(1 − 𝑒−𝛼1 (− ln 𝑥𝑖 𝑗 )𝛽0 )𝑔 𝑗 𝑒−𝛼1 (− ln 𝑥𝑖 𝑗 )𝛽0
)

𝛼2 (− ln 𝑡𝑖)𝛽0−1 𝑡−1𝑖 (1 − 𝑒−𝛼2 (− ln 𝑡𝑖)𝛽0 ) 𝑓𝑖 𝑒−𝛼2 (− ln 𝑡𝑖)𝛽0 .

The log-likelihood function is given by

𝑙 (𝛼1, 𝛼2, data) ∝ (𝑚𝑘) log 𝛼1 + 𝑚(log 𝛼2)

+
𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑔 𝑗 log(1 − 𝑒−𝛼1 (− ln 𝑥𝑖 𝑗 )𝛽 ) +
𝑚∑︁
𝑖=1

𝑓𝑖 log(1 − 𝑒−𝛼2 (− ln 𝑡𝑖)𝛽 )

−𝛼1
𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

(− log 𝑥𝑖 𝑗 )𝛽0 − 𝛼2
𝑚∑︁
𝑖=1

(− log 𝑡𝑖)𝛽0 (11)

MLEs of 𝛼1 and 𝛼2 are solutions of the following equations:

𝜕𝑙

𝜕𝛼1
=

𝑚𝑘

𝛼1
+

𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑔 𝑗
𝑒−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽0 (− ln 𝑥𝑖 𝑗 )𝛽0

(1 − 𝑒−𝛼1 (− log 𝑥𝑖 𝑗 )𝛽0 )

−
𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=1

(− log 𝑥𝑖 𝑗 )𝛽0 = 0, (12)

𝜕𝑙

𝜕𝛼2
=
𝑚

𝛼2
+

𝑚∑︁
𝑖=1

𝑓𝑖
𝑒−𝛼2 (− ln 𝑡𝑖)𝛽0 (− ln 𝑡𝑖)𝛽0
(1 − 𝑒−𝛼2 (− ln 𝑡𝑖)𝛽0 )

−
𝑚∑︁
𝑖=1

(− log 𝑡𝑖)𝛽0 = 0,

(13)

It is seen from the above two non-linear equations that there

are no closed form for the MLEs 𝛼1 and 𝛼2. Numerical proce-

dures may be used to solve these nonlinear equations to compute

them. The corresponding MLE 𝑅𝑠,𝑘 of system reliability 𝑅𝑠,𝑘

is computed similarly as earlier. From asymptotic theory, we

know that MLE is normally distributed, and accordingly 𝑅𝑠,𝑘

is normal with mean 𝑅𝑠,𝑘 and variance is

𝜎2
𝑅𝑠,𝑘

=

(
𝜕𝑅𝑠,𝑘

𝜕𝛼1

)2 𝛼2
1
𝑚𝑘

+
(
𝜕𝑅𝑠,𝑘

𝜕𝛼2

)2 𝛼2
2
𝑚
.

Hence, a 100(1 − 𝜂)% interval of 𝑅𝑠,𝑘 is given by (𝑅𝑠,𝑘 ±
𝑞𝜂/2�̂�𝑅𝑠,𝑘

), where 𝑞𝜂/2 is the upper (𝜂/2)th quantile of 𝑁 (0, 1).

3.2 UMVUE of 𝑅𝑠,𝑘

In this subsection, UMVUE 𝑅𝑈 of multicomponent system

reliability is derived. In fact it is enough to evaluate this

estimator for 𝜓(𝛼1, 𝛼2) = 𝛼2 [𝛼1 ( 𝑗 + 𝑘 − 𝑖) + 𝛼2]−1.
Let 𝑈∗ =

∑𝑚
𝑖=1 ( 𝑓𝑖 + 1) (− log 𝑡𝑖)𝛽0 and 𝑉∗ =

∑𝑚
𝑖=1

∑𝑘
𝑗=1 (𝑔 𝑗 +

1) (− log 𝑥𝑖 𝑗 )𝛽0 . Then (𝑈∗, 𝑉∗) form a complete and sufficient

statistic for unknown parameters.

Let 𝑇∗
𝑖
= (− log 𝑡𝑖)𝛽0 , 𝑖 = 1, 2, . . . , 𝑚, is a progressively censored

sample from one parameter exponential distribution with mean

1/𝛼2.
Considering the transformations

𝑍1 = 𝑀𝑇∗
1 ,

𝑍2 = (𝑀 − 𝑓1 − 1) (𝑇∗
2 − 𝑇∗

1 ),
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. . .

. . .

𝑍𝑚 = (𝑀 − 𝑓1 − . . . − 𝑓𝑚−1 − 𝑚 + 1) (𝑇∗
𝑚 − 𝑇∗

𝑚−1).
Thus 𝑍1, 𝑍2, . . . , 𝑍𝑚 are iid exponential variables with mean

1/𝛼2. So 𝑈∗ =
∑𝑚
𝑖=1 𝑍𝑖 =

∑𝑚
𝑖=1 ( 𝑓𝑖 + 1)𝑇∗

𝑖
and it follows a gamma

𝐺 (𝑚, 𝛼2) distribution.
Similarly 𝑉∗ =

∑𝑚
𝑖=1

∑𝑘
𝑗=1𝑊𝑖 𝑗 , where 𝑊𝑖 𝑗 = (𝑔 𝑗 + 1) (− log 𝑥𝑖 𝑗 )𝛽0

and that 𝑉∗ has 𝐺 (𝑚𝑘, 𝛼1) distribution.
Now let 𝜙(𝑊11, 𝑍1) = 1, 𝑊11 > ( 𝑗 + 𝑘 − 𝑖)𝑍1; = 0, elsewhere.

Note that it is an unbiased estimator for estimating 𝜓(𝛼1, 𝛼2).
Using Lehmann-Scheffe theorem, the corresponding UMVUE

𝜓𝑈 is obtained as, see also [7],

𝜓𝑈 = 𝐸 (𝜙(𝑊11, 𝑍1) | 𝑉∗ = 𝑣∗, 𝑈∗ = 𝑢∗)
= 𝑃(𝑊11 > ( 𝑗 + 𝑘 − 𝑖)𝑍1 | 𝑉∗ = 𝑣∗, 𝑈∗ = 𝑢∗)

=

∫
𝐶0

∫
𝑓𝑊11 |𝑉∗ (𝑤 | 𝑣∗) 𝑓𝑍1 |𝑈∗ (𝑧 | 𝑢∗) 𝑑𝑤𝑑𝑧 (14)

where 𝐶0 = {(𝑤, 𝑧) : 0 < 𝑤 < 𝑣∗, 0 < 𝑧 < 𝑢∗, 𝑤 > ( 𝑗 + 𝑘 − 𝑖)𝑧}
and integral is evaluated under following cases,

(i) 𝑢∗ ( 𝑗 + 𝑘 − 𝑖) < 𝑣∗,
(ii) 𝑢∗ ( 𝑗 + 𝑘 − 𝑖) > 𝑣∗ and

(iii) 𝑢∗ ( 𝑗 + 𝑘 − 𝑖) = 𝑣∗.

Case (i):

𝜓𝑈 = [𝑢∗𝑣∗]−1 (𝑚 − 1) (𝑚𝑘 − 1)
∫ 𝑢∗

0

∫ 𝑣∗

𝑧 ( 𝑗+𝑘−𝑖)(
1 − 𝑧

𝑢∗

)𝑚−2 (
1 − 𝑤

𝑣∗

)𝑚𝑘−2
𝑑𝑤𝑑𝑧

= (𝑚 − 1)
∫ 1

0
(1 − 𝑡)𝑚−2 (1 − 𝑐𝑡)𝑚𝑘−1𝑑𝑡

=

𝑚𝑘−1∑︁
𝜂=0

(−𝑐)𝜂
(𝑚𝑘−1
𝜂

)(𝑚+𝜂−1
𝜂

) , 𝑐 = 𝑢∗ ( 𝑗 + 𝑘 − 𝑖)/𝑣∗, 𝑡 = 𝑧/𝑢∗.

Case (ii)

𝜓𝑈 = [𝑢∗𝑣∗]−1 (𝑚 − 1) (𝑚𝑘 − 1)
∫ 𝑢∗

0

∫ 𝑣∗/( 𝑗+𝑘−𝑖)

0(
1 − 𝑧

𝑢∗

)𝑚𝑘−2 (
1 − 𝑤

𝑣∗

)𝑚−2
𝑑𝑤𝑑𝑧

= 1 −
𝑚−1∑︁
𝜂=0

(−1)𝜂
(𝑚−1
𝜂

)(𝑚𝑘+𝜂−1
𝜂

)
(𝑐)𝜂

.

Case (iii)

𝜓𝑈 = [𝑢∗𝑣∗]−1 (𝑚 − 1) (𝑚𝑘 − 1)
∫ 𝑣∗

0

∫ 𝑢∗

𝑤 ( 𝑗+𝑘−𝑖)(
1 − 𝑧

𝑢∗

)𝑚−2 (
1 − 𝑤

𝑣∗

)𝑚𝑘−2
𝑑𝑤𝑑𝑧

=
𝑚 − 1

𝑚𝑘 + 𝑚 − 2
.

The desired UMVUE of 𝑅𝑠,𝑘 is now obtained as

𝑅𝑈 =

𝑘∑︁
𝑖=𝑠

𝑖∑︁
𝑗=0

[(𝑘
𝑖

) (
𝑖

𝑗

)
(−1) 𝑗𝜓𝑈

]
. (15)

3.3 Lindley’s approximation to estimate sys-

tem reliability 𝑅0

In this subsection, point and interval estimates of 𝑅𝑠,𝑘 are eval-

uated using the Bayesian method when 𝛽 is known. We take

the prior for 𝛼1 and 𝛼2 as 𝐺 (𝑝1, 𝑞1) and 𝐺 (𝑝2, 𝑞2) distributions,
respectively. When 𝛽 = 𝛽0, the Bayes estimate of 𝑅𝑠,𝑘 denoted

by 𝑅0 using Lindley’s approximation method is obtained as

𝑅0 = 𝑢(𝜃) + (𝑢1𝑎1 + 𝑢2𝑎2 + 𝑎3) + 0.5 [𝑃0 (𝑢1𝜎11 + 𝑢2𝜎12)
+𝑄0 (𝑢1𝜎21 + 𝑢2𝜎22)] , (16)

where

𝑎𝑖 = 𝜌1𝜎𝑖1 + 𝜌2𝜎𝑖2, 𝑖 = 1, 2.

𝑎3 = 0.5 (𝑢11𝜎11 + 𝑢12𝜎12 + 𝑢21𝜎21 + 𝑢22𝜎22)
𝑃0 = 𝑙111𝜎11 + 𝑙121𝜎12 + 𝑙211𝜎21 + 𝑙221𝜎22.
𝑄0 = 𝑙112𝜎11 + 𝑙122𝜎12 + 𝑙212𝜎21 + 𝑙222𝜎22.

Further, 𝜌1 =
𝑝1−1
𝛼1

− 𝑞1, 𝜌2 =
𝑝2−1
𝛼2

− 𝑞2 and 𝜎𝑖 𝑗 is the element

of the matrix associated with [−𝑙𝑖 𝑗 ]−1, 𝑖, 𝑗 = 1, 2, 𝑢(𝜃) = 𝑅𝑠,𝑘 .

Each term of Bayes estimate is computed at MLEs of 𝛼1 and

𝛼2.

3.3.1 Metropolis-Hasting algorithm

Here we apply this method to evaluate some alternative

estimate of 𝑅𝑠,𝑘 . We also compute credible intervals under the

given censored data. We observe that posterior distributions

of 𝛼1, 𝛼2 and 𝛽 are not in closed form. Thus it is difficult to

obtain associated marginal distributions. So we approximate

these marginal distributions numerically using normal proposal

distributions. We apply following algorithm.

Step 1: Choose an initial guess (𝛼10 , 𝛼20 ) of (𝛼1, 𝛼2) and set

𝑑 = 1.

Step 2: Generate 𝛼1(𝑑) using 𝑁 (𝛼1(𝑑−1) , 𝜎2) distribution.
Step 3: Generate 𝛼2(𝑑) using 𝑁 (𝛼2(𝑑−1) , 𝜎2) distribution.
Step 4: Compute 𝑅(𝑑) =

∑𝑘
𝑖=𝑠

∑𝑖
𝑗=0

( 𝑖
𝑗

) (𝑘
𝑖

)
(−1) 𝑗 𝛼2(𝑑) [𝛼1(𝑑) ( 𝑗+

𝑘 − 𝑖) + 𝛼2(𝑑) ]−1.
Step 5: Set 𝑑 = 𝑑 + 1.

Step 6: Repeat steps 2 to 5, 𝑛0 times.

Bayes estimate of the system reliability 𝑅𝑠,𝑘 is now obtained as

𝑅𝑀𝑠,𝑘 =
1

𝑛0

𝑛0∑︁
𝑖=1

𝑅(𝑑)𝑠,𝑘 .

The 100(1 − 𝜂)% HPD interval of the reliability is evaluated

using the method of [9].

4 Numerical Results

Now we examine the behavior of all estimators of multicompo-

nent stress-strength reliability via Monte Carlo simulations on

the basis of progressively censored samples. Point estimators

are compared with respect to mean square error (MSE) and

bias values. Similarly all interval estimators are compared
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against in terms of their average interval length and coverage

probabilities (CPs). The 𝑅 statistical software is used for

evaluating different estimates. Algorithm of [6] is used for

simulation purposes. We present this algorithm for the sake of

completeness.

• We first generate independent samples 𝑌1, 𝑌2, . . . 𝑌𝑘 from

the standard uniform distribution.

• Consider 𝑒𝑖 = 𝑌
1/(𝑖+∑𝑘

𝑗=𝑘−𝑖+1 𝑔 𝑗 )
𝑖

, 𝑖 = 1, 2, . . . , 𝑘.

• Assume that 𝑢𝑖:𝑘:𝐾 = 1 − [𝑒𝑘𝑒𝑘−1 . . . 𝑒𝑘−𝑖+1] then

𝑒𝑖:𝑘:𝐾 is progressive type II censored data from uni-

form distribution. Let 𝑋𝑖:𝑘:𝐾 = 𝐹−1
𝑋

(𝑈𝑖:𝑘:𝐾 ). Then

𝑋1:𝑘:𝐾 , 𝑋2:𝑘:𝐾 , . . . 𝑋𝑖:𝑘:𝐾 are progressively censored samples

corresponding to strength variables for a single component

system. Proceeding in this way, multicomponent data can

be generated. Generation of stress variables is taken care

similarly.

• We mention that estimated risk values of an estimator 𝑅 of

reliability function 𝑅𝑠,𝑘 is evaluated as 1
𝑛0

∑𝑛0
𝑖=1 (𝑅𝑖 − 𝑅𝑠,𝑘)2

based on different effective sample sizes 𝑛0.

In Table 1, considered schemes 𝐺1, 𝐺2, . . . , 𝐺9 for strength

variables and 𝐹1, 𝐹2, . . . , 𝐹9 for stress variables are presented.

We obtain these estimates using various (𝑀,𝑚, 𝐾, 𝑘) values.

Note that 𝑀 represents total systems, 𝐾 represents total

components in each system and 𝑚 represents the observed

systems with 𝑘 being observed components in each system.

Further 𝑓 is assigned values as 𝑓 = 1, 2, that is, either at least

one component overcomes the stress or at least two components

overcome the stress of system. Estimation results are presented

for both known and unknown 𝛽 cases.

𝛽 unknown case is discussed first. Under this set up strength

and stress variables are evaluated by assigning the parame-

ters (𝛼1, 𝛼2, 𝛽) as (1, 0.5, 2). In tables 2-5 we have com-

puted various estimated quantities for the unknown common

parameter case. Different effective sample sizes are taken into

consideration for evaluating the estimation results. Bayes es-

timates are evaluated when hyperparameters are assigned as

𝑝1 = 3, 𝑞1 = 2, 𝑝2 = 2, 𝑞2 = 1, 𝑝3 = 3, 𝑞3 = 1.5. Noninformative

Bayes point and interval estimates are also evaluated against

improper prior where all hyperparameters are assigned as zero.

Tables 2 and 3 respectively contain point and intervals estimates

of the reliability for 𝑓 = 1, while tables 4 and 5 respectively con-

tain the similar results for 𝑓 = 2. In tables 2 and 4, for each

censoring scheme, two estimates are presented for each estima-

tion method where first value denote the estimated risk of each

method and immediate lower estimate is the corresponding bias.

Table 1: Censoring scheme for different (𝑀,𝑚, 𝐾, 𝑘)
(𝐾, 𝑘) (𝐶, 𝑠) (𝑀,𝑚) (𝐶, 𝑠)
(10,4) 𝐺1 (1, 3, 2, 0) (20,10) 𝐹1 (1∗10)

𝐺2 (6, 0∗3) 𝐹2 (10, 0∗9)
𝐺3 (0∗3, 6) 𝐹3 (0∗9, 10)

(12,5) 𝐺4 (7, 0∗4) (25,8) 𝐹4 (17, 0∗7)
𝐺5 (0∗2, 7, 0∗2) 𝐹5 (0∗2, 10, 5, 2, 0∗3)
𝐺6 (0∗2, 7, 0∗2) 𝐹6 (0∗7, 17)

(15,11) 𝐺7 (4, 0∗10) (22,15) 𝐹7 (7, 0∗14)
𝐺8 (0∗5, 2, 2, 0∗4) 𝐹8 (0∗5, 2, 3, 2, 0∗7)
𝐺9 (0∗10, 4) 𝐹9 (0∗14, 7)

In these tables true values of the reliability are also listed which

are obtained for different effective sample sizes. From tables 2

and 4 we are able to observe that MLE of the reliability com-

pete quite good with those of Bayesian estimates. In particular

performance of MLE is quite comparable with the noninforma-

tive Bayes estimates. However proper Bayes estimates indicate

better behavior than these two estimates as far as estimated

risks are concerned. Performance of all estimates in terms of

risk behavior get better with large sample size. In tables 3 and

5, asymptotic, HPD and noninformative HPD (NHPD), boot-

p and boot-t intervals are presented for different sample sizes.

In particular, for each censoring scheme, two values are listed

for each procedure. The first one is coverage probability and

lower estimate is the interval length. We see that bootstrap

intervals compete good with those of asymptotic and improper

HPD intervals under interval width criterion. Over all proper

Bayes intervals have shortest interval length among proposed

methods. Various estimates of interval length become shorter

with large sample sizes. The coverage probabilities of proposed

intervals are closed to the nominal level which is taken as 0.95.

Estimation results for known 𝛽 case are reported in tables 6-9

for various censoring schemes when 𝛽 = 2. Results of tables 6

and 8 indicate that unbiased estimate of the reliability performs

quite good when compared with corresponding maximum likeli-

hood estimate. However performance of the proper Bayes esti-

mates is superior than the other proposed estimates. This holds

true for various censoring schemes. From different intervals as

listed in tables 7 and 9, we are able to observe that bootstrap

intervals compete well with asymptotic intervals. Proper prior

Bayes intervals yield better interval estimates than the asymp-

totic, noninformative Bayes and bootstrap intervals. Average

length of these methods improve with sample size. The CPs

of proposed intervals lie within satisfactory range of nominal

level. We find that more efficient estimates of reliability can be

obtained when the common parameter is considered as known.

Here we assess the efficiency of various point estimates using

MSE values where as efficiency of intervals are measured under

average width criterion.
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Table 2: Point estimates of 𝑅𝑠,𝑘 when (𝛼1, 𝛼2, 𝛽) = (1, 0.5, 2)
and 𝛽 is unknown

(𝑀, 𝑚, 𝐾, 𝑘) 𝐶𝑆 𝑅𝑡 𝑅𝑀𝐿 𝑅𝑀𝐻 𝑅𝐿𝐼𝑁 𝑅𝑁𝑀𝐻 𝑅𝑁𝐿𝐼𝑁

𝑓 = 1
(20,10,10,4) (𝐺1 , 𝐹1) 0.88888 0.00456 0.00276 0.00283 0.00294 0.00297

-0.03981 -0.01397 -0.01934 0.00148 -0.02202
(𝐺2 , 𝐹2) 0.00394 0.00258 0.00275 0.00272 0.00305

-0.03733 -0.01297 -0.01446 -0.01318 -0.01750
(𝐺3 , 𝐹3) 0.00382 0.00230 0.00257 0.00265 0.00270

-0.03070 -0.01068 -0.01266 -0.01357 0.01505
(25,8,12,5) (𝐺4 , 𝐹4) 0.90909 0.00252 0.00143 0.00151 0.00199 0.00187

-0.02359 -0.01007 -0.01329 -0.01573 0.01899
(𝐺5 , 𝐹5) 0.00246 0.00156 0.00232 0.00165 0.00190

-0.02064 0.00994 -0.01183 0.01116 -0.01368
(𝐺6 , 𝐹6) 0.00199 0.00137 0.00159 0.00154 0.00175

0.01141 -0.01006 -0.01108 0.01101 0.01251
(22,15,15,11) (𝐺7 , 𝐹7) 0.95652 0.00115 0.00032 0.00046 0.00098 0.00090

-0.00948 -0.00620 -0.00897 -0.01263 -0.01212
(𝐺8 , 𝐹8) 0.00102 0.00026 0.00038 0.00104 0.00081

-0.00898 -0.00536 0.00756 -0.01015 -0.00989
(𝐺9 , 𝐹9) 0.00091 0.00026 0.00013 0.00092 0.00063

-0.00725 -0.00394 -0.00512 0.00079 -0.00823

Table 3: Interval estimates of 𝑅𝑠,𝑘 when (𝛼1, 𝛼2, 𝛽) = (1, 0.5, 2)
and 𝛽 is unknown

(𝑀, 𝑚, 𝐾, 𝑘) 𝐶𝑆 𝑅𝑡 𝐴𝑆 𝐻𝑃𝐷 𝑁𝐻𝑃𝐷 𝐵𝑜𝑜𝑡 − 𝑝 𝐵𝑜𝑜𝑡 − 𝑡
𝑓 = 1

(20,10,10,4) (𝐺1 , 𝐹1) 0.88888 0.905 0.946 0.941 0.915 0.930
0.15301 0.13134 0.13354 0.17079 0.18278

(𝐺2 , 𝐹2) 0.919 0.942 0.939 0.899 0.901
0.15556 0.13810 0.13965 0.17398 0.18642

(𝐺3 , 𝐹3) 0.924 0.958 0.956 0.944 0.948
0.14299 0.12941 0.12945 0.16226 0.17652

(25,8,12,5) (𝐺4 , 𝐹4) 0.90909 0.912 0.965 0.952 0.936 0.940
0.13662 0.11235 0.11443 0.15492 0.16486

(𝐺5 , 𝐹5) 0.904 0.962 0.953 0.935 0.938
0.13290 0.11375 0.11527 0.15871 0.17028

(𝐺6 , 𝐹6) 0.921 0.968 0.951 0.947 0.949
0.13028 0.11076 0.11138 0.15425 0.16332

(22,15,15,11) (𝐺7 , 𝐹7) 0.95652 0.938 0.957 0.954 0.942 0.956
0.07518 0.04680 0.04694 0.10523 0.11278

(𝐺8 , 𝐹8) 0.945 0.955 0.951 0.939 0.948
0.07412 0.04303 0.04314 0.09719 0.10485

(𝐺9 , 𝐹9) 0.948 0.967 0.966 0.942 0.956
0.06875 0.04477 0.04385 0.09548 0.10276

Table 4: Point estimates of 𝑅𝑠,𝑘 when (𝛼1, 𝛼2, 𝛽) = (1, 0.5, 2)
and 𝛽 is unknown

(𝑀, 𝑚, 𝐾, 𝑘) 𝐶𝑆 𝑅𝑡 𝑅𝑀𝐿 𝑅𝑀𝐻 𝑅𝐿𝐼𝑁 𝑅𝑁𝑀𝐻 𝑅𝑁𝐿𝐼𝑁

𝑓 = 2
(20,10,10,4) (𝐺1 , 𝐹1) 0.76190 0.01062 0.00889 0.00892 0.00893 0.00897

-0.04620 -0.01902 -0.02230 0.00205 -0.02362
(𝐺2 , 𝐹2) 0.00978 0.00843 0.00854 0.00855 0.00864

-0.04309 -0.01809 -0.02130 -0.01951 -0.02159
(𝐺3 , 𝐹3) 0.01030 0.00840 0.00851 0.00955 0.00861

-0.03981 -0.01746 -0.01980 -0.01841 -0.02041
(25,8,12,5) (𝐺4 , 𝐹4) 0.80808 0.00841 0.00637 0.00691 0.00720 0.00723

-0.03534 -0.01458 -0.01669 -0.01518 -0.01785
(𝐺5 , 𝐹5) 0.00836 0.00664 0.00672 0.00745 0.00766

-0.03589 0.01497 -0.01672 0.01553 -0.01792
(𝐺6 , 𝐹6) 0.00812 0.00629 0.00650 0.00722 0.00720

-0.03436 -0.01420 0.01611 0.01508 0.01723
(22,15,15,11) (𝐺7 , 𝐹7) 0.91097 0.00562 0.00327 0.00346 0.00403 0.00410

-0.01890 -0.00516 -0.00696 -0.00551 -0.00745
(𝐺8 , 𝐹8) 0.00591 0.00334 0.00360 0.00413 0.00416

-0.01898 -0.00527 -0.00705 0.00601 0.00764
(𝐺9 , 𝐹9) 0.00540 0.00294 0.00316 0.00387 0.00390

-0.01717 -0.00505 0.00705 0.00531 -0.00730

Table 5: Interval estimates of 𝑅𝑠,𝑘 when (𝛼1, 𝛼2, 𝛽) = (1, 0.5, 2)
and 𝛽 is unknown

(𝑀, 𝑚, 𝐾, 𝑘) 𝐶𝑆 𝑅𝑡 𝐴𝑆 𝐻𝑃𝐷 𝑁𝐻𝑃𝐷 𝐵𝑜𝑜𝑡 − 𝑝 𝐵𝑜𝑜𝑡 − 𝑡
𝑓 = 2

(20,10,10,4) (𝐺1 , 𝐹1) 0.76190 0.915 0.951 0.957 0.925 0.940
0.27014 0.25333 0.25657 0.30268 0.32643

(𝐺2 , 𝐹2) 0.921 0.957 0.946 0.939 0.920
0.27240 0.25139 0.25484 0.30094 0.31996

(𝐺3 , 𝐹3) 0.926 0.964 0.954 0.949 0.951
0.26980 0.25017 0.25180 0.29596 0.30297

(25,8,12,5) (𝐺4 , 𝐹4) 0.80808 0.929 0.966 0.965 0.947 0.940
0.24917 0.22851 0.23027 0.27888 0.28943

(𝐺5 , 𝐹5) 0.918 0.963 0.965 0.941 0.940
0.24896 0.22722 0.22711 0.27819 0.28820

(𝐺6 , 𝐹6) 0.932 0.968 0.962 0.945 0.950
0.22901 0.22561 0.22606 0.27491 0.28491

(22,15,15,11) (𝐺7 , 𝐹7) 0.91097 0.945 0.968 0.962 0.949 0.951
0.12957 0.09214 0.09470 0.14921 0.15640

(𝐺8 , 𝐹8) 0.943 0.957 0.956 0.949 0.955
0.12674 0.09469 0.09513 0.14419 0.15722

(𝐺9 , 𝐹9) 0.946 0.969 0.964 0.945 0.950
0.11534 0.08967 0.09077 0.14027 0.14677

Table 6: Point estimates of 𝑅𝑠,𝑘 when (𝛼1, 𝛼2, 𝛽) = (1, 0.5, 2)
and 𝛽 is known

(𝑀, 𝑚, 𝐾, 𝑘) 𝐶𝑆 𝑅𝑡 𝑅𝑀𝐿 𝑅𝑈𝑀𝑉 𝑅𝑀𝐻 𝑅𝐿𝐼𝑁 𝑅𝑁𝑀𝐻 𝑅𝑁𝐿𝐼𝑁

𝑓 = 1
(20,10,10,4) (𝐺1 , 𝐹1) 0.88888 0.00512 0.00436 0.00244 0.00341 0.00293 0.00395

-0.04064 -0.02100 -0.02209 -0.02673 -0.02484 -0.02908
(𝐺2 , 𝐹2) 0.00524 0.00448 0.00255 0.00351 0.00294 0.00416

-0.04206 -0.02151 -0.02291 -0.02662 -0.02585 -0.03097
(𝐺3 , 𝐹3) 0.00502 0.00418 0.00234 0.00323 0.00285 0.00382

-0.04024 -0.02092 -0.02189 -0.02553 -0.02337 0.02812
(25,8,12,5) (𝐺4 , 𝐹4) 0.90909 0.00352 0.00360 0.00185 0.00269 0.00227 0.00305

-0.03147 0.01650 -0.01683 -0.01930 -0.01861 -0.02171
(𝐺5 , 𝐹5) 0.00364 0.00372 0.00191 0.00289 0.00241 0.00320

-0.03259 0.01685 0.01707 -0.01981 -0.01854 -0.02194
(𝐺6 , 𝐹6) 0.00343 0.00337 0.00160 0.00254 0.00219 0.00285

-0.02961 0.01593 0.01648 -0.01903 -0.001834 -0.02034
(22,15,15,11) (𝐺7 , 𝐹7) 0.95652 0.00095 0.00237 0.00047 0.00074 0.00084 0.00107

-0.01226 0.00708 -0.00724 -0.00955 -0.00759 -0.00992
(𝐺8 , 𝐹8) 0.00103 0.00141 0.00055 0.00079 0.00099 0.00011

-0.01299 0.00745 -0.00788 -0.00967 -0.00790 -0.01008
(𝐺9 , 𝐹9) 0.00090 0.00130 0.00042 0.00063 0.00069 0.00092

-0.01171 0.00651 0.00717 -0.00900 -0.00740 -0.00941

Table 7: Interval estimates of 𝑅𝑠,𝑘 when (𝛼1, 𝛼2, 𝛽) = (1, 0.5, 2)
and 𝛽 is known

(𝑀, 𝑚, 𝐾, 𝑘) 𝐶𝑆 𝑅𝑡 𝐴𝑆 𝐻𝑃𝐷 𝑁𝐻𝑃𝐷 𝐵𝑜𝑜𝑡 − 𝑝 𝐵𝑜𝑜𝑡 − 𝑡
𝑓 = 1

(20,10,10,4) (𝐺1 , 𝐹1) 0.88888 0.919 0.952 0.955 0.927 0.940
0.14183 0.12689 0.12770 0.16183 0.17568

(𝐺2 , 𝐹2) 0.923 0.956 0.946 0.936 0.930
0.14137 0.12807 0.12881 0.16441 0.17675

(𝐺3 , 𝐹3) 0.929 0.962 0.951 0.948 0.950
0.14013 0.12489 0.12593 0.16094 0.17354

(25,8,12,5) (𝐺4 , 𝐹4) 0.90909 0.927 0.967 0.969 0.947 0.942
0.12713 0.10411 0.10678 0.14116 0.15516

(𝐺5 , 𝐹5) 0.929 0.967 0.966 0.942 0.940
0.12628 0.10305 0.10470 0.14128 0.15368

(𝐺6 , 𝐹6) 0.934 0.963 0.965 0.946 0.950
0.12414 0.10149 0.10158 0.14094 0.14992

(22,15,15,11) (𝐺7 , 𝐹7) 0.95652 0.948 0.963 0.965 0.944 0.950
0.06415 0.04509 0.04716 0.08999 0.09181

(𝐺8 , 𝐹8) 0.946 0.959 0.955 0.943 0.953
0.06658 0.04548 0.04606 0.08832 0.09084

(𝐺9 , 𝐹9) 0.940 0.962 0.965 0.942 0.950
0.06479 0.04322 0.04516 0.08803 0.08960

Table 8: Point estimates of 𝑅𝑠,𝑘 when (𝛼1, 𝛼2, 𝛽) = (1, 0.5, 2)
and 𝛽 is known

(𝑀, 𝑚, 𝐾, 𝑘) 𝐶𝑆 𝑅𝑡 𝑅𝑀𝐿 𝑅𝑈𝑀𝑉 𝑅𝑀𝐻 𝑅𝐿𝐼𝑁 𝑅𝑁𝑀𝐻 𝑅𝑁𝐿𝐼𝑁

𝑓 = 2
(20,10,10,4) (𝐺1 , 𝐹1) 0.76190 0.01072 0.00913 0.00835 0.00891 0.00956 0.00988

-0.04460 0.01958 -0.01980 -0.02200 -0.02017 -0.02274
(𝐺2 , 𝐹2) 0.00949 0.00937 0.00854 0.00899 0.00969 0.00987

-0.04560 0.01973 -0.01991 -0.2221 -0.02047 -0.02308
(𝐺3 , 𝐹3) 0.00948 0.00908 0.00817 0.00874 0.00939 0.00923

-0.04385 0.01930 -0.01924 -0.02139 -0.02008 -0.02258
(25,8,12,5) (𝐺4 , 𝐹4) 0.80808 0.00810 0.00873 0.00689 0.00709 0.00748 0.00784

-0.02714 0.01104 -0.01121 -0.01252 -0.01175 -0.01308
(𝐺5 , 𝐹5) 0.00816 0.00888 0.00694 0.00716 0.00768 0.00802

-0.02781 0.01182 0.01194 -0.1296 -0.01206 -0.01329
(𝐺6 , 𝐹6) 0.00765 0.00868 0.00575 0.00613 0.00698 0.00721

-0.02666 0.01072 0.01103 -0.01223 -0.01150 -0.01284
(22,15,15,11) (𝐺7 , 𝐹7) 0.91097 0.00561 0.00465 0.00278 0.00297 0.00327 0.00332

-0.01281 0.00545 -0.00578 -0.00629 -0.00601 -0.00671
(𝐺8 , 𝐹8) 0.00584 0.00375 0.00292 0.00302 0.00334 0.00345

-0.01298 0.00564 -0.00591 -0.00638 -0.00615 -0.00698
(𝐺9 , 𝐹9) 0.00541 0.00342 0.00257 0.00289 0.00311 0.00319

-0.01258 0.00519 0.00571 -0.00609 -0.00593 0.00651

Table 9: Interval estimates of 𝑅𝑠,𝑘 when (𝛼1, 𝛼2, 𝛽) = (1, 0.5, 2)
and 𝛽 is known

(𝑀, 𝑚, 𝐾, 𝑘) 𝐶𝑆 𝑅𝑡 𝐴𝑆 𝐻𝑃𝐷 𝑁𝐻𝑃𝐷 𝐵𝑜𝑜𝑡 − 𝑝 𝐵𝑜𝑜𝑡 − 𝑡
𝑓 = 2

(20,10,10,4) (𝐺1 , 𝐹1) 0.76190 0.912 0.957 0.959 0.934 0.942
0.25052 0.23220 0.23390 0.28390 0.29528

(𝐺2 , 𝐹2) 0.821 0.957 0.942 0.947 0.942
0.25089 0.23358 0.23413 0.28518 0.29979

(𝐺3 , 𝐹3) 0.929 0.959 0.953 0.947 0.952
0.24991 0.23067 0.23062 0.28211 0.29546

(25,8,12,5) (𝐺4 , 𝐹4) 0.80808 0.927 0.963 0.962 0.946 0.951
0.22863 0.20215 0.20497 0.25766 0.26489

(𝐺5 , 𝐹5) 0.934 0.966 0.964 0.941 0.953
0.23053 0.20338 0.20788 0.25745 0.26244

(𝐺6 , 𝐹6) 0.935 0.965 0.959 0.945 0.952
0.22566 0.20094 0.20172 0.25582 0.26005

(22,15,15,11) (𝐺7 , 𝐹7) 0.91097 0.944 0.959 0.951 0.949 0.950
0.10784 0.08843 0.09086 0.12920 0.13506

(𝐺8 , 𝐹8) 0.947 0.961 0.957 0.942 0.948
0.10841 0.08892 0.09090 0.13201 0.13787

(𝐺9 , 𝐹9) 0.951 0.963 0.964 0.945 0.953
0.10544 0.08801 0.08933 0.13014 0.13643
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Table 10: Goodness of fit results for the real data
Distribution Data Z Data T

𝛼1 𝛽 K-S p-value 𝛼2 𝛽 K-S p-value
Unit-Weibull 0.6440496 1.669357 0.11066 0.8866 0.223873 2.182262 0.30851 0.6304
Log-Lindley 0.8732852 99.48564 0.20042 0.2343 0.5787747 83.40991 0.41813 0.2634
Kumarswamy 1.486776 2.636823 0.12046 0.8196 1.080441 3.371279 0.35603 0.4477
Unit-Gamma 1252170 0.86346 0.20044 0.2341 1004119 0.5672637 0.4182 0.2632

5 Data analysis

Now we discuss application of proposed methods using one nu-

merical example. The considered data come from Xia et al.

(2009) which defines jute fiber strength at various gauge lengths.

The associated diameters of fibers are measured using an XSP-

8CA biological microscope (Shanghai Optical Instrument Fac-

tory, Shanghai, China). The data are given as follows:

693.73, 704.66, 323.83, 778.17, 123.06, 637.66, 383.43, 151.48,

108.94, 50.16, 671.49, 183.16, 257.44, 727.23, 291.27, 101.15,

376.42, 163.40, 141.38, 700.74, 262.90, 353.24, 422.11, 43.93,

590.48, 212.13, 303.90, 506.60, 530.55, 177.25.

Here, we consider 𝑠 = 1, 2 and 𝑘 = 3. This indicates a 1

or 2-out-of-4: G system. If 𝑇1 be the sixth failure time

and 𝑋1𝑘 ,𝑘 = 1, 2, · · · , 3, be the failure times of observations

numbered from 1 to 5. Similarly, let 𝑇2 be the failure time

of the 12th observations and 𝑋2𝑘 , 𝑘 = 1, 2, · · · , 3, be the

failure times of observations lying between 7 to 11. We

carried out this data process up to 30th failure and 𝑚 = 4

data are obtained for 𝑇 . The observed data (𝑍,𝑇) are as follows:

The data set under Scheme 1 is as follows:

𝑋 =


0.10894 0.05016 0.67149

0.29127 0.10115 0.37642

0.26290 0.35324 0.42211

0.30390 0.50660 0.53055


𝑇 =


0.18316

0.16340

0.04393

0.17725


The data set under Scheme 2 is as follows:

𝑋 =


0.69373 0.70466 0.32383

0.38343 0.15148 0.10894

0.25744 0.72723 0.29127

0.14138 0.70074 0.26290


𝑇 =


0.63766

0.18316

0.16340

0.04393


Each data value is divided by 1000 for computation purposes.

Then we verify if the data originate from the two parameter

unit-Weibull distribution. The goodness-of-fit test is used to

estimate the model fitting and in process Log-Lindley, Ku-

maraswamy, and unit-Gamma distributions are also fitted.

The method of maximum likelihood is applied to estimate

unknown parameters. These ML estimates and Kolmogorov-

Smirnov(KS) values with corresponding p-values are presented

in Table 10. Quantities listed in Table 10 indicate that unit-

Weibull provides quite good fit to the fibre strength data. Ta-

bles 11-14 contain ML and Bayes estimates of 𝑅𝑠,𝑘 along with

asymptotic, bootstrap, and noninformative HPD intervals. The

intervals are computed under 95% level. The Bayes estimates

are evaluated under improper priors. The associated censoring

schemes are as follows:

Scheme 1: G = (2, 0, 0), S = (1, 0, 0, 0) (M = 7, K = 4,m =

5, k = 3, s = 1).

Scheme 2: G = (0, 0, 2), S = (0, 0, 0, 1) (M = 7, K = 4,m =

4, k = 2, s = 2). From these tables, we observe that the HPD

interval is having shorter length compared to the asymptotic

interval.

Table 11: Point estimates of 𝑅𝑠,𝑘 for the censoring scheme 1 for
the real data

𝛼1 𝛼2 𝛽 ˆ𝑅𝑠,𝑘 𝑅𝑀𝐻
𝑠,𝑘

𝑅𝐿𝐼𝑁
𝑠,𝑘

0.7095155 0.4265645 1.6203941 0.8330544 0.8526942 0.8373805

Table 12: Interval estimates of 𝑅𝑠,𝑘 for the censoring scheme 1
for the real data
ACI Boot-t Boot-p HPD
(0.6879487, 0.9781602) (0.605202 0.987828) (0.6049240, 0.9637762) (0.6818500, 0.9578989)

Table 13: Point estimates of 𝑅𝑠,𝑘 for the censoring scheme 2 for
the real data

𝛼1 𝛼2 𝛽 ˆ𝑅𝑠,𝑘 𝑅𝑀𝐻
𝑠,𝑘

𝑅𝐿𝐼𝑁
𝑠,𝑘

0.7095155 0.4265645 1.6203941 0.6405141 0.6786757 0.642972

Table 14: Interval estimates of 𝑅𝑠,𝑘 for the censoring scheme 2
for the real data
ACI Boot-t Boot-p HPD
(0.3744870 ,0.9065412) (0.28756445, 0.92315481) (0.2959196, 0.9051141) (0.3859285, 0.8926442)

6 Conclusions

In this paper, inference for the stress-strength reliability is de-

rived assuming that both stress-strength component follow unit

Weibull distributions. The data are observed from progressive

type II censoring. We illustrated all the estimation methods

using jute fibre strength data set. Different approaches have

been applied to obtain the reliability of system based on

different sample sizes. We studied their performance through

MSEs and biases when the common shape parameter 𝛽 is

known and unknown. Further, when this common shape

parameter 𝛽 is known or unknown, the Bayes estimates of 𝑅𝑠,𝑘

are obtained by using both Lindley’s approximation and MH

methods. We have also obtained uniformly minimum variance

unbiased estimates of 𝑅𝑠,𝑘 with known shape parameter 𝛽.

We have also compared the confidence intervals based on

asymptotic distribution of the MLEs. The boot-p, boot-t

and HPD credible intervals are obtained as well and results
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indicate good coverage probabilities. The interval length of

proper HPD method remain smaller than associate asymptotic

and bootstrap intervals. We observe that Bayes method yields

better inference results compared to MLE and UMVUE. It is

also observed that boot-p confidence intervals perform better

than the Boot-t confidence intervals in terms of average length

while Boot-t performs better than Boot-p in terms CPs.

Through jute fibre example it is observed asymptotic interval

is wider than improper HPD interval. Making inference upon

reliability when stress-strength are dependent and not having

the same distributions is an interesting problem. This work

has the potential to be applied in the context of reliability

theory and censored data analysis. Besides, we can extend

this study to the progressive hybrid and adaptive progressive

hybrid censored unit Weibull distribution.
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