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1 Introduction
Toeplitz (1911), introduce Toeplitz (1911) introduced
Toeplitz operators, and Douglas (1972) provided
the sense in which Toeplitz operators appeared as a
matrix operating on space ell2(N), see [1] and [6].
Brown and Halmos (1964) studied Toeplitz operators
as a composition of a multiplier of L2 and a projec-
tion onH2 (Hardy space) in a systematic way, see [5].

Toeplitz operators in multiple variables were stud-
ied by Davie, Jewell, and Mc Donald (1977).Douglas
and Pearcy(1965) investigated generalized Toeplitz
operators (see [4]).
According to Brown, Halmos, and Douglas, the

main focus of my research is on a 2-nuclear tensor
product of Hardy space, as seen in [2] and [3].On the
tensor product space, a new operator is created that is
not a Toeplitz operator but has a matrix representation
that is close to that of a Toeplitz operator, hence the
name Toeplitz like operators.
Some important concepts and properties of

Toeplitz-like operators are discussed in this paper,
as well as the spectrum and invariability of the new
operator (see [4]).
Finally, Possible applications of this study can be

found in problems of [7]and [8].

2 Preliminaries
Assume H2(T 2)⊗n(2)H

2(T 2) be the 2-nuclear
tensor product of Hardy spaces on torus. Then
H2(T 2)⊗n(2)H

2(T 2) is defining as the space which
contains all functions with the following representa-
tion

󰁛

n1∈Zn1 ,n2∈Zn2

dn1,n2
⊗ bn1,n2

,

with
(

󰁛

n1∈Zn1 ,n2∈Zn2

󰀂dn1,n2
󰀂22)

1

2 .

sup
󰀂b∗󰀂≤1

(
󰁛

n1∈Zn1 ,n2∈Zn2

|< bn1,n2
, b∗ >|2)

1

2 < ∞,

where dn1,n2
, bn1,n2

∈ H2(T 2).

It is clear to see that H2(T 2)⊗n(2)H
2(T 2) is a

Hilbert space with norm

󰀂
󰁛

n1∈Zn1
,n2∈Zn2

dn1,n2
⊗ bn1,n2

󰀂n(2) =

inf {(
󰁛

n1∈Zn1
,n2∈Zn2

󰀂dn1,n2
󰀂22)

1

2 .

sup
󰀂b∗󰀂≤1

(
󰁛

n1∈Zn1 ,n2∈Zn2

|< bn1,n2
, b∗ >|2)

1

2 },

where the infimum is taken over all representa-
tions of 󰁛

n1∈Zn1 ,n2∈Zn2

dn1,n2
⊗ bn1,n2

.

Lemma 1:
LetH2(T 2)⊗n(2)H

2(T 2) be 2-nuclear tensor product
of Hardy spaces on torus. ThenH2(T 2)⊗n(2)H

2(T 2)

is a closed subspace of L2(T 2)⊗n(2) L
2(T 2).

Remark 1:
1. We will consider P1 ⊗ P1 : L2(T 2) ⊗n(2)

L2(T 2) → H2(T 2) ⊗n(2) H
2(T 2) is a unique
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orthogonal projection, where P1 is the orthogo-
nal projection from L2(T 2) onto H2(T 2).

2. Let ψ = ψ1 ⊗ ψ2, where ψ1,ψ2 ∈ L∞(T 2).
Then ψ.A ∈ L2(T 2) ⊗n(2) L2(T 2), for all
A ∈ L2(T 2)⊗n(2) L

2(T 2).

3. L2(T 2, L2(T 2)) denotes the vector space of
all 2-Bochner integrable functions (equivalence
classes) from (T 2,σ) into L2(T 2), where is σ is
a Haar measure.
For ω ∈ L2(T 2, L2(T 2)), define 󰀂ω󰀂B(2) =

(

󰁝

T 2

󰀂ω(t1, t2)󰀂22 dσ)
1

2 .

4. {ein1θ1ein2θ2ein3θ3 ein4θ4 : n1, n2 , n3 , n4 ∈ Z}
is an orthonormal basis ofL2(T 2, L2(T 2)), Then
we can define the function ω in L2(T 2, L2(T 2))
as:
ω(t1, t2)(θ1, θ2) =

󰁛

n1,n2∈Z
ωn1,n2

(t1, t2)e
in1θ1ein2θ2 ,

where
ωn1,n2

∈ L2(T 2), and
󰁛

n1,n2∈Z
󰀂ωn1, n2

󰀂22 < ∞.

5. The vector valued Hardy space on torus
H2(T 2, H2(T 2)) is the closed subspace of
L2(T 2, L2(T 2)) consisting of all functions ω
such that
ω(t1, t2)(θ1, θ2) =

󰁛

n1,n2∈Z
ωn1,n2

(t1, t2) e
in1θ1 ein2θ2 ,

with ωn1,n2
(t1, t2) = 0 for all n1, n2 > 0 and

ωn1,n2
∈ H2(T 2).

6. LetX1 andX2 be Hilbert spaces. Then a pseudo
inner product on X1 ⊗X2 is defined by

〈x1 ⊗ x2, x3 ⊗ x4〉 = 〈x1, x3〉X 〈x2, x4〉Y .

We refer the reader to [6], for more about tensor
product of Banach spaces.

Now, we will present some important results
mentioned for Toeplitz operators which we will use
in our study of Toeplitz like operators.

Proposition 1:
Let ω ∈ L∞(T 2), and ω1 and ω2 be functions in
H∞(T 2) (L∞(T 2) ∩H2(T 2)). Then TωTω1

= Tωω1

and Tω2
Tω = Tω2ω.

Theorem 1:
Let ω1, ω2 ∈ L∞(T 2). Then Tω1

Tω2
= Tω2

Tω1

if and only if one of the following conditions are
satisfied:
i. ω1 and ω2 are analytic.
ii. ω1 and ω2 are co-analytic .
iii. ω2 = αω1 + c, where α ∈ C and c is constant.

Corollary 1:
Assume that Tω is an invertible Toeplitz operator.
Then T−1

ω is a Toeplitz operator if and only if ϕ is
analytic or co-analytic.

Corollary 2:
Tω is compact operator if and only if ω = 0.

Corollary 3:
Suppose ω ∈ L∞(T 2). Then σ(Tω) is connected.
We refer the reader to Douglas [1], and Brown

and Halmos , for more about Toeplitz operators on
Hardy spaces.

In the end of the preliminaries we will mention
the key theorem of this paper.

3 Definition and first properties
Theorem 2:
The complex valued vector space H2(T 2, H2(T 2))
is isometrically isomorphic to the 2-nuclear Tensor
product of Hardy spaces H2(T 2)⊗n(2) H

2(T 2).

Proof:
Assume that
W : H2(T 2)⊗n(2) H

2(T 2) → H2(T 2, H2(T 2))

, is defined as
W (

󰁛

n1∈Zn1 ,n2∈Zn2

dn1,n2
⊗ bn1,n2

)(t1, t2) =

󰁛

n1∈Zn1 ,n2∈Zn2

dn1,n2
(t1, t2) bn1,n2

.

It is obviousW is a linear operator.
Now, we will show thatW is a contraction. So, if

we take ω = W (
󰁛

n1∈Zn1
,n2∈Zn2

dn1,n2
⊗ bn1,n2

), then

󰀂ω󰀂B(2) = (

󰁝

T 2

󰀂ω(t1, t2)󰀂22 dσ(t1, t2))
1

2 , Hence, by
the Hahn-Banach theorem, we get
󰀂ω(t1, t2)󰀂2 = sup

󰀂t󰀂=1

|〈ω(t1, t2), t〉|, where t ∈ H2(T 2).
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Thus; we have

󰀂ω󰀂B(2) = (

󰁝

T 2

sup
󰀂t󰀂=1

|
󰁛

n1,n2∈Z
dn1,n2

(t1, t2)

〈bn1,n2
, t〉|2dσ(t1, t2))

1

2

≤ (

󰁝

T 2

sup
󰀂t󰀂=1

(
󰁛

n1,n2∈Z
|dn1,n2

(t1, t2)||〈bn1,n2
, t〉|)2

dσ(t1, t2))
1

2

≤ (

󰁝

T 2

sup
󰀂t󰀂=1

((
󰁛

n1,n2∈Z
|dn1,n2

(t1, t2)|2)
1

2

(
󰁛

n1,n2∈Z
|〈bn1,n2

, t〉|2)
1

2 .dσ(t1, t2))
1

2 by Schwartz inequality

≤ (

󰁝

T 2

sup
󰀂t󰀂=1

((
󰁛

n1, n2∈Z
|dn1, n2

(t1, t2)|2 ).

(
󰁛

n1, n2∈Z
|〈bn1,n2

, t〉|2) dσ(t1, t2))
1

2

= (

󰁝

T 2

(
󰁛

n1, n2∈Z
|dn1, n2

(t1, t2)|2 ) dσ(t1, t2))
1

2

(
󰁛

n1, n2∈Z
( sup
󰀂t󰀂=1

|〈bn1,n2
, t〉|2))

1

2

≤ 󰀂
󰁛

n1∈Zn1 ,n2∈Zn2

dn1,n2
⊗ bn1,n2

󰀂n(2).

Notice that, the set of all elements of the form
󰁛

n1∈Zn1 ,n2∈Zn2

dn1,n2
⊗ bn1,n2

are dense in H2(T 2) ⊗n(2) H2(T 2), So,
we have 󰀂W (H)󰀂B(2) ≤ 󰀂H󰀂n(2), for all
H ∈ H2(T 2)⊗n(2) H

2(T 2).

Hence 󰀂W󰀂B(2) ≤ 1.

Now, Assume that S ∈ H2(T 2, H2(T 2)). Then
S(t1, t2) ∈ H2(T 2), and

S(t1, t2)(θ1, θ2) =
󰁛

n1, n2∈Z
d′n1, n2

(t1, t2) e
in1θ1 ein2θ2

, with 󰀂S(t1, t2)󰀂 =
󰁛

n1, n2∈Z
|d′n1, n2

|2 < ∞. So; we

can write S in the form

S = W (
󰁛

n1, n2∈Z
d′n1, n2

⊗ en1, n2
)

, where en1, n2
(θ1, θ2) = ein1θ1 ein2θ2 . And also,

󰀂W (
󰁛

n1, n2∈Z
d′n1, n2

⊗ en1, n2
)󰀂 = 󰀂S󰀂 =

(

󰁝

T 2

󰀂S(t1, t2)󰀂2 dσ(t1, t2))
1

2

= (

󰁝

T 2

󰁛

n1, n2∈Z
|d′n1, n2

(t1, t2)|2 dσ(t1, t2))
1

2

= (
󰁛

n1, n2∈Z

󰁝

T 2

|d′n1, n2
(t1, t2)|2 dσ(t1, t2))

1

2

= (
󰁛

n1, n2∈Z
󰀂d′n1, n2

󰀂2)
1

2 .

But, sup
󰀂t󰀂=1

󰁛

n1, n2∈Z
|〈en1, n2

, t〉|2)
1

2 = 1, for all

t ∈ H2(T 2). Thus;

󰀂W (
󰁛

n1, n2∈Z
d′n1, n2

⊗ en1, n2
)󰀂B(2) =

󰀂
󰁛

n1, n2∈Z
d′n1, n2

⊗ en1, n2
)󰀂n(2).

And we can write S as

S =
󰁛

n1, n2∈Z
d′n1, n2

en1, n2
= W (

󰁛

n1, n2∈Z
d′n1, n2

⊗en1, n2
).

Thus;W is an isometry operator and onto.

Which this implies H2(T 2, H2(T 2)) is isometri-
cally isomorphic to H2(T 2)⊗n(2) H

2(T 2).

Definition 1:
Assume that ψ = ψ1 ⊗ ψ2, where ψ1,ψ2 ∈ L∞(T 2)
and Tψ is an operator defined as

Tψ : H2(T 2)n(2)⊗H2(T 2) → H2(T 2)n(2)⊗H2(T 2)

such that

Tψ1⊗ψ2
(d⊗ b) = P1 ⊗ P1((ψ1 ⊗ ψ2)(d⊗ b))

= P1(ψ1d)⊗ P1(ψ2b).

Then the operator Tψ is said to be Toeplitz like
operator with symbol ψ.

Lemma 2:
Tφ1⊗φ2

is linear.

Proof:
It is easy to see the proof.

Now, we will go to write the form of the matrix of
a Toeplitz like operator.
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The orthonormal basis of X ⊗ Y and the or-
der of these basis have been studied by Holub [3].
Hence an orthonormal basis ofH2(T 2)⊗n(2)H

2(T 2)

is {ein1θ1ein2θ2⊗ein3θ3ein4θ4 : n1, n2, n3, n4 ∈ Z+}.

WLOG, we will order the sequence of tensors
(ein1θ1ein2θ2 ⊗ ein3θ3ein4θ4) as the following

1⊗ 1 | 1⊗ ei(θ3+θ4) | 1⊗ ei2(θ3+θ4) | . . .
ei(θ1+θ2) ⊗ 1 | ei(θ1+θ2) ⊗ ei(θ3+θ4) | . . .
ei2(θ1+θ2) ⊗ 1 | ei2(θ1+θ2) ⊗ eiθ3+θ4) ei2(θ1+θ2) ⊗ ei2(θ3+θ4) |
. . .
ei3(θ1+θ2) ⊗ 1 | ei3(θ1+θ2) ⊗ ei(θ3+θ4) ei3(θ1+θ2) ⊗ ei2(θ3+θ4) |
. . .

And also, these basis is called the tensor product
basis. Now, suppose that
q0 = 1 ⊗ 1, q1 = 1 ⊗ ei(θ3+θ4), q2 =
ei(θ1+θ2) ⊗ 1, q3 = 1 ⊗ ei2(θ3+θ4), q4 =
ei(θ1+θ2) ⊗ ei(θ3+θ4), q5 = ei2(θ1+θ2) ⊗ 1, ...

Now, wewill construct thematrix of a Toeplitz like
operator on 2-nuclear tensor product of Hardy spaces
on torus with respect to the orthonormal basis
{ein1θ1ein2θ2 ⊗ ein3θ3ein4θ4 : n1, n2, n3, n4 ∈ Z+}.
Let ψ1 ⊗ ψ2 ∈ L∞(T 2) ⊗n(∞) L

∞(T 2). Then
ψ1, ψ2 are in L2(T 2).

Thus; ψ1 =
󰁛

n1, n2∈N
dn1, n2

ein1θ1 ein2θ2 , and

ψ2 =
󰁛

n1, n2∈N
d′n3, n4

ein3θ3 ein4θ4 .

Let R = (rij) be the matrix representation of
Tψ1⊗ψ2

. Then (rij) = 〈Tψ1⊗ψ2
qi, qj〉.

Now, we will give an example to see how we com-
pute :

(r44) = 〈Tψ1⊗ψ2
q4, q4〉

= 〈P1(ψ1.e
i(θ1+θ2))⊗ P1(ψ2.e

i(θ3+θ4)),

ei(θ1+θ2) ⊗ ei(θ3+θ4)〉

= 〈P (ψ1.e
i(θ1+θ2)), ei(θ1+θ2)〉.

〈P (ψ2.e
i(θ3+θ4)), ei(θ3+θ4)〉

= 〈ψ1.e
i(θ1+θ2), ei(θ1+θ2)〉〈ψ2.e

i(θ3+θ4), ei(θ3+θ4)〉

= 〈
󰁛

n1, n2∈N
dn1, n2

ei(n1+1)θ1 ei(n2+1)θ2 , ei(θ1+θ2)〉.

〈
󰁛

n1, n2∈N
d′n1, n2

ei(n3+1)θ3 ei(n4+1)θ4 , ei(θ3+θ4)〉

=
󰁛

n1, n2∈N
dn1, n2

〈 ei(n1+1)θ1 ei(n2+1)θ2 , ei(θ1+θ2)〉.
󰁛

n1, n2∈N
d′n1, n2

〈 ei(n3+1)θ3 ei(n4+1)θ4 , ei(θ3+θ4)〉

= d0,0 d′0,0

Then Continue in this procedure to get matrix
representation of Toeplitz like operator.

Now, we will go to study the important properties
of Toeplitz like operators.

Theorem 3:
Assume that ξ1, ξ2, ξ3, and ξ4 ∈ L∞(T 2). Then the
Toeplitz like operator on 2-nuclear tensor product of
Hardy spaces on torus have the following properties:

1. Tξ1⊗ξ2 is bounded, and 󰀂Tξ1⊗ξ2󰀂 ≤ 󰀂ξ1 ⊗ ξ2󰀂 =
󰀂ξ1󰀂󰀂ξ2󰀂.

2. Tu(ξ1⊗ξ2)+v(ξ3⊗ξ4) = uTξ1⊗ξ2+vTξ3⊗ξ4 , where

u, v ∈ C.

3. Tξ1⊗ξ2 = 0 if and only if ξ1 ⊗ ξ2 = 0

4. T ∗
ξ1⊗ξ2

= Tξ1⊗ξ2

Proof
1. Let d⊗ b ∈ H2(T 2)⊗n(2) H

2(T 2). Then

󰀂Tξ1⊗ξ2(d⊗ b)󰀂 = 󰀂P1(ξ1d)⊗ P1(ξ2g)󰀂
= 󰀂P1(ξ1d)󰀂󰀂P1(ξ2b)󰀂
≤ 󰀂P1󰀂2󰀂ξ1d󰀂󰀂ξ2b󰀂
≤ 󰀂ξ1󰀂󰀂d󰀂󰀂ξ2󰀂󰀂b󰀂
= 󰀂d⊗ b󰀂󰀂ξ1 ⊗ ξ2󰀂

Thus; Tξ1⊗ξ2 is bounded and 󰀂Tξ1⊗ξ2󰀂 ≤
󰀂ξ1 ⊗ ξ2󰀂.

2. Let d⊗ b ∈ H2(T 2)⊗n(2) H
2(T 2). Then

Tu(ξ1⊗ξ2)+v(ξ3⊗ξ4)(d⊗ b) = P1 ⊗ P1(u(ξ1 ⊗ ξ2)

+ v(ξ3 ⊗ ξ4))(d⊗ b)

= P1 ⊗ P1(a(ξ1 ⊗ ξ2)(d⊗ b)

+ v(ξ3 ⊗ ξ3))(d⊗ b)
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= P1(u(ξ1.d)⊗P1(ξ2.b))+vP1(ξ3.d)⊗P1(ξ4.b)
= uP1(ξ1.d)⊗ P1(ξ2.b) + bP1(ξ3.d)⊗ P1(ξ4.b)
= uTξ1⊗ξ2(d⊗ b) + vTξ1⊗ξ2(d⊗ b)

3. Let d1 ⊗ b1, d2 ⊗ b2 ∈ H2(T 2)⊗n(2) H
2(T 2) be

non zero functions. Then

0 = 〈Tξ1⊗ξ2(d1 ⊗ b1), d2 ⊗ b2〉
= 〈P1(ξ1.d1)⊗ P1(ξ2.b1), d2 ⊗ b2〉
= 〈P1(ξ1.d1), d2〉〈P1(ξ2.b1), b2〉
= 〈ξ1.d1, d2〉〈ξ2.b1, b2〉
= 〈ξ1.d1 ⊗ ξ2.b1, d2 ⊗ b2〉

Thus; ξ1 = ξ2 = 0, since d1, d2, b1, b2 ∕= 0.

4. Let d1 ⊗ b1, d2 ⊗ b2 ∈ H2(T 2) ⊗n(2) H
2(T 2).

Then
〈T ∗

ξ1⊗ξ2
(d1 ⊗ b1), d2 ⊗ b2〉

= 〈d1 ⊗ b1, Tξ1⊗ξ2(d2 ⊗ b2)〉
= 〈d1 ⊗ b1), P1(ξ1.d2)⊗ P1(ξ2.b2)〉
= 〈d1, P1(ξ1.d2)〉〈b1, P1(ξ2.b2)〉
= 〈d1, ξ1.d2〉〈b1, ξ2.b2〉
= 〈ξ1.d1, P1(d2)〉〈ξ2.b1, P1(b2)〉
= 〈P1(ξ1.d1)⊗ P1(ξ2.b1), d2 ⊗ b2〉
= 〈Tξ1⊗ξ2

(d1 ⊗ b1), d2 ⊗ b2〉

Thus; T ∗
ξ1⊗ξ2

= Tξ1⊗ξ2
.

Now, we will go to study the commutativity of
Toeplitz like operators on 2-nuclear tensor product of
Hardy spaces on torus.
In the following theorem, showing when the prod-

uct of two Toeplitz like operators on H2(T 2) ⊗n(2)

H2(T 2) will be a Toeplitz like operator.

Theorem 4:
Let ξ1, ξ2, ξ3, and ξ4 ∈ L∞(T 2). Then
T(ξ1⊗ξ2) T(ξ3⊗ξ4) is a Toeplitz like operator if and only
if one of the following conditions is satisfied:
i. ξ3 and ξ4 are analytic.

ii. ξ1 and ξ2 are co-analytic .
iii. ξ2 is analytic and ξ2 is co-analytic.
iv. ξ4 is analytic and ξ1 is co-analytic.
and if one of the above condition is satisfied, then
T(ξ1⊗ξ2) T(ξ3⊗ξ4) = T(ξ1⊗ξ2)(ξ3⊗ξ4).

proof:
Suppose T(ξ1⊗ξ2) T(ξ3⊗ξ4) is a Toeplitz like operator.
Then

T(ξ1⊗ξ2) T(ξ3⊗ξ4) = (Tξ1 ⊗ Tξ2)(Tξ3 ⊗ Tξ4)

= Tξ1Tξ3 ⊗ Tξ2Tξ4

is a Toeplitz-like operator. Hence; Tξ1Tξ3 and Tξ2Tξ4
are Toeplitz operators. But by proposition 1, if Tξ1Tξ3
is Toeplitz operator, then ξ3 is analytic or ξ1 is co-ana-
lytic, and also if Tξ2Tξ4 is a Toeplitz operator, then ξ4
is analytic or ξ2 is co-analytic. So, we get i-iv above.
Conversely, Assume that

T(ξ1⊗ξ2) T(ξ3⊗ξ4) = Tξ1Tξ3 ⊗ Tξ2Tξ4 .

and one of the above condition is satisfied. There-
fore ,by proposition 1, we have Tξ1Tξ3 and Tξ2Tξ4
are Toeplitz operators, Thus; T(ξ1⊗ξ2) T(ξ3⊗ξ4) is a
Toeplitz-like operator.
Indeed, if one of the above condition is satisfied, then
we obtain

T(ξ1⊗ξ2) T(ξ3⊗ξ4) = (Tξ1 ⊗ Tξ2)(Tξ3 ⊗ Tξ4)

= Tξ1Tξ3 ⊗ Tξ2Tξ4

= Tξ1ξ3 ⊗ Tξ2ξ4

= T(ξ1⊗ξ2)(ξ3⊗ξ4)

Corollary 4:
Assume that T(ξ1⊗ξ3)andT(ξ2⊗ξ4) are Toeplitz like op-
erators. Then the product of them is equal to zero if
and only if at least one of them is to zero.

Proof:
If T(ξ1⊗ξ3)T(ξ2⊗ξ4) = 0, then since zero is a Toeplitz
like operator.

T(ξ1⊗ξ3)T(ξ2⊗ξ4) = T(ξ1⊗ξ3)(ξ2⊗ξ4) = 0.

Therefore ξ1ξ2 ⊗ ξ3ξ4 = 0. Thus; ξ1ξ2 = 0 or
ξ3ξ4 = 0.

Theorem 5:
Assume that ξ1, ξ2, ξ3, and ξ4 ∈ L∞(T 2). Then

T(ξ1⊗ξ2) T(ξ3⊗ξ4) = T(ξ3⊗ξ4) T(ξ1⊗ξ2)

if and only if one of the following equivalence
conditions is satisfied:
1. ξ1, ξ2, ξ3, and ξ4 are analytic ( or co-analytic).
2. ξ1, ξ3 are analytic (or co-analytic) and ξ2, ξ4 are
co-analytic (or analytic).
3. ξ1, ξ3 are analytic (or co-analytic) and aξ2 + bξ4
is constant.
4. cξ1 + hξ3 is constant and ξ2, ξ4 are analytic (or
co-analytic).
5. cξ1 + hξ3 and aξ2 + bξ4 are constants.
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Proof:
Suppose that T(ξ1⊗ξ2) T(ξ3⊗ξ4) = T(ξ3⊗ξ4) T(ξ1⊗ξ2).
But T(ξ1⊗ξ2) T(ξ2⊗ξ4) = Tξ1Tξ3 ⊗ Tξ2Tξ4 and
T(ξ3⊗ξ4) T(ξ1⊗ξ2) = Tξ3Tξ1 ⊗ Tξ4Tξ2 , this implies

Tξ1Tξ3 ⊗ Tξ2Tξ4 = Tξ3Tξ1 ⊗ Tξ4Tξ2 ,

so we obtain
Tξ1Tξ3 = ηTξ3Tξ1 andTξ2Tξ4 =

1

η
Tξ4Tξ2 , where η ∕= 0.

Now, without loss of generality, let η = 1. so,
Tξ1Tξ3 = Tξ3Tξ1 (1)

Tξ2Tξ4 = Tξ4Tξ2 (2).

But now, by (Theorem 1), equations (1) and (2)
satisfied if and only if one of the conditions above is
satisfied.

Theorem 6:
Let ξ1, ξ2, ξ3, ξ4, and η ∈ L∞(T 2). Then
T(ξ1⊗η)+(ξ2⊗η) commutes with T(ξ3⊗η)+(ϕ4⊗ψ) if and
only if one of the following are satisfied :
i. ξ1 + ξ2, and ξ3 + ξ4 are analytic.
ii. ξ1 + ξ2, and ξ3 + ξ4 are co-analytic.
iii. ξ1 + ξ2 = β(ξ3 + ξ4) + r, where β ∈ C and r is a
constant function.

Proof:
Note that

Tξ1 ⊗ Tη + Tξ2 ⊗ Tη = T(ξ1⊗η)+(ξ2⊗η) and Tξ3 ⊗
Tη + Tξ4 ⊗ Tη = T(ξ3⊗η)+(ξ4⊗η).
But, the sum of two atoms is an atom if either the

first components or the second ones are dependant,
[2]. Thus

Tξ1 ⊗ Tη + Tξ2 ⊗ Tη = (Tξ1 + Tξ2)⊗ Tη

= Tξ1+ξ2 ⊗ Tη(1)

Similarly,

Tξ3 ⊗ Tη + Tξ4 ⊗ Tη = Tξ3+ξ4 ⊗ Tη (2)

But now, the problem is when two atomic Toeplitz
operators commute? That is when
(Tξ1+ξ2⊗Tη)(Tξ3+ξ4⊗Tη) = (Tξ3+ξ4⊗Tη)(Tξ1+ξ2⊗Tη).

Which is equivalent to :
(Tξ1+ξ2Tξ3+ξ4)⊗TηTη = (Tξ3+ξ4Tξ1+ξ2)⊗TηTη (3).

Of course if ξ1 = −ξ2 or ξ3 = −ξ4 or η = 0, then
trivially, we get the commutativity.

Hence, we assume that ξ1 + ξ2 ∕= 0, ξ3 + ξ4 ∕= 0,
and η ∕= 0. but (3) is valid if and only if

Tξ1+ξ2Tξ3+ξ4 = Tξ3+ξ4Tξ1+ξ2 (4)

However, by (Theorem 1), equation (4) is true if and
only if one of the conditions (i), (ii) or (iii) is satisfied.

Theorem 7:
Let ξ1, ξ2, ξ3, ξ4, η1, and η2 ∈ L∞(T 2). Then
T(ξ1⊗η1)+(ξ2⊗η1) commutes with T(ξ3⊗η2)+(ξ4⊗η2) if
and only if one of the following conditions is satis-
fied:
i. ξ1 + ξ2, ξ3 + ξ4, η1, and η2 are analytic.

ii. ξ1 + ξ2, ξ3 + ξ4 are analytic and η1, η2 are
co-analytic.
iii. ξ1 + ξ2, ξ3 + ξ4 are co-analytic and η1, η2 are
analytic.
iv. ξ1 + ξ2, ξ3 + ξ4 are analytic and η1 = β η2 + h.
v. ξ1+ ξ2, ξ3+ ξ4 are co-analytic and η1 = β η2+h.
vi. ξ1 + ξ2 = β(ξ3 + ξ4) + h and η1, η2 are analytic.
vii. ξ1 + ξ2 = β(ξ3 + ξ4) + h and η1, η2 are analytic.
viii. ξ1+ ξ2 = β1(ξ3+ ξ4)+h1 and η1 = β2 η2+h2.

Proof:
First, we have

Tξ1 ⊗ Tη1
+ Tξ2 ⊗ Tη1

= T(ξ1⊗η1)+(ξ2⊗η1)

and
Tξ3 ⊗ Tη2

+ Tξ4 ⊗ Tη2
= T(ξ3⊗η2)+(ξ4⊗η2).

Tξ1 ⊗ Tη1
+ Tξ2 ⊗ Tη1

= Tξ1+ξ2 ⊗ Tη1
,

and
Tξ3 ⊗ Tη2

+ Tξ4 ⊗ Tη2
= Tξ3+ξ4 ⊗ Tη2

.

So, we need to prove the Theorem, just to see the com-
mutativity of the two atoms

(Tξ1+ξ2 ⊗ Tη1
) and (Tξ3+ξ4 ⊗ Tη2

).

Since
(Tξ1+ξ2⊗Tη1

) (Tξ3+ξ4⊗Tη2
) = Tξ1+ξ2Tξ3+ξ4⊗Tη1

Tη2
(1)

and
(Tξ3+ξ4⊗Tη2

) (Tξ1+ξ2⊗Tη1
) = Tξ3+ξ4Tξ1+ξ2⊗Tη2

Tη1
(2).

Since (1) and (2) commutativity are satisfying if and
only if
Tξ1+ξ2 Tξ3+ξ4 = Tξ1+ξ2Tξ3+ξ4 andTη1

Tη2
= Tη2

Tη1
.

Theorem 8:
A Toeplitz like operator Tξ1⊗ξ2 is an isometry on
H2(T 2) ⊗n(2) H

2(T 2) if and only if ξ1 ⊗ ξ2 is a
constant and is satisfying |ξ1| = |ξ2| = 1.
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Proof:
Assume that Tξ1⊗ξ2 is an isometry, then

󰀂Tξ1⊗ξ2(h⊗ d)󰀂2 = 〈Tξ1⊗ξ2(h⊗ d), Tξ1⊗ξ2(h⊗ d)〉
= 〈T ∗

ξ1⊗ξ2Tξ1⊗ξ2(h⊗ d), h⊗ d〉
= 〈h⊗ d, h⊗ d〉,

for all h⊗ d ∈ H2(T 2)⊗n(2) H
2(T 2).

Hence T ∗
ξ1⊗ξ2

Tξ1⊗ξ2 = I1⊗1, so

Tξ1⊗ξ2
Tξ1⊗ξ2 = I1⊗1.

Similarly, one gets
Tξ1⊗ξ2Tξ1⊗ξ2

= I1⊗1 = T1⊗1.

Therefore Tξ1⊗ξ2Tξ1⊗ξ2
= Tξ1⊗ξ2

Tξ1⊗ξ2 = I1⊗1 =

T1⊗1.

By Theorem 1, we obtain ξ1, ξ2, ξ1, ξ2 are an-
alytic(or co-analytic) or there is a linear combina-
tion between ξ1 and ξ1 or there is a linear combina-
tion between ξ2 and ξ2, So ξ1 and ξ2 should be con-
stants in all cases. Thus; ξ1 ⊗ ξ2 is constant and also
ξ1ξ1 = |ξ1|2 = 1 and ξ2ξ2 = |ξ2|2 = 1 since

Tξ1⊗ξ2Tξ1⊗ξ2
= Tξ1ξ1⊗ξ2ξ2

= T|ξ1|2⊗|ξ2|2 = T1⊗1.

4 Spectrum and invertibility of
Toeplitz like operators

In this last section, we study the spectrum and the in-
vertibility of Toeplitz like operators acting on 2-nu-
clear tensor Product of Hardy Spaces.

Definition 2:
Assume that ξ1, ξ2 ∈ L∞(T 2). Then Tξ1⊗ξ2 is
invertible if Tξ1 and Tξ2 are invertible.

Lemma 3:
Let ξ1, ξ2 ∈ L∞(T 2) be invertible such that

σ(Mξ1 ⊗ Mξ2) is contained in the open right - half
plane. Then Tξ1⊗ξ2 is invertible.

Proof:
Let∆ = {z ∈ C : |z−1| < 1}. Since σ(Mξ1 ⊗Mξ2)
is a compact set inC, then there exists 󰂃 > 0 such that
󰂃σ(Mξ1 ⊗Mξ2) ⊂ ∆, where

󰂃σ(Mξ1 ⊗Mξ2) = {󰂃µ1µ2 : µ1µ2 ∈ σ(Mξ1 ⊗Mξ2)}.

Therefore, |󰂃µ1µ2 − 1| < 1, for all µ1µ2 ∈ σ(Mξ1 ⊗
Mξ2). Consequently

sup
µ1µ2∈σ(Mξ1⊗Mξ2 )

|󰂃µ1µ2 − 1| < 1.

Now, by applying the Spectral Mapping Theorem,
we get

󰂃µ1µ2 − 1 ∈ σ(󰂃Mξ1 ⊗Mξ2 − I1⊗1).

So

󰀂󰂃ξ1 ⊗ ξ2 − I1⊗1󰀂 = 󰀂󰂃Mξ1 ⊗Mξ2 − I1⊗1󰀂 =

sup
ζ∈ σ(󰂃Mξ1⊗Mξ2−I1⊗1)

|ζ| < 1.

However 󰀂Tξ1⊗ξ2󰀂n(2) = 󰀂ξ1 ⊗ ξ2󰀂, Hence

󰀂I1⊗1 − 󰂃Tξ1⊗ξ2󰀂n(2) = 󰀂T1⊗1−󰂃ξ1⊗ξ2󰀂n(2) =

󰀂1⊗ 1− 󰂃ξ1 ⊗ ξ2󰀂 < 1.

So, 󰀂I1⊗1 − 󰂃Tξ1⊗ξ2󰀂n(2) < 1, this; 󰂃Tξ1⊗ξ2 is
invertible and then Tξ1⊗ξ2 is invertible.

Lemma 4:
Assume that ξ1, ξ2 ∈ L∞(T 2). Then

σ(Tξ1⊗ξ2) ⊂ [σ(Mξ1⊗Mξ2)](convex hull of σ(ξ1⊗ξ2)).

Proof:
From the definition of [σ(Mξ1⊗Mξ2)], it is enough to
prove that if H is an open half plane which contains
the spectrum ofMξ1 ⊗Mξ2 , then σ(Tξ1⊗ξ2) ⊂ H .
Let µ1µ2 ∕∈ H, so µ1µ2 ∕∈ σ(Mξ1 ⊗ Mξ2), and

σ(Mξ1 ⊗ Mξ2 − µ1µ2I1⊗1) ⊂ H − µ1µ2. Since
H−µ1µ2 does not contain zero ( as µ1µ2 ∕∈ H), there
exists a real number θ1 such that eiθ1(H − µ1µ2) ⊂
He, where He is the open right half plane. Further,
eiθ1σ(H − µ1µ2) ⊂ He. Since (Mξ1 ⊗ Mξ2 −
µ1µ2I1⊗1) is invertible, eiθ1(Mξ1 ⊗Mξ2 −µ1µ2I1⊗1)
is still invertible and by the spectral mapping theorem
σ(eiθ1(Mξ1 ⊗ Mξ2 − µ1µ2I1⊗1)) ⊂ He. which im-
plies that, by lemma 3,(Tξ1⊗ξ2−µ1µ2

) is invertible.
That is (Tξ1⊗ξ2 − µ1µ2I)

−1 exists and therefore
µ1µ2 ∕∈ σ(Tξ1⊗ξ2). Thus; σ(Tξ1⊗ξ2) ⊂ H .
However, this is vaild for all open half

planes H containing σ(Mξ1 ⊗ Mξ2). Hence
σ(Tξ1⊗ξ2) ⊂ [σ(Mξ1 ⊗Mξ2)].

Theorem 9:
Let Tξ1 ⊗ Tξ2 be invertible. Then (Tξ1 ⊗ Tξ2)

−1

is a Toeplitz like operator if and only if one of the
following is satisfied:
i. ξ1 ⊗ ξ2 ∈ H2(T 2)⊗n(2) H

2(T 2).
ii. ξ1 ⊗ ξ2 ∈ H2(T 2)⊗n(2) H

2(T 2).
iii. ξ1 ⊗ ξ2 ∈ H2(T 2)⊗n(2) H

2(T 2).
v. ξ1 ⊗ ξ2 ∈ H2(T 2)⊗n(2) H

2(T 2).
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Theorem 9:
Let Tξ1 ⊗ Tξ2 be invertible. Then (Tξ1 ⊗ Tξ2)

−1

is a Toeplitz like operator if and only if one of the
following is satisfied:
i. ξ1 ⊗ ξ2 ∈ H2(T 2)⊗n(2) H

2(T 2).
ii. ξ1 ⊗ ξ2 ∈ H2(T 2)⊗n(2) H

2(T 2).
iii. ξ1 ⊗ ξ2 ∈ H2(T 2)⊗n(2) H

2(T 2).
v. ξ1 ⊗ ξ2 ∈ H2(T 2)⊗n(2) H

2(T 2).

Proof:
Assume (Tξ1⊗Tξ2)

−1 = T−1
ξ1

⊗T−1
ξ2
is a Toeplitz like

operator, hence T−1
ξ1
and T−1

ξ2
are Toeplitz operators.

Now, T−1
ξ1
is a Toeplitz operator if and only if ξ1

or ξ1 ∈ H2(T 2).
Similarly, T−1

ξ2
is a Toeplitz operator if and only if

ξ2 or ξ2 ∈ H2(T 2).
Therefore, (Tξ1⊗Tξ2)

−1 is a Toeplitz like operator
if and only if one of the above conditions satisfies.

Corollary 5:
Assuming ξ1, ξ2 ∈ L∞(T 2). Then σ(Tξ1⊗ξ2) is
connected.

Proof:
Since σ(Tξ1⊗ξ2) = σ(Tξ1)σ(Tξ2), and also σ(Tξ1)
and σ(Tξ2) are connected sets, hence σ(Tξ1)×σ(Tξ2)
is a connected set.
Now, define a function

h : σ(Tξ1)× σ(Tξ2) −→ C

h(a, b) 󰀁→ a.b

Clearly, h is a continuous function.
Thus; h(σ(Tξ1) × σ(Tξ2)) = σ(Tξ1)σ(Tξ2) is

a connected set. Which is implies σ(Tξ1⊗ξ2) is a
connected set.

Theorem 10:
Assuming ξ1, ξ1 ∈ L∞(T 2). Then Tξ1⊗ξ2 is a
compact operator if and only if ξ1 ⊗ ξ2 = 0.

Proof:
The proof directly will get it, from this theorem,
Suppose ξ ∈ L∞(T 2). Then Tξ is a compact operator
if and only if ξ = 0.

5 Outcome and questions
In this article, we discuss Toeplitz like operator
on 2-nuclear tensor product of Hardy spaces, we
conclude in the followings definitions and theorems:

Definition 1:
Assume that ψ = ψ1 ⊗ ψ2, where ψ1,ψ2 ∈ L∞(T 2)
and Tψ is an operator defined as

Tψ : H2(T 2)n(2)⊗H2(T 2) → H2(T 2)n(2)⊗H2(T 2)

such that

Tψ1⊗ψ2
(d⊗ b) = P1 ⊗ P1((ψ1 ⊗ ψ2)(d⊗ b))

= P1(ψ1d)⊗ P1(ψ2b).

hen the operator Tψ is said to be Toeplitz like operator
with symbol ψ.

And

Theorem 2:
The complex valued vector space H2(T 2, H2(T 2))
is isometrically isomorphic to the 2-nuclear Tensor
product of Hardy spaces H2(T 2)⊗n(2) H

2(T 2).

One can ask the following question:

What is the slant Toeplitz like opearator on ON
THE Lebesgue space of unit circle and the torus.
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