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Abstract: - The task of data matching arises frequently in many aspects of science. It can become a time 
consuming process when the data is being matched to a huge database consisting of thousands of possible 
candidates, and the goal is to find the best match. It can be even more time consuming if the data are big (> 100 
MB). One approach to reducing the time complexity of the matching process is to reduce the search space by 
introducing a pre-matching stage, where very dissimilar data are quickly removed. In this paper we focus our 
attention to matching big binary data. In this paper we present two probabilistic models for the quick 
dissimilarity detection of big binary data: the Probabilistic Model for Quick Dissimilarity Detection of Binary 

vectors (PMQDD) and the Inverse-equality Probabilistic Model for Quick Dissimilarity Detection of Binary 

vectors (IPMQDD). Dissimilarity detection between binary vectors can be accomplished quickly by random 
element mapping. The detection technique is not a function of data size and hence dissimilarity detection is 
performed quickly. We treat binary data as binary vectors, and hence any binary data of any size and dimension 
is treated as a binary vector. PMQDD is based on a binary similarity distance that does not recognize data and 
its exact inverse as containing the same pattern and hence considers them to be different. However, in some 
applications a specific data and its inverse, are regarded as the same pattern, and thus should be identified as 
being the same; IPMQDD is able to identify such cases, as it is based on a similarity distance that does not 
distinguish between data and its inverse instance as being dissimilar. We present a comparative analysis 
between PMQDD and IPMQDD, as well as their similarity distances. We present an application of the models 
to a set of object models, that show the effectiveness and power of these models.. 
 
Key-Words: - Big data, binary data, binary vector, matching, size invariance, probabilistic model, dissimilarity 
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1 Introduction 
Data matching is a task that arises in many diverse 
fields such as, image retrieval, speech recognition, 
computer duplicate file detection and 3D model 
matching. The task can be extremely time 
consuming if the data are big, or the database to 
which the query data is being matched to is huge. 
One approach to reducing the time complexity of 
the task is to perform a pre-matching filtering stage 
where very dissimilar data can are quickly removed 
from the search space.  
In this paper the focus is on matching big binary 
data, and in particular on the pre-matching stage of 
reducing the search space by removing dissimilar 
data quickly. Our approach in formulating binary 
data for matching is to represent it as ordered binary 
vectors and then proceed to matching these vectors. 

Let a and b be two data sets that are to be compared, 
then they are represented as, 

a = [a1 a2 … an]T and b = [b1 b2 … bn]T      (1) 

where ai and bi, for i = 1 … n, are the elements of 
vectors a and b, respectively. n is the vector (data) 
size.  
The original data can be of any dimension: one-
dimensional (e.g. sound waves), two-dimensional: 
(e.g. images and matrices), three-dimensional (e.g. 
geographical data and MRI/CT-scans), or multi—
dimensional data (satellite data). The geometry of 
the data can be of any type provided that the 
matched data have a unified ordered arrangement 
implying an existence of a one-to-one 
correspondence between all elements of the matched 
data. Regardless of the dimension of the data or its 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2021.20.25 Adnan A. Mustafa

E-ISSN: 2224-2880 244 Volume 20, 2021



geometry, all data are converted to an ordered 
binary vector, i.e. one-dimensional ordered data, 
conforming to the form shown in (1). Hence, 
matching binary data degenerates to matching one-
dimensional ordered binary patterns represented as 
vectors.  
The Probabilistic Matching Model for Binary 

Vectors (PMMBV) [1] showed that by randomly 
selecting vector elements between two binary 
vectors, and comparing their values, dissimilarity 
between them can be quickly detected without the 
need to compare the entire data. Furthermore, it 
showed that dissimilarity detection is vector-size 
invariant; dissimilarity between big vectors can be 
detected just as quickly as it can be detected for 
small vectors. Consequently, dissimilarity detection 
methods based on PMMBV are magnitudes faster 
than conventional methods that compare data on an 
element-by-element basis. PMMBV is based on the 
vector similarity coefficient (κ0), a measure of the 
amount of similarity between the data defined as: 

κ0 = 1 – κ1           (2) 

where κ1 is the vector dissimilarity coefficient. 
However, PMMBV assumes non-equivalency of a 
data and its inverse, which may not be suitable for 
some applications where a data and its inverse are 
considered to be the same. As an example, in the 
field of scene analysis, an image and its inverse 
image contain the same pattern (i.e. same scene), 
and hence matching an image to its inverse image 
should produce a perfect match.  
In this paper we present the Probabilistic Model for 

Quick Dissimilarity Detection of Binary vectors 
(PMQDD), a model based on PMMBV for the quick 
dissimilarity detection of big binary data. 
Dissimilarity detection using PMQDD is data-size 
invariant; data size is not a factor in how fast 
dissimilarity is detected. The quickness of 
dissimilarity detection is governed by the vector 

similarity coefficient, described earlier. We also 
present in this paper the Inverse-equality 

Probabilistic Model for Quick Dissimilarity 

Detection of Binary vectors (IPMQDD). IPMQDD 
is a modified model of PMQDD, based on a 
different similarity measure, the vector inverse-

equality similarity coefficient, which does not 
distinguish between a data set and its inverse data 
set and considers them to be the same. Similar to 
PMQDD, IPMQDD is also data-size invariant. We 
provide a comparison of the two models and give an 
application of the models to data examples. 
This paper is organized as follows: Section 2 
presents a literature review of binary similarity 
distances and different approaches to matching big 

data. Section 3 discusses the two binary distances, 
the vector dissimilarity coefficient and the vector 

inverse-equality similarity coefficient, which are 
employed for PMQDD and IPMQDD, respectively. 
Section 4 presents the two probabilistic dissimilarity 
detection models, PMQDD and IPMQDD. A 
comparison between the two models is presented in 
section 5. Section 6 presents a discussion of tests 
conducted on a dataset and the results of applying 
PMQDD and IPMQDD. A conclusion of our work 
and the future direction of our work is presented in 
Section 7. An appendix at the end of the paper 
presents the mathematical proof of the derivation of 
the PMQDD and IPMQDD models. 
 

2 Literature Review 
Here we present a literature review on binary 
similarity measures and different approaches to 
matching big data cited in the literature.  
 
2.1 Binary Similarity Distances 
There are an abundant of similarity distances and 
measures for comparing binary vectors that have 
been developed over the last century and can be 
found in the literature [2] [3] [4] [5]. Here, we 
briefly review some of these measures and distances 
that are relevant to our work and are suited for 
matching binary data (see Table 1). As earlier 
stated, we treat binary data as one-dimensional 
binary vectors in our analysis. One of the earliest 
similarity measures developed at the beginning of 
the previous century is the Jaccard coefficient 
which measures the similarity of two vectors based 
on their asymmetric binary attributes [6]. The 
Jaccard coefficient is calculated as the ratio of the 
number of matches present between two binary 
vectors to the total size of the vector. Furthermore, 
the Jaccard distance is defined as the Jaccard 
coefficient subtracted from unity; a value of zero 
indicates complete similarity between two binary 
vectors while a value of unity indicates the absence 
of similarity between the vectors. The Sokal–

Michener coefficient [7], also known as the Simple 

Matching Coefficient (SMC), is defined as the ratio 
of the sum of the number of matches present and the 
number of matches missing, to the vector size. The 
Simple Matching Distance (SMD) is then defined as 
1 – SMC; SMD = 0 indicates complete similarity 
between two vectors while a value of SMD = 1 
indicates complete dissimilarity between two 
vectors. The Hamming distance, another binary 
distance introduced in the middle of the last century 
[8], has found applications in many fields. For 
binary data, the Hamming distance counts the 
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number of mismatches between two vectors, and 
hence is vector size-dependent. However, if the 
binary Hamming distance is normalized with respect 
to vector size then it becomes the Sokal–Michener 
coefficient. The Cosine similarity [9] is a popular 
similarity measure, particularly efficient for sparse 
vectors. It has a range from −1 to 1, where a value 
of −1 indicates exact inverse similarity and a value 
of 1 indicates exact similarity. A value of 0 indicates 
independence. Pearson's correlation coefficient [10] 
measures the linear relationship between the 
attributes of two vectors. With a range of [−1, 1], a 
value of −1 implies perfect inverse linear 
relationship, a value of 1 means perfect linear 
relationship and a value of 0 indicates linear 
independence. Mutual information (MI) [11] 
measures the mutual dependence between two 
variables, can also be used for matching purposes. It 
has found many applications in the medical field. 
Many MI distances have been proposed and 
employed, such as the variation of information [12]. 
The Gamma binary similarity distance () [13] is a 
probabilistic distance that is a modification of the 
Hamming distance that enables similarity to be 
more accurately measured than employing 
traditional binary distances. A value of a value of   
= 0 indicates complete dissimilarity while a value of 
 = 1 indicates exact similarity.  
 
2.1 Matching Big Data 
With the vast amount of data being generated today, 
an efficient way of analysing the data has become a 
critical issue. ‘Big data’ research has become an 
increasing topic of research interest worldwide. The 
field has developed immensely over the last 15 
years covering many topics with a large scope of 
applications in diverse fields using different 
techniques [14] [15] [16] [17] [18] [19]. However, 
matching the big data in a timely manner is still an 
unsolved problem. Many techniques and approaches 
have been developed and proposed: a Markov 
model is suggested for city-based transport models 
in [20], a tensor-based framework for heterogeneous 
networks is described in [21], a variable 
neighbourhood search queue architecture is 
proposed for ehealth networks in [22], graph 
matching for large graphs common in big data is 
described in [23], an accelerator based on optical 
network-on-chip technology is employed to speed 
up matching in [24], and a formalization of scale-
independent data and partial data matching for big 
data is presented in [25]. Two important concepts: 
feature extraction and an appropriate distance metric 
for improved algorithm performance is presented in 
[26], a deep network analyzer (DNA) is employed 

for big data in [27], a picture retrieval system using 
big data mining technology through three steps of 
data segmentation, mining and merging is presented 
in [28], a fuzzy c-means algorithm for very large 
data is presented in [29], an image-size invariant 
probabilistic model for quick dissimilarity detection 
for big images is presented in [30], and a survey on 
improved hash methods for indexing big data can be 
found in [31]. 
 

3 Two Binary Similarity Distances for 

Big Binary Data 
In this section we discuss two binary similarity 
distances for dissimilarity detection of big binary 
data; the vector similarity coefficient and the vector 

inverse-equality similarity coefficient. The first 
distance  
 
2.1 The vector similarity coefficient 

From [1], the vector similarity coefficient (0), is 
defined as a metric for measuring the similarity 
between two binary vectors u and v, and is defined 
as, 

0(u, v) = Po((z = u  v) = 0)                  (3) 

where  is the exclusive-or operation and Po 
denotes the probability mass function of z. As a 
result, 0[0,1]. Alternatively, κ0 can be defined as, 

κ0(u, v)  = 1 – κ1(u, v)            (4) 

where κ1 is the vector dissimilarity coefficient which 
is equivalent to the Sokal-Michener metric [7]. By 
definition it can be seen that, 

 Vectors with 0 = 0 implies inverse the 
vectors are inverse of each other. 

 Vectors with 0 < 0 < 1 implies quasi-
similar vectors.  

 Vectors with 0 = 1 implies the vectors are 
exactly similar. 

Note that Quasi-similar vectors are vectors that are 
neither similar nor inverse, but are in between. Thus 
they are vectors that have some similarity between 
them, even though in some cases this similarity 
might be minute. 
 
2.2 The vector inverse-equality similarity 

coefficient 
Let the vector inverse-equality similarity coefficient 
() be defined as a quantitative measure of the 
amount of closeness between two binary vectors 
based on an element-to-element mapping, It differs 
from (0) in that it does not distinguish between a 
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vector and its inverse and hence considers them to 
be identical. It is defined as, 

(v1, v2) = |1 – 2Po((z = v1 v2) = Z)|,   Z {0,1}  

 (5) 

Hence, it is equivalent to the Gamma binary 

similarity distance () [13]. As a result,  
 Vectors with  = 0 imply that the vectors 

are distinct dissimilar; difference is 
maximized between the vectors. 

 Vectors with 0 <    < 1 imply that the 
vectors are quasi-similar vectors.  

 Vectors with  = 1 imply that the vectors 
are similar vectors. The vectors can be 
either exactly the same, element-by-
element, or exactly the inverse, element-by-
element. 

 
3 Two Probabilistic Models for Quick 

Dissimilarity Detection of Big Binary 

Data 
In this section we present two probabilistic 
matching models for quick dissimilarity detection of 
big binary data: the Probabilistic Model for Quick 

Dissimilarity Detection of Binary vectors (PMQDD) 
and the Inverse-equality Probabilistic Model for 

Quick Dissimilarity Detection of Binary vectors 
(IPMQDD). 
 
3.1 The Probabilistic Model for Quick 

Dissimilarity Detection of Binary vectors 
The Probabilistic Model for Quick Dissimilarity 

Detection of Binary vectors (PMQDD) is a model 
that can be used to quickly detect dissimilar binary 
vectors. The model is equivalent to the Probabilistic 

Model for Binary Vectors (PMMBV) [1]. Let PrQDD 
denote the probability of detecting dissimilarity 
between two binary vectors, v1 and v2, using 
PMQDD. Then we can state PMQDD as follows: by 
randomly mapping corresponding elements of two 
binary vectors, the probability of detecting 
dissimilarity between the two vectors (PrQDD) based 
on the number of mappings (p) and the amount of 
similarity (κ0) between the vectors is given by, 

    PrQDD(v1,v2; p, κ0) = 1 – (κ0(v1, v2))p  

κ0 [0,1], p=1,2,… (6)  

The proof is given in A1. For compactness, we will 
write this as, 

    PrQDD(p, κ0) = 1 – (κ0)p     κ0 [0,1], p=1,2,… (7)  
A Plot of PrQDD as a function of p for several values 
of κ0 is shown in Fig. 1. From the figure, it can be 

seen that the probability of detecting dissimilarity 
between two vectors quickly approaches unity after 
a few mappings p. As κ0 increases more mappings 
are required to reach unity. The mean number of 
mappings required to detect dissimilarity between 
the two binary vectors, E[p(κ0)], is, 

E[p(κ0)] = 1 / (1 – κ0)     κ0 {0,1}    (8) 

Fig. 2 shows a plot of the mean number of mappings 
required to detect dissimilarity. It can be seen that 
E[p(κ0)] is fairly constant up to κ0 = 0.7, but then 
starts to increase at a higher rate as κ0  approaches 
unity. Nevertheless, even at high similarity values of 
κ0 only a few mappings are required to detect 
dissimilarity –regardless of vector size; e.g. E[p(κ0 = 
0.9] = 10 mappings.  
 
3.2 The Inverse-equality Probabilistic Model 

for Quick Dissimilarity Detection of Binary 

vectors 
The Inverse-equality Probabilistic Model for Quick 

Dissimilarity Detection of Binary vectors 
(IPMQDD) is a model that can be used to quickly 
detect dissimilar vectors. The model differs from 
PMQDD as it is based on a different similarity 
measure, the vector inverse-equality similarity 

coefficient, which does not distinguish between a 
vector and its inverse vector and considers them to 
be the same. Hence, IPMQDD also assumes a vector 
and its inverse vector to be the same when detecting 
dissimilarity. IPMQDD states that by randomly 
selecting corresponding vector elements between 
two binary vectors, v1 and v2, the probability of 
detecting dissimilarity between the two vectors, 
PrIQDD, based on the number of mappings (p) and the 
amount of similarity () is given by, 
 
 

 
Fig. 1. A plot of PrQDD(p,κ0) for several values of κ0. 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2021.20.25 Adnan A. Mustafa

E-ISSN: 2224-2880 247 Volume 20, 2021



 
Fig. 2. A plot of E[p(κ0)]. 

 
 

Pr𝐼𝑄𝐷𝐷(𝑝, 𝛿) = 1 − (
1

2
(1 + 𝛿))

𝑝

(1 + (
1 − 𝛿

1 + 𝛿
)
𝑝

) 

0    1, p = 1, 2, …   (9) 

This can be restated as, 

PrIQDD(p,) = 1 – (½)p  ((1+)p + (1– )p)      (10) 

The proof is given in A.2. A Plot of PrIQDD as a 
function of p for several values of  is shown in Fig. 
3. From the figure, it can be seen that the probability 
of detecting dissimilarity between two vectors 
quickly approaches unity after a few mappings p. As 
 increases more mappings are required to reach 
unity. The mean number of mappings required to 
detect dissimilarity between the two vectors for a 
given value of  is the expected value of p, E[p()], 
and is given by, 

E[p()] = 4 / (1 – 2) – 1          0   < 1     (11) 

Fig. 4 shows a plot of the mean number of mappings 
required to detect dissimilarity, E[p()]. It can be 
seen that E[p()] is fairly constant up to  = 0.7, but 
then starts to increase at a higher rate as κ0  
approaches unity. Similar to E[p(κ0)], even at high 
similarity values of  only a few mappings are 
required to detect dissimilarity –regardless of vector 
size; e.g. E[p( = 0.9)] = 20 mappings. 
 

 

 
Fig. 3. A plot of PrIQDD(p,) for several values of . 

 

 
Fig. 4. A plot of E[p()]. 

 
4 A Comparison between PMQDD 

and IPMQDD 
Because PMQDD and IPMQDD depend on 0 and 
, respectively, there are major differences between 
the performance of the two models. A summary of 
the major differences between PMQDD and 
IPMQDD appear in Table 1. As a consequence to 
the fact that PMQDD does not acknowledge that a 
vector and its inverse as being the same,  

 For a given similarity value, PrQDD 
approaches unity faster than PrIQDD. 

 The mean number of mappings required to 
detect dissimilarity between dissimilar 
vectors using PMQDD is less than 
IPMQDD. In fact, it is possible to detect 
dissimilarity with one mapping using 
PMQDD, whereas it is impossible to detect 
dissimilarity with one mapping using 
IPMQDD; a minimum of two mappings are 
required to detect dissimilarity between 
dissimilar vectors. 
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Table 1: Summary of differences between IPMQDD and 

IPMQDD.  
Item Probabilistic Model  

Probability Model PMQDD IPMQDD 

Si
m

ila
rit

y 
D

is
ta

nc
e Name 

vector 
similarity 
coefficient 

vector 
inverse-equality 

similarity 
coefficient 

Symbol 0  

Definition* Po(z = 0) |1 – 2Po(z = Z)|, 
Z {0,1} 

Data and its 
inverse Not Equivalent Equivalent 

Probability Model 
Equation 1 – (0)p 1–(½)p((1+)p + 

(1– )p) 
Expected number 
of mappings 1 / (1 – κ0) [4 / (1 – 2)] – 1 

* z = v1 v2, where v1 and v2 are the two vectors being matched. 

 

5 Discussion 
In this section we discuss the application of the 
probabilistic models PMQDD and IPMQDD to a set 
of 3D binary objects. PTC Mathcad 15© was used 
to create a set of binary objects. The set consists of 
the 10 objects shown in Fig. 5 (front view). The 
objects are virtually fitted in a cube with dimensions 
of 100 units x 100 units x 100 units. Each cubic unit 
can be considered as a voxel. If the object fills a 
given voxel then it is assigned a value of 1, 
otherwise the value of the voxel is 0. The entire 
cube containing the object and empty space is 
referred to as a model. Hence, each model is 
represented by 1x106 binary voxels. If “slices” along 
the depth of the model are taken at each unit, then 
the resulting slice shows where object material 
exists in the slice. This is analogues to what is 
produced in medical MRI and CT scans. Fig. 6 
shows the sliced views of model 1, where 100 slices 
are taken of the model, and the resulting slice is 
shown as a 2D picture. At each slice location, the 
data of the slice is read in order and saved a binary 
vector. By preserving the same order in recording 
the binary data of each model, a binary vector 
representation of the model is created. As a result 
each model is represented by a 1-mega binary 
vector. Figures 7, 8, 9 and 10 show the sliced views 
of models 3, 6, 7 and 8, respectively. In general, the 
following statements summarizes the set, 

 6 of the 10 models are very similar; models 
1 thru 6. The remaining 4 models, models 7 
thru 10, are exact inverse instances of the 
first 4 models, respectively. 

 All objects fill the model by volume in the 
range [77.3%,77.5%].  

Pairing the models with every other model in the set 
produces 45 different model pairs; values of 0 for 
the set are in the range of 0 – 0.999, while values of 
 for the set are in the range of 0.677 – 1.0. 
Dissimilarity detection for each model pair was 
conducted as follows: 1000 dissimilarity detection 
trials were repeated and the average number of 
mappings found to detect dissimilarity was recorded 
(referred to as MDN). The maximum number of 
mappings attempted had a limit of L = 3000 
mappings. This value of L ensures that models with 
similarity of up to 0 = 0.9996 and  = 0.9993 can 
be detected. If the limit L is reached for a given 
model pair then they are assumed to be similar.  
Dissimilarity detection trials were performed twice; 

1. Once assuming non-equivalency of a model 
and its inverse model; hence the PMQDD 

probabilistic model was applied. The 
mapping detection for this set is denoted by 
MDN.  

2. Once assuming equivalency of a model and 
its inverse; hence the IPMQDD 

probabilistic model was applied. The 
mapping detection for this set is denoted by 
MDN. 

Table 2 shows the results of dissimilarity detection 
using the two probabilistic models. For each model 
pair, 0, E(0) and MDN for PMQDD is displayed. 
This is followed by , E() and MDN for 
IPMQDD. The values of E(0) and E(), obtained 
by (8) and (11), respectively, are tabulated for 
comparison purposes. As an example the first model 
pair consisting of models (1,2) have 0 = 0.839. The 
expected number of mappings required to detect 
dissimilarity –as predicted by PMQDD– is E(0) = 
6.2 and the actual mean number of mappings found 
to detect dissimilarity (with 1000 dissimilarity 
detection trials) is MDN = 5.9. The model pair’s 
similarity value based on  is  = 0.679, the 
expected number of mappings to detect dissimilarity 
–as predicted by IPMQDD– is E() = 6.4, and the 
actual mean number of mappings found to detect 
dissimilarity (with 1000 dissimilarity detection 
trials) is MDN = 6.3. The resulting error between 
the predicted number of mappings E(0) and actual 
number of mappings MDN for this model is 5.4%. 
The error between the predicted number of 
mappings E() and actual number of mappings 
MDN for this model is 1.5%.  
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Fig. 5. The 10 models used for testing. From left to right and 
top to bottom: Models ‘1’ to ‘10’. 

 

 

Fig. 6. The 100 slices of model 1. 

 

 

Fig. 7. The 100 slices of model 3. 

 

Fig. 8. The 100 slices of model 6. 

 

 

Fig. 9. The 100 slices of model 7. 
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Table 2: Dissimilarity detection results for the Model Set. 
Model 
pairs 

PMQDD IPMQDD 

0 E(0) MDN  E() MDN 

1 2 0.839 6.2 5.9 0.679 6.4 6.3 

1 3 0.998 634 624 0.997 634 612 

1 4 0.840 6.2 6.5 0.679 6.4 6.5 

1 5 0.999 952 905 0.998 953 811 

1 6 0.997 312 323 0.994 312 304 

1 7 0.000 1.0 1.0 1.000  L 

1 8 0.161 1.2 1.2 0.679 6.4 6.1 

1 9 0.002 1.0 1.0 0.997 634 622 

1 10 0.160 1.2 1.2 0.679 6.4 6.4 

2 3 0.840 6.2 6.2 0.679 6.4 6.5 

2 4 0.999 1012 963 0.998 1012 887 

2 5 0.840 6.2 6.3 0.680 6.4 6.7 

2 6 0.838 6.2 6.4 0.677 6.4 6.3 

2 7 0.161 1.2 1.2 0.679 6.4 6.6 

2 8 0.000 1.0 1.0 1.000  L 

2 9 0.160 1.2 1.2 0.679 6.4 6.2 

2 10 0.001 1.0 1.0 0.998 1012 912 

3 4 0.840 6.2 6.0 0.680 6.4 6.2 

3 5 0.997 381 363 0.995 381 378 

3 6 0.995 209 206 0.990 209 199 

3 7 0.002 1.0 1.0 0.997 634 649 

3 8 0.160 1.2 1.2 0.679 6.4 6.6 

3 9 0.000 1.0 1.0 1.000  L 

3 10 0.160 1.2 1.2 0.680 6.4 6.3 

4 5 0.840 6.3 6.4 0.680 6.4 6.8 

4 6 0.839 6.2 6.4 0.677 6.4 6.4 

4 7 0.160 1.2 1.2 0.679 6.4 6.5 

4 8 0.001 1.0 1.0 0.998 1012 939 

4 9 0.160 1.2 1.2 0.680 6.4 6.3 

4 10 0.000 1.0 1.0 1.000  L ML 

5 6 0.996 235 238 0.992 235 244 

5 7 0.001 1.0 1.0 0.998 953 907 

5 8 0.160 1.2 1.2 0.680 6.4 6.6 

5 9 0.003 1.0 1.0 0.995 381 386 

5 10 0.160 1.2 1.2 0.680 6.4 6.4 

6 7 0.003 1.0 1.0 0.994 312 321 

6 8 0.162 1.2 1.2 0.677 6.4 6.6 

6 9 0.005 1.0 1.0 0.990 209 211 

6 10 0.161 1.2 1.2 0.677 6.4 6.3 

7 8 0.839 6.2 6.4 0.679 6.4 6.2 

7 9 0.998 634 593 0.997 634 631 

7 10 0.840 6.2 6.0 0.679 6.4 6.5 

8 9 0.840 6.2 6.0 0.679 6.4 6.3 

8 10 0.999 1012 974 0.998 1012 980 

9 10 0.840 6.2 6.5 0.680 6.4 6.6 

* A value of L for MDN indicates that the number of 
mappings attempted to detect dissimilarity reached the limit 
without detecting dissimilarity.   

 

 

 

Fig. 10. The 100 slices of model 8. 

  

 

Fig. 11. A plot of % mapping error between E() an MDN vs.  
for model pairs with  > 0.99.. 

 
 
An overall summary of results: 

 The error between E(0) and MDN was in 
the range [0,6.5%] with a mean error set 
value of 1.9% and standard deviation of 
1.8%. 

 The error between E() and MDN was in 
the range [0,14.9%] with a mean error set 
value of 3.2% and standard deviation of 
3.1%. All model pair errors were less than 
10% except for the two model pairs with a 
high similarity value of  = 0.998 (model 
pairs (1,5) and (2,4)). In fact as  between 
the models increases so does the error. This 
can be seen from Fig. 11 which shows a plot 
of MDN vs.  for model pairs with  > 
0.99. As  approaches 1 the error increases 
greatly. This is expected due to the 
sensitivity of mappings with high . 
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Based on equivalency between models and their 
inverse, four model pairs were correctly assumed to 
be similar because dissimilarity between the model 
pairs were not detected and the maximum number of 
mappings attempted reached its limit of L = 3000 
mappings. These were for the four instances of a 
model and its inverse: model pairs (1,7), (2,8), (3,9), 
(4,10). This is in complete agreement with 
IPMQDD. Based on non-equivalency between 
models and their inverse, the same four model pairs 
were correctly assumed to be different from the first 
mapping in complete agreement with PMQDD 

(MDN = 1 for all four models). 
 

6 Conclusion 
In this paper we have presented two probabilistic 
models, the Probabilistic Model for Quick 

Dissimilarity Detection of Binary vectors (PMQDD) 
and the Inverse-equality Probabilistic Model for 

Quick Dissimilarity Detection of Binary vectors 
(IPMQDD) that can be used to detect dissimilarity 
between big binary data quickly. We model the 
binary data as an ordered binary vector. Both 
models, PMQDD and IPMQDD, detect dissimilarity 
quickly by mapping the elements of the binary 
vectors. They are vector size (and hence data size) 
invariant; only a few mapping between the elements 
of the vectors are required. PMQDD is based on the 
vector dissimilarity coefficient (0), while IPMQDD 

is based on the vector inverse-equality similarity 

coefficient ().  differs from 0 in that it does not 
distinguish between data and its inverse as being 
dissimilar. As a result, IPMQDD differs from 
PMQDD in that it can be employed to detect similar 
patterns in data, such as inverse data. Tests were 
conducted on a set consisting of different object 
models. Test results showed that both models 
produce similar dissimilarity detection results when 
the data are not an inverse of each other. When the 
data are an inverse, very different results are 
produced by the two probabilistic models in 
agreement with theory presented; PMQDD does not 
detect dissimilarity, whereas PMQDD detects 
dissimilarity from the first mapping. All numerical 
results were in close agreement with the theoretical 
equations presented. The mean error set was 1.9% 
for PMQDD, and 3.2% for IPMQDD. Our future 
research will concentrate on relaxing dissimilarity 
detection criteria, implying a fuzzy-like dissimilarity 
detection. 
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Appendix 
 

 

Fig. 2. Binary vector mappings. 
 
A.1 Proof of PrQDD Equation 
Let d denote the event of occurrence of dissimilar 
vectors and s denote the event of occurrence of 
similar vectors. Let us define k to be a random 
variable representing the probability of event d 
occurring at any given mapping, such that 0  k  1. 
On the first mapping two possibilities exist; d or s; 
the probability of occurrence of the former is k and 
of the latter (1  k). This is shown in Fig. XX. On 
the second mapping, four possibilities exist, they are 
dd, ds, sd and ss. Their probabilities are k2, k(1  k), 
k(1  k) and (1  k)2, respectively. On the third 
mapping 8 possibilities exist, and so on for 
additional mappings. It can be seen that the 
probability distribution of d is a Binomial 
distribution [] given by,  

𝜑(𝑋 = 𝑥, 𝑝, 𝑘) = (𝑝
𝑥
)𝑘𝑥(1 − 𝑘)𝑝−𝑥  

x = 0, 1… p    (12) 
where X is a random variable denoting the number 
of times d occurs in p mappings and  is the 
probability mass function of d occurring x times in p 
mappings. Let S denote the s events only set, I the d 
events only set, and M the mixed events set, defined 
as follows: 

S = {s, ss, sss, ssss, …}    (13) 

I = {d, dd, ddd, dddd, …}  (14) 

M = {sd, ssd, dss, dds,  …}  (15) 

The three sets: S, I and M, partition the sample 
space. The probability of occurrence of S in p 
mappings, Pr(S,p,k), is then, 

Pr(S,p,k) = φ(X=0,p,k) = (1 – k)p 

 p > 0      (16)  

Since D = I  M = S , then the probability of 
occurrence of D in p mappings, denoted by 
Pr(D,p,k), is then, 

Pr(D,p,k) = φ(0 ≤ X < p, p, k) = 1 – φ(X = p, p, k) 
  (17)  

Hence, 

Pr(D,p,k) = 1 – (1 – k) p   

p = 1, 2, …  and  0  k  1       (18) 

But by its definition we see that, 

(1 – k) = 0(u,v) = ((z =(u  v)) = 0)
  

 (19) 

Furthermore, Pr(D,p,k) by definition is equivalent to  
PrQDD(p, κ0). Then (18) produces (7), 

PrQDD(p, κ0) = 1 – (κ0)p      
p = 1, 2, … 

 
and  0  κ0  1

 
  (7) 

 

A.2 Proof of PrIQDD Equation 
Since we are interested in the probability of 
occurrence of dissimilar vectors, then from (12), 


















1

1

)1(

),,0(φ),Pr(
p

x

xpx kk
x

p

kppXpk

  (20) 

represents the probability of occurrence of mixed 
events. This can be rewritten as, 

 ),,(φ)),,0(φ1),Pr( kppXkpXpk 

   (21) 
which simplifies to,  

 pp kkpk  )1(1),Pr(   (22) 

But,  
0 = ( + 1) / 2    (23) 

Hence using this result and (19), and substituting in 
(22) produces (10) , 

PrIQDD(p,) = 1 – (½)p  ((1+)p + (1– )p)      (10) 
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