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Abstract: Covid-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Many mea-
sures have been made by World Health Organization (WHO), but these may be threatened by unconcerned infec-
tious individuals (some infectious individuals who do not take the disease serious, by ignoring non-pharmaceutical
intervention). A system of nonlinear ordinary differential equations that absorbs a class of unconcerned infectious
individuals, is developed. An invasion threshold parameter, Rc, is derived using the next generation matrix ap-
proach. This is used to establish the global stability of COVID-19-free equilibrium points. The global asymptotic
stability of COVID-19 persistence equilibrium solution is studied through the use of suitable LaSalle’s Invariance
Principle with a Lyapunov function of Goh-Volterra type. The intervention of themodel key parameters is assessed
through sensitivity analysis. Our results indicate that increase in the rate of hospitalization of the asymptomatic
infectious and unconcerned infectious individuals after a compulsory national testing, could bring Rc below one.
Our results suggest that there should be compulsory national testing and continuous enhancement, the awareness
through effective risk communication concerning COVID-19 to the general public. Numerical simulations are
carried out to validate the analytical results.
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1 Introduction
The novel coronavirus, COVID-19, started in main-
land China, with a geographical emphasis at Wuhan,
the capital city of Hubei province [1] and has widely
spread globally. Previous outbreaks to COVID-
19 were the Severe Acute Respiratory Syndrome
(SARS-CoV), reported in Asia in February 2003, re-
sulting in 8422 cases with a case fatality rate of
11% [2]. Later, in 2012, the Middle East Respira-
tory Syndrome (MERS-CoV) was identified in Saudi
Arabia and infected 2506 people, killing 862 between
years 2012 and 2020 [2].

The established clinical symptoms of COVID-
19 include fever, cough, shortness of breath, sore
throat, loss of taste and smell [3]. Currently, several
countries have developed the vaccine for COVID-19
which does not guarantee total safety from the disease

being transmitted. Therefore, individual behaviour,
i.e. social distancing, early self-isolation, as well as
preventive measures, such as hand washing, covering
when coughing are critical to controlling the spread of
the disease [4]. Additionally to these measures, sev-
eral restrictions and quarantine of the exposed indi-
viduals, are necessary.

Many authors have developed different models
to study the dynamics of COVID-19, see for in-
stance, [5], [6], [7], [8], [9], [10], [11], [12], [15],
[16]. Also, Bian et al. [5] developed a mathemat-
ical model for COVID-19 by focusing on the prac-
tical implications of public health interventions and
measures. Their model also incorporates an asymp-
tomatic group. They carried out a sensitivity analy-
sis of the model which shows that interventions, such
as intensive contact tracing, followed by quarantine
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and isolation, can effectively reduce the basic repro-
duction number and transmission risk, with the ef-
fect of travel restrictions adopted by Wuhan on 2019-
nCoV infection in Beijing being almost equivalent to
increasing quarantine by a 1000 baseline value.

Tridip et al. [10] formulated a model on the
COVID-19 transmission that incorporates lock-down
effect and variability in transmission between symp-
tomatic and asymptomatic populations with the for-
mer being a fast spreader of the disease. Three states,
namely, Maharashtra, Delhi and Telanguana, were
used as case studies, to assess the effect of the cur-
rent 21 days lock-down in terms of reduction cases
and deaths. Their results suggest that 21 days lock-
down will have no impact in Maharashtra and overall
India. Their results further suggest that the presence
of a higher percentage of COVID-19 super spreader
will further deteriorate the situation in Maharashtra.

Nkamba et al [11] predicted the COVID-19 epi-
demic in Cameroon using early reported case data.
They predicted the impact of containment measures
and the impact of undetected people on the epidemic
trend and characteristics of COVID-19. They com-
puted the basic reproductionwhich is used to establish
the global stability of disease-free equilibrium points.
Also, they demonstrated the global stability of the en-
demic equilibrium solution using the Lyapunov func-
tion. They carried out global sensitivity analysis us-
ing Latin Hypercube Sampling (LHS), to know the
parameters that strongly influence the dynamics of
COVID-19 infection.

Enahoro et al. [17] made use of a mathemati-
cal model to assess the impact of an imperfect anti-
COVID-19 vaccine on the control of COVID-19 in
the United State. Theoretical analysis of the model
was done, as well as the model fitting and parameter
estimation. They performed numerical simulations of
the model, using baseline parameter values obtained
from fitting the model with COVID-19 mortality data
for the U.S. Their result indicated that at least, 82% of
the susceptible U.S population need to be vaccinated
with an assumed protective efficacy of 80% for an
anti-COVID-19 vaccine. They concluded that the im-
perfect vaccine will be greatly enhanced if the vacci-
nation program is combined with other interventions,
like social distancing, wearing face masks, etc.

In the current complex and geopolitical situation
adversely affected by the COVID-19 pandemic, the
importance of human resource management is grow-
ing (see [18]), especially in the health sector and in
the security forces. In connection with the manage-
ment of local crisis situations, psychological support
for doctors, nurses, paramedics and all medical staff
is gaining in importance (see [19]).

At the same time, the demands on the training of
security specialists dealing with crisis management

are growing, due to the needs and rapidly changing re-
quirements for the necessary measures in society due
to the current epidemiological situation (see [20]).

In a society affected by the COVID-19 pandemic,
it is necessary to take a number of preventive mea-
sures aimed at increasing the level of preparedness
of the intervening teams and components of the in-
tegrated rescue system (see [21]). In particular, ade-
quate mechanisms and procedures need to be put in
place as a matter of urgency and flexibility in the ac-
tivities provided by the emergency medical service,
but also by first-line doctors. These procedures – es-
pecially in testing, anti-COVID-19 vaccination, but
also in tracing – need to minimize the negative effects
of a pandemic on human health.

The individual waves of the COVID-19 pandemic
can be modeled, for example, using the threat life cy-
cle and its various phases (see [22]). There are a num-
ber of epidemic models. Some relevant studies can be
found in [13] and [14].

Olaniyi et al. [15] formulated an epidemic model
by considering the transmission routes from symp-
tomatic, asymptomatic, and hospitalized individuals.
Their model was fitted to the corresponding cumu-
lative number of hospitalized individuals reported
by the Nigeria Centre for Disease Control (NCDC),
using the Least Squares Method. They computed
the basic reproduction number and constructed the
Lyapunov function to investigate the stability of the
model around a disease-free equilibrium point. They
further made use of Pontryagin’s Maximum Princi-
ple to analyze the optimal control of the model. They
carried out numerical simulations to justify their the-
oretical work and their result revealed that the basic
reproduction number can be brought to a value less
than one in Nigeria if the current effective transmis-
sion rate of the disease can be reduced by 50%.

Enahoro et al. [12] developed and analyzed a
mathematical model of COVID-19 in Nigeria. They
carried out a rigorous analysis of their model, by
establishing locally-asymptotically stability equilib-
ria. They parameterized the model using COVID-19
data published by Nigeria Centre for Disease Con-
trol (NCDC). This was used to assess the community-
wide impact of various control and mitigation strate-
gies in the entire Nigerian nation, as well as in
two states (Kano and Lagos) within the Nigerian
federation and the Federal Capital Territory (FCT),
Abuja. Their result predicted that Nigeria would have
recorded a devastatingly high COVID-19 mortality
by April 2021 (in hundreds of thousands), in places
where social-distancing, lockdown, and other com-
munity transmission reduction measures are not im-
plemented.

Adeniyi et al. [16] proposed and analyzed a non-
linear mathematical model to investigate the effect of
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healthy sanitation and awareness on the transmission
dynamics of coronavirus disease (COVID-19) preva-
lence in Nigeria. They carried out rigorous stability
of the model equilibrium points to ascertain the ba-
sic reproduction number. They performed numerical
simulations using real-life data to support the analytic
results. Their results revealed that propagation of in-
formation on good hygiene over time induces behav-
ioral change in individuals leading to a significant re-
duction in the number of quarantined and infectious
individuals.

None of the above-mentioned models take into
account the unconcerned infectious individuals com-
partment. In our effort to show novelty, we present
a mathematical model of COVID-19 which inves-
tigates the contribution of unconcerned COVID-
19 cases in the occurrence of the second wave of
COVID-19 in Nigeria.

Moreover, hospitalization is considered to be ef-
fective in reducing the transmission, mortality, and
morbidity of COVID-19 and this is also incorpo-
rated. Thus, we formulate a mathematical model that
captures this important compartment of unconcerned
COVID-19 cases in Nigeria.

We compute the basic reproduction number, Rc,
and investigate the existence and stability of COVID-
19-free and COVID-19 persistence equilibria. We
prove that the disease-free equilibrium is globally
asymptotically stable if the basic reproduction num-
ber Rc is less than one.

The global asymptotic stability of endemic equi-
librium solution is studied through the use of suit-
able LaSalle’s Invariance Principle with a Lyapunov
function of Goh-Volterra type [23]. Furthermore,
we investigate the sensitivity indices of the basic re-
production number to the parameters of the formu-
lated model, intending to know the contributory ef-
fects of the parameters in the transmission and spread
of COVID-19 in the population. An interesting ap-
proach to problems connected with COVID-19 pan-
demic can be found also e.g. in [24] – [26].

Based on the above, we in this research focuses
on the following: (i) To investigate the role of un-
concerned infectious individuals on transmission dy-
namics of COVID-19; (ii) To carry out the stability
analysis of COVID-19 free and COVID-19 endemic
equilibrium solution, globally; (iii) To perform so-
phisticated sensitivity analysis of the basic reproduc-
tion number of COVID-19; while the research signif-
icance is as follows: (i) The model will help the pub-
lic health authorities, government and policy makers
to understand to what rate is the class of unconcerned
infectious individuals influencing COVID-19 trans-
mission and also intervene by organizing educational
campaign program, on the risk of not adhering to non-
pharmaceutical measures; (ii) The theoretical results

will provide important insights into the disease be-
haviour and control. This will give insights whether
the disease dies out of the population or persists in
the population in the advancement of time; (iii) This
study will give the policy makers, information on the
most influential parameters that call for immediate in-
tervention strategies, in order to halt the spread of the
disease in the population.

This paper is organized as follows; we present a
covid-19 unconcerned transmission model formula-
tion and analysis of the reproduction number in Sec-
tion 2. In Section 3, global stability analyses were
discussed. In Section 4, the sensitivity analysis is pre-
sented while in section 5, numerical simulations were
discussed. In Section 6, we discuss the main conclu-
sion and recommendations.

2 Seven-Compartmental COVID-19
Model

The total population size, NH , is divided into seven
stages; the susceptible population SH , the exposed
population EH , the asymptomatic infectious popula-
tion AH , the unconcerned infectious population IU ,
the concerned infectious population IC , the hospital-
ized infectious population HI and the recovered in-
fectious population RH .

The population SH starts with a recruitment rate ε
(new births, immigration and emigration) and natural
death of susceptible individuals with a rate µh. Inter-
action between a susceptible and asymptomatic indi-
viduals or unconcerned infectious individuals or con-
cerned infectious individuals are reduced from sus-
ceptible class with rates α, σ and ρ.

It is assumed that COVID-19 outbreaks have
lasted for at least ten months and during this period of
time, there might be new births or inflow of suscep-
tible individuals from other places as well as natural
deaths, which allow a demographic process to take
place. The modification parameter 0 < ψ < 1 ac-
counts for the assumed reduction in COVID-19 trans-
mission of concerned infectious individuals.

A fraction θ of the exposed individuals is asymp-
tomatic. A fraction ω (0 ≤ ω ≤ 1) of the remaining
fraction (1−θ) of the exposed individuals are uncon-
cerned infectious individuals, while a fraction (1−ω)
of the remaining fraction, 1− θ, of the exposed indi-
viduals are concerned infectious individuals.

It is assumed that asymptomatic infected individ-
uals show no symptoms while the unconcerned and
concerned infectious individuals showmild to moder-
ate symptoms of COVID-19 and hence they can still
move around. It is assumed that the unconcerned in-
fectious individuals believe they are showing symp-
toms of just common cold and catarrh thereby not tak-
ing COVID-19 non-pharmaceutical intervention seri-
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ous.

After screening, the asymptomatic infected indi-
viduals, the unconcerned and the concerned infectious
individuals are hospitalized at rates κ1, κ2 and κ3.
COVID-19 caused-death occurs in unconcerned in-
fectious, concerned infectious and hospitalized indi-
viduals at rates δ1, δ2 and δ3. There is also recovery
of AH , IU , IC and HI at the rates τ1, τ2, τ3 and τ4.

The summary of these parameters together with
their values is stated in the following Table 1:

Table 1: Summary of the parameters

Parameter Meaning Value Reference
β Incubation period

for COVID-19 0.142 [27]
α Contact rate between

susceptible and
asymptomatic individual 0.001 [11]

ρ Contact rate between
susceptible and
concerned infectious 0.001 [11]

σ Contact rate between
susceptible and
unconcerned infectious 0.001 [11]

θ Fraction of the exposed
individuals who
are asymptomatic 0.8262 [11]

ω Fraction of the exposed
individuals who are
unconcerned infectious 0.8262 (0,1) Assumed

τ1, τ2 Recovery rates
τ3, τ4

1
15

[28]
ε Recruitment rate 3000 Assumed
µh Natural death rate

of individuals 0.06 [11]
δ1, δ2 COVID-19-caused
δ3 death rates (0.02-0.1) [28]
κ1, κ2 Hospitalization rates
κ3 (0-1) [10]
ψ Reduction factor in

COVID-19 transmission
for concerned infectious (0-1) [10]

Arising from the above description, the mathemat-

ical model is arrived at:

dSH
dt

= ε− αSHAH − σSHIU

− ρψSHIC − µhSH , (1)

dEH
dt

= αSHAH + σSHIU

+ ρψSHIC − (β + µh)EH , (2)

dAH
dt

= θβEH − (κ1 + τ1 + µh)AH , (3)

dIU
dt

= ω(1− θ)βEH

− (κ2 + δ1 + τ2 + µh)IU , (4)

dIC
dt

= (1− ω)(1− θ)βEH

− (κ3 + δ2 + τ3 + µh)IC , (5)

dHI

dt
= κ1AH + κ2IU + κ3IC

− (δ3 + τ4 + µh)HI , (6)

dRH
dt

= τ1AH + τ2IU + τ3IC

+ τ4HI − µhRH . (7)

with initial conditions

SH(0) = Soh > 0, EH(0) = EoH ,

AH(0) = AoH(0) > 0,

IU (0) = IoU (0) > 0, IC(0) = IoC(0) > 0,

HI(0) = Ho
I (0), RH(0) = RoH(0) > 0,

where the model parameters are non negative. For bi-
ological reasons, the model is analysed in the feasible
region

D =

(
(SH , EH , AH , IU , IC ,HI , RH) ∈ R7

+ :

0 ≤ SH ≤ ε

µh
, NH ≤ ε

µh

)
that can be shown to be positively invariant with re-
spect to the system (1) – (7). Thus, the model is well
posed mathematically and epidemiologically inD.

The first five equations, i.e. (1) – (5), are indepen-
dent of the compartments HI and RH , i.e. (6) – (7).
Therefore, after decoupling the equations for HI and
RH from model (1) – (7), analysis is concentrated on
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the remaining equations of (1) – (7) which becomes

dSH
dt

= ε− αSHAH − σSHIU

− ρψSHIC − µhSH , (8)

dEH
dt

= αSHAH + σSHIU

+ ρψSHIC − (β + µh)EH , (9)

dAH
dt

= θβEH − (κ1 + τ1 + µh)AH , (10)

dIU
dt

= ω(1− θ)βEH

− (κ2 + δ1 + τ2 + µh)IU , (11)

dIC
dt

= (1− ω)(1− θ)βEH

− (κ3 + δ2 + τ3 + µh)IC . (12)

2.1 Basic Reproduction Number
To establish the global stability of disease-free equi-
librium solution, it is required that the basic repro-
duction number Rc, is computed. This is done by ex-
pressing (1) – (7) as the difference between the rate
of new infection in each infected compartment F and
the rate of transfer between each infected compart-
ment G. Hence, we have

dEH
dt

dAH
dt
dIU
dt
dIC
dt


= F −G

=

 αSHAH + σSHIU + ρψSHIC
0
0
0


−

 m1EH
−θβEH +m2AH

−ω(1− θ)βEH +m3IU
−(1− ω)(1− θ)βEH +m4IC

, (13)

where

m1 = β + µh,

m2 = κ1 + τ1 + µh,

m3 = κ2 + δ1 + τ2 + µh,

m4 = κ3 + δ2 + τ3 + µh.

Rc is given as

Rc =

√√√√√√√
S0βαθ

m1m2
+
S0βσω(1− θ)

m1m3

+
S0βρψ(1− ω)(1− θ)

m1m4

, (14)

so

R2
c =

S0βαθ

m1m2
+
S0βσω(1− θ)

m1m3

+
S0βρψ(1− ω)(1− θ)

m1m4
(15)

and
R2
c = RAH

+RIU +RIC . (16)

Disease-free equilibrium of the model is given as

E0 =

(
ε

µh
, 0, 0, 0, 0

)
.

It can also be written as

E0 = (S0, 0, 0, 0, 0).

RAH
is the average number of secondary infec-

tions generated by an asymptomatic individual, RIU
is the average number of secondary infections gener-
ated by an unconcerned infectious individual andRIC
is the average number of secondary infections gener-
ated by a concerned infectious individual. When ω
is near one, Rc is largely affected by asymptomatic
infectious and unconcerned infectious individuals.

3 Global Stability Analysis
We shall establish a global asymptotic stability of the
disease-free equilibrium, that is solution trajectories
of sub-population, irrespective of where they start,
converge to the disease-free equilibrium solution for
Rc < 1. This is stated and proved below.

3.1 Global Stability of COVID-19
Extinction Equilibrium Solution

Theorem 3.1: The disease-free equilibrium solution
is globally asymptotically stable ifRc < 1 and unsta-
ble if Rc > 1.
Proof: Consider the following linear Lyapunov func-
tion

L = EH +
αS0
m2

AH +
σS0
m3

IU +
ρψS0
m4

IC . (17)
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Since

dL
dt

= αSHAH + σSHIU + ρψSHIC

−m1EH +
αS0
m2

(θβEH −m2AH)

+
σS0
m3

(ω(1− θ)βEH −m3IU )

+
ρψS0
m4

((1− ω)(1− θ)βEH −m4IC), (18)

then

dL
dt

= SH(αAH + σIU + ρψIC)

− S0(αAH + σIU + ρψIC)

+

(
S0βαθ

m1m2
+
S0βσω(1− θ)

m1m3

+
S0βρψ(1− ω)(1− θ)

m1m4
− 1

)
m1EH , (19)

so

dL
dt

= (SH − S0)(αAH + σIU + ρψIC)

+ (R2
c − 1)m1EH . (20)

Because SH ≤ S0, we have

dL
dt

= m1EH(R
2
c − 1) ≤ 0 (21)

whenever Rc ≤ 1.
Therefore

dL
dt

≤ 0 (22)

for Rc ≤ 1 and
dL
dt

= 0 (23)

if and only if EH = 0, AH = 0, IU = 0, IC = 0 or
SH = S0 and Rc = 1. Consequently, largest invari-
ant set in{

(SH , EH , AH , IU , IC ,HI , RH) ∈ D ;
dL
dt

= 0

}
is the singleton E0 and by LaSalle’s Invariance Prin-
ciple [23] E0 is globally asymptotically stable. The
epidemiological implication of the above result is that
COVID-19 can be eradicated from the population
when Rc ≤ 1 irrespective of the initial sizes of the
sub-population of the model.

3.2 Global Stability of COVID-19
Persistence Equilibrium Point

The endemic equilibrium solution
E1 = (S∗

H , E
∗
H , A

∗
H , I

∗
U , I

∗
C)

satisfies the following equations:

ε−αS∗
HA

∗
H − σS∗

HI
∗
U

− ρψS∗
HI

∗
C − µhS

∗
H = 0, (24)

αS∗
HA

∗
H + σS∗

HI
∗
U + ρψS∗

HI
∗
C −m1E

∗
H = 0, (25)

θβE∗
H −m2A

∗
H = 0, (26)

ω(1− θ)βE∗
H −m3I

∗
U = 0, (27)

(1− ω)(1− θ)βE∗
H −m4I

∗
C = 0. (28)

Making S∗
H , A

∗
H , A∗

U and I∗C the subject of for-
mula in (24) – (28) gives

S∗
H =

ε

αA∗
H + σI∗U + ρψI∗C + µh

, (29)

A∗
H =

θβE∗
H

m2
, (30)

I∗U =
ω(1− θ)βE∗

H

m3
, (31)

I∗C =
(1− ω)(1− θ)βE∗

H

m4
. (32)

Adding (24) and (25), we get

ε− µhS
∗
H −m1E

∗
H = 0. (33)

Substituting (29) – (32) in (33) gives the following

−
m1µhR

2
c(E

∗
H)

2

ε
+ µh(R

2
c − 1)E∗

H = 0. (34)

From (34), we can obtain E∗
H to be

E∗
H =

ε

m1

(
1− 1

R2
c

)
. (35)

Substituting E∗
H in (30) – (33) gives

S∗
H =

ε

µhR2
c

, (36)

A∗
H =

θβε

m1m2

(
1− 1

R2
c

)
, (37)

I∗U =
ω(1− θ)βε

m1m3

(
1− 1

R2
c

)
, (38)

I∗C =
(1− ω)(1− θ)βε

m1m4

(
1− 1

R2
c

)
. (39)
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Thus, there is an existence of endemic equilibrium
solution whenever Rc > 1.

Furthermore, we establish the global asymptotic
stability of the endemic equilibrium solution by prov-
ing that solution trajectories converge to the endemic
equilibrium point forRc > 1. We shall carry out this,
by constructing a suitable Lyapunov function of Goh-
Volterra type, see [29]. The result below establishes
the global stability stability of the endemic equilib-
rium solution E1.

Theorem 3.2: The unique endemic equilibrium E1,
is globally asymptotically stable whenever Rc > 1.
Proof: Given the following equations which are sat-
isfied by the endemic equilibrium point E1:

ε = (αA∗
H + σI∗U + ρψI∗C)S

∗
H + µhS

∗
H , (40)

(αA∗
H + σI∗U + ρψI∗C)S

∗
H = m1E

∗
H , (41)

θβE∗
H = m2A

∗
H , (42)

(1− ω)(1− θ)βE∗
H = m4I

∗
C . (43)

Consider the following Goh-Volterra Lyapunov
function

V =

(
SH − S∗

H − S∗
H ln

S∗
H

SH

)
+

(
EH − E∗

H − E∗
H ln

E∗
H

EH

)
+ a

(
AH −A∗

H −A∗
H ln AH

A∗
H

)

+ b

(
IU − I∗U − I∗U ln

I∗U
IU

)
+ c

(
IC − I∗C − I∗C ln IC

I∗C

)
, (44)

where

a =
αS∗

H

m2
, b =

σS∗
H

m3
and c =

ρψS∗
H

m4

Differentiating V with respect to time gives

dV
dt

=

(
1−

S∗
H

SH

)
S′
H +

(
1−

E∗
H

EH

)
E′
H

+ a

(
1−

A∗
H

AH

)
A′
H + b

(
1−

I∗U
IU

)
I ′U

+ c

(
1−

I∗C
IC

)
I ′C , (45)

so

dV
dt

=

(
1−

S∗
H

SH

)(
(αA∗

H + σI∗U + ρψI∗C)S
∗
H

+ µhS
∗
H − (αAH + σIU + ρψIC)SH − µhSH

)
+

(
1−

E∗
H

EH

)(
(αAH + σIU + ρψIC)SH

−m1EH
)
+ a

(
1−

A∗
H

AH

)
(θβEH −m2AU )

+ b

(
1−

I∗U
IU

)(
ω(1− θ)βEH −m3IU

)
+ c

(
1−

I∗C
IC

)(
(1− ω)(1− θ)βEH −m4IC

)
.

(46)

If we simplify further, we have

dV
dt

= (αA∗
H + σI∗U + ρψI∗C)S

∗
H +m1E

∗
H

+ am2A
∗
H + bm3I

∗
U + cm4I

∗
C

− (αA∗
H + σI∗U + ρψI∗C)

(S∗
H)

2

SH

− (αAH + σIUρψIC)
SHE

∗
H

EH

−
aθβEHA

∗
H

AH
−
bω(1− θ)βEHI

∗
U

IU

−
c(1− ω)(1− θ)βEHI

∗
C

IC

+ 2µhS
∗
H −

µh(S
∗
H)

2

SH
− µhSH

+ (αAH + σIU + ρψIC)S
∗
H

−m1EH + aθβEH − am2AH

+ bω(1− θ)βEH − bm3IU − cm4IC

+ c(1− ω)(1− θ)βEH . (47)

Substituting a and b by their values and exploiting
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(41) – (43) gives

aθβ =
αS∗

HA
∗
H

E∗
H

(48)

bω(1− θ)β =
σS∗

HI
∗
U

E∗
H

(49)

c(1− ω)(1− θ)β =
ρψS∗

HI
∗
C

E∗
H

. (50)

Using (40) – (43) and (48) – (50), we have

dV
dt

= µhS
∗
H

(
2−

S∗
H

SH
− SH
S∗
H

)
+ 3(αA∗

H + σI∗U + ρψI∗C)S
∗
H

− (αA∗
H + σI∗U + ρψI∗C)

(S∗
H)

2

SH

− (αAH + σIU + ρψIC)
SHE

∗
H

EH

−
αS∗

HEH(A
∗
H)

2

E∗
HAH

−
σS∗

HEH(I
∗
U )

2

E∗
HIU

−
ρψS∗

HEH(I
∗
C)

2

E∗
HIC

, (51)

i.e.
dV
dt

= µhS
∗
H

(
2−

S∗
H

SH
− SH
S∗
H

)

+ αS∗
HA

∗
H

(
3−

S∗
H

SH
−
SHE

∗
HAH

S∗
HEHA

∗
H

−
σEHA

∗
H

E∗
HAH

)

+ σS∗
HI

∗
U

(
3−

S∗
H

SH
−
SHE

∗
HIU

S∗
HEHI

∗
U

−
EHI

∗
U

E∗
HIU

)

+

(
3−

S∗
H

SH
−
SHE

∗
HIC

S∗
HEHI

∗
C

−
EHI

∗
C

E∗
HIC

)
. (52)

By arithmetic-geometric means inequality
a1 + a2 + · · ·+ an

n
≥ n

√
a1a2 · · · an, (53)

where a1a2 · · · an = 1 and a1, a2, ..., an > 0, i.e.
n− (a1+a2+ · · ·+an) ≤ 0, it follows that

dV
dt

≤ 0

with V = 0 if and only if SH = S∗
H , EH = E∗

H ,
AH = A∗

H , IU = I∗U , IC = I∗C .
Hence, the largest compact invariant subset of the

set, where dV
dt

= 0, is

(SH , EH , AH , IU , IC) = (S∗
H , E

∗
H , A

∗
H , I

∗
U , I

∗
C).

Therefore, by stability theorem of Lyapunov and
LaSalle’s Invariance Principle, it follows that every
solution in D approaches E1 for Rc > 1 as t→ ∞.

The epidemiological implication of the above re-
sult is that COVID-19 will institute itself in the pop-
ulation for Rc > 1.

4 Sensitivity Analysis
We perform a sensitivity analysis of COVID-19
model to determine the parameters which has greater
impact in the transmission dynamics and spread of the
disease. Sensitivity analysis is helpful for experimen-
tal design, data assimilation and reduction of complex
nonlinear models. A very high sensitivity indicates
that more care should be taken in the estimation of
the associated parameters. Following the approach
by [30], we define sensitivity index of a variable to
a parameter as the ratio of relative change in the vari-
able to the relative change in the parameter.

When the variable is a differentiable function of
any parameter, the sensitivity index may be alterna-
tively defined using partial derivatives.
Definition 4.1: The normalized forward sensitivity
index of u, that depends differentiably on a parameter
p, is defined as

Nu
p =

∂u

∂p
× p

u
(54)

for u ̸= 0.
Consequently, we derive analytical expression for

the sensitivity index of Rc as

NRc
pi =

∂Rc
∂pi

× pi
Rc
, (55)

where pi, i ∈ N denotes each parameter involved
in Rc.
Rc is defined as

Rc =

√√√√√√√
S0βαθ

m1m2
+
S0βσω(1− θ)

m1m3

+
S0βρψ(1− ω)(1− θ)

m1m4

, (56)

where
m1 = β + µh,

m2 = κ1 + τ1 + µh,

m3 = κ2 + δ1 + τ2 + µh,

m4 = κ3 + δ2 + τ3 + µh.

Table 2 summarizes the sensitivity indices on Rc
with respect to parameters, i.e

NRc
ε , NRc

α , NRc

β , NRc

θ , NRc
σ , NRc

ω , NRc
ρ , NRc

ψ , NRc
µh
,

NRc
κ1
, NRc

κ2
, NRc

τ1 , N
Rc
τ2 , N

Rc

δ1
, NRc

κ3
, NRc

τ3 , N
Rc

δ2
.
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Table 2: Numerical values of sensitivity indices ofRc
with respect to parameter involved

Parameter symbol Sensitivity Index
ε +0.5000000
α +0.4299384
β +0.1478873
θ +0.0968840
σ +0.0700478
ω +0.0699777
ρ +0.0000137
ψ +0.0000137
µh −0.6952639
κ1 −0.3430359
κ2 −0.0517594
τ1 −0.0457381
τ2 −0.0069012
δ1 −0.0051759
κ3 −0.0000101
τ3 −0.0000013
δ2 −0.0000010

4.1 Interpretation of sensitivity indices
obtained in Table 2

It can be deduced from the results for sensitiv-
ity analysis that Rc is most sensitive to the pa-
rameter ε, followed by α and β in a positive
sense. Rc is also most sensitive to the parame-
ter µh, followed by κ1 and κ2 (hospitalization rate
of the unconcerned and concerned infectious indi-
viduals) in a negative sense. Other parameters that
strongly influence the dynamics of COVID-19 infec-
tion are θ, σ, ω, ρ, ψ, τ1, τ2, δ1, κ3, τ3, δ2. Parameters
θ, σ, ω, ρ and ψ have a positive influence on the ba-
sic reproduction number Rc, that is an increase in
these parameters implies an increase in Rc. Parame-
ters τ1, τ2, δ1, κ3, τ3 and δ2 have a negative influence
on the basic reproduction number, that is an increase
in these parameters implies a decrease in Rc. Con-
sequently, the sensitivity indices for the model are
graphically shown below. As a result of the sensi-
tivity analysis, the following suggestions are made:
(1) Proper quarantining of the incoming travellers
could reduce the value of ε.
(2) An increase in a compulsory massive testing of the
exposed individuals may help in minimizing the size
of the asymptomatic, unconcerned and concerned in-
dividuals by reducing the value of β, θ, ω.
(3) Hospitalizing the asymptomatic infectious and
unconcerned infectious individuals after compulsory
massive testing, is another good control measure
against COVID-19 infection because it helps to re-

duce the value of transmission rate α and σ.
(4) Educating the populace of the danger of noncom-
pliance to COVID-19 preventive measures could re-
duce the size of the unconcerned infectious individu-
als.

5 Numerical Simulations
Here, we carried out a numerical simulation of the
asymptomatic behaviour of COVID-19 model (1) –
(7) using MATLAB software package. The simula-
tion of the dynamic behaviour of the susceptible hu-
man population is shown in Fig.1(a) while the simula-
tion of the dynamic behaviour of the exposed human
population is shown in Fig.1(b). Simulation show-
ing the dynamic behaviour of the asymptomatic in-
fected and unconcerned infected human population
were displayed in Fig.2(a) and 2(b), respectively. It
was observed that the simulation showing the dy-
namic behaviour of the concerned infected human,
hospitalised infected and recovered human popula-
tion were also displayed in Fig.3(a), 3(b), and 3(c) for
different initial conditions, so that Rc < 1. We no-
ticed that in Fig.1 – 9 that there were variations in the
parameter values for the contact rates between sus-
ceptible and unconcerned infectious σ. In Fig.1 – 3
the parameter values for σ = 0.001 which produces
the result obtained in the simulations. It was observed
from Fig.1(a) that the susceptible human population
continue to increase until they reached a state where
they maintained a steady state after a certain period of
time while Fig.1(b) shows that the number of exposed
human depletes after a short while and all the exposed
goes into extinction. We also observed the same ex-
tinction for the asymptomatic and unconcerned in-
fected human population in Fig.2(a) and 2(b), respec-
tively. The populations of the concerned infected,
hospitalized and recovered human population also de-
creases over time in Fig.3(a), 3(b), and 3(c), respec-
tively, given that the value of the contact rate between
susceptible and unconcerned infected is assumed to
be very low. Thus, the solution trajectories con-
verge to the disease-free equilibrium, showing that the
disease-free equilibrium solution is globally asymp-
totically stable. This means that population that starts
with COVID-19 infection shrinks and never turns to
epidemic for Rc < 1. When the contact rate between
the susceptible and unconcerned infected σ increases,
in Fig.4(a) and 4(b) it was observed that the suscep-
tible population increases for a short period of time
and then depleted into a steady state over a long pe-
riod of time, while the exposed human population in-
creases and then dropped slightly to maintain a steady
state over a long period of time. It was observed that
the asymptomatic infectious population dropped and
then increases to maintain a steady state over a long
period of time as shown in Fig.5(a), and the popu-
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lation of the unconcerned infected also dropped and
then increases slightly to maintain a steady state in
Fig.5(b). In Fig.6(a) we observed that the population
of the unconcerned infected human dropped and then
increases to maintain a steady state over a long pe-
riod of time. The population of the hospitalized in-
fected increases and then dropped slightly to maintain
a steady state over a long period of time. In Fig.6(b)
it was observed that the recovered human population
increases and then maintained a steady state over a
long period of time. It can be shown that, irrespec-
tive of the initial condition, the infected population
(the exposed, the asymptomatic infectious, the uncon-
cerned and concerned infectious individuals) remains
in the population and stabilizes in time. This means
that the solution trajectories converge to the endemic
equilibrium solution. Therefore, COVID-19 infection
institutes itself in the population for Rc > 1, as es-
tablished in Theorem 3.2. When σ is assumed to be
increased much more, it was observed that the sus-
ceptible population dropped sporadically, increases
slightly and then dropped to maintain a steady state
over a long period of time in Fig.7(a). We observed in
Fig.7(b) that the exposed human population increases
over time to maintain a steady state. In Fig.8(a) we
also noticed that the asymptomatic infected popula-
tion dropped and then increases to maintain a steady
state over a long period of time. The population of the
unconcerned infected human also dropped and then
increased to maintain a steady state over a long period
of time. Fig.9(a) showed that the concerned infected
population dropped and then increases to maintain a
steady state over a long period of time. In Fig.9(b)
the population of the hospitalized infected increases
over time to maintain a steady state over a long period
of time. In Fig.9(b) we also observed that the popu-
lation of the recovered human increases to maintain
a steady state over a long period of time. it can be
shown that, irrespective of the initial condition, the
infected population (the exposed, the asymptomatic
infectious, the unconcerned and concerned infectious
individuals) remains in the population and stabilizes
in time. This means that the solution trajectories con-
verge to the endemic equilibrium solution. Therefore,
COVID-19 infection institutes itself in the population
for Rc > 1, as established in Theorem 3.2.

(a)

(b)

Figure 1: Simulation showing the dynamic behaviour
of the susceptible human and exposed human popu-
lation and is given for β1 = 0.2143, α = 0.001,
ρ = 0.001, σ = 0.001, θ = 0.8262, ω = 0.8262,
τ1 = τ2 = τ3 = τ4 = 0.0667, β = 0.142, ε = 0.3,
µh = 0.06, δ1 = δ2 = δ3 = 0.1, κ1 = κ2 = κ3 = 1,
ψ = 1.
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(a)

(b)

Figure 2: Simulation showing the dynamic behaviour
of the asymptomatic infected and unconcerned in-
fected human population and is given for β1 =
0.2143, α = 0.001, ρ = 0.001, σ = 0.001, θ =
0.8262, ω = 0.8262, τ1 = τ2 = τ3 = τ4 = 0.0667,
β = 0.142, ε = 0.3 µh = 0.06, δ1 = δ2 = δ3 = 0.1,
κ1 = κ2 = κ3 = 1, ψ = 1.

(a)

(b)

(c)

Figure 3: Simulation showing the dynamic behaviour
of the concerned infected human, hospitalised human
population and recovered human population and is
given for β1 = 0.2143, α = 0.001, ρ = 0.001,
σ = 0.001, θ = 0.8262, ω = 0.8262, τ1 = τ2 =
τ3 = τ4 = 0.0667, β = 0.142, ε = 0.3, µh = 0.06,
δ1 = δ2 = δ3 = 0.1, κ1 = κ2 = κ3 = 1, ψ = 1.
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(a)

(b)

Figure 4: Simulation showing the dynamic behaviour
of the susceptible human and exposed human popu-
lation and is given for β1 = 0.2143, α = 0.001,
ρ = 0.001, σ = 10, θ = 0.8262, ω = 0.8262,
τ1 = τ2 = τ3 = τ4 = 0.0667, β = 0.142, ε = 0.3,
µh = 0.06, δ1 = δ2 = δ3 = 0.1, κ1 = κ2 = κ3 = 1,
ψ = 1.

(a)

(b)

Figure 5: Simulation showing the dynamic behaviour
of the asymptomatic infected and unconcerned in-
fected human population and is given for β1 =
0.2143, α = 0.001, ρ = 0.001, σ = 10, θ = 0.8262,
ω = 0.8262, τ1 = τ2 = τ3 = τ4 = 0.0667,
β = 0.142, ε = 0.3, µh = 0.06, δ1 = δ2 = δ3 = 0.1,
κ1 = κ2 = κ3 = 1, ψ = 1.
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(a)

(b)

(c)

Figure 6: Simulation showing the dynamic behaviour
of the concerned infected human, hospitalised human
population and recovered human population and is
given for β1 = 0.2143, α = 0.001, ρ = 0.001,
σ = 10, θ = 0.8262, ω = 0.8262, τ1 = τ2 =
τ3 = τ4 = 0.0667, β = 0.142, ε = 0.3, µh = 0.06,
δ1 = δ2 = δ3 = 0.1, κ1 = κ2 = κ3 = 1, ψ = 1.

(a)

(b)

Figure 7: Simulation showing the dynamic behaviour
of the susceptible human and exposed human popu-
lation and is given for β1 = 0.2143, α = 0.001,
ρ = 0.001, σ = 100, θ = 0.8262, ω = 0.8262,
τ1 = τ2 = τ3 = τ4 = 0.0667, β = 0.142, ε = 0.3,
µh = 0.06, δ1 = δ2 = δ3 = 0.1, κ1 = κ2 = κ3 = 1,
ψ = 1.
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(a)

(b)

Figure 8: Simulation showing the dynamic behaviour
of the asymptomatic infected and unconcerned in-
fected human population and is given for β1 =
0.2143, α = 0.001, ρ = 0.001, σ = 100, θ = 0.8262,
ω = 0.8262, τ1 = τ2 = τ3 = τ4 = 0.0667,
β = 0.142, ε = 0.3, µh = 0.06, δ1 = δ2 = δ3 = 0.1,
κ1 = κ2 = κ3 = 1, ψ = 1.

(a)

(b)

(c)

Figure 9: Simulation showing the dynamic behaviour
of the concerned infected human, hospitalised human
population and recovered human population and is
given for β1 = 0.2143, α = 0.001, ρ = 0.001,
σ = 100, θ = 0.8262, ω = 0.8262, τ1 = τ2 =
τ3 = τ4 = 0.0667, β = 0.142, ε = 0.3, µh = 0.06,
δ1 = δ2 = δ3 = 0.1, κ1 = κ2 = κ3 = 1, ψ = 1.
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6 Discussion and Conclusion
We extended a basic COVID-19 model (susceptible,
exposed, asymptomatic infectious, infectious individ-
uals, hospitalized individuals, and recovered individ-
uals) to a model that stratifies the infectious popula-
tion to unconcerned and concerned infectious individ-
uals, in which we focus more on the unconcerned in-
fectious population. The amplitude of this group (the
unconcerned infectious individuals) is higher than the
amplitude of the concerned infectious compartment
as shown in the numerical simulations for Rc > 1.
The motivation was the need to investigate the con-
tribution of unconcerned infectious individuals on the
reported resurgence and prevalence of the disease in
Nigeria. The disease-free and endemic equilibria of
the model were obtained and their global stability
analyses were established. Precisely, we proved that
the disease-free equilibrium point is globally asymp-
totically stable if Rc < 1 and unstable if Rc > 1.
Sensitivity analysis of the basic reproduction number
Rc was also carried out and it revealed that the im-
portant parameters are the recruitment rate, contact
rate, and hospitalization rate of the asymptomatic in-
fectious and unconcerned infectious individuals. Nu-
merical simulations are carried out to show that the
infected population (the exposed, the asymptomatic
infectious, the unconcerned and the concerned infec-
tious individuals) shrinks with time when Rc < 1,
whenever the value of the contact rate between sus-
ceptible and unconcerned infectious human is as-
sumed to be very low (see Fig.1 – 3) but persists in
the population when Rc > 1 (see Fig.4 – 9), when-
ever the value of the contact rate between susceptible
and unconcerned infectious human is assumed to be
high or very high.

Looking at the situation in Nigeria, after the
asymptomatic infectious group, hospitalizing the un-
concerned infectious individuals, after compulsory
massive testing is paramount in halting the transmis-
sion of COVID-19 infection. Also, attempts should
be made to improve on the COVID-19 drug for fast
recovery of the infectious population (asymptomatic
infectious (τ1) and unconcerned infectious (τ2) indi-
viduals). Based on the results of the analyses, the fol-
lowing recommendations are listed below to halt the
spread of COVID-19 infection in the population:

(1) Enhancing continuously, awareness through ef-
fective risk communication concerning COVID-19 to
the general public, to reduce the number of uncon-
cerned infectious individuals in the population.
(2) Strict quarantining of returning travellers from af-
fected areas.
(3) Hospitalizing the infected population as a result of
compulsory national testing.
(4) Scientific research efforts should be intensified in

developing an effective COVID-19 drug for immedi-
ate treatment of any COVID-19 infected patient.
(5) Total compliance to all the COVID-19 preven-
tivemeasures should be practised by every individual.
These include making wearing a mask a normal part
of being around other people, maintaining at least a
1-metre distance between an individual and others to
reduce the risk of infection when they cough, sneeze
or speak, avoiding crowded or indoor settings, regu-
lar hand washing before and after wearing face masks
etc.

Area of Further Development
Our model can be extended by formulating its
stochastic version in order to investigate the possibil-
ity of randomness in the spread of COVID-19 in the
population.

Conflict of Interest: The authors declare no con-
flict of interest.

References:
[1] Chen, W., Peter, W. H., Frederick, G. H.,

George, F. G. A novel coronavirus of global
health concern, The Lancet, 395, 470-473,
(2020)

[2] World Health Organization, Coron-
avirus disease (COVID-19) Weekly
Epidemiological Update and Weekly
Operational Update, 2020, (2020).
https://www.who.int/emergencies/diseases/

[3] Ken, L. L., Wang, Z. M., Wu, Z. Q., Xi-
ang, Z. C., Guo, L., Xu, T., et al. Iden-
tification of a novel coronavirus caus-
ing severe pneumonia in human, a de-
scriptive study, Chinese Med. J., (2020).
https://doi.org/10.1097/CM9.00000000000007

[4] Anderson, R. M., Heesterbeek, H., Klinkenberg,
D., Hollingsworth, D. How will country-based
mitigation measures influence the course of
the COVID-19 epidemic?, The Lancet, (2020).
https://doi.org/10.1016/S0140-6736(20)305675

[5] Biao, T., Luigi Bragazzi, N., Li, Q., Tang, S.,
Xiao, Y., Wu, J. An updated estimation of the
risk of transmission of the novel coronavirus
(2019-nCov), Infectious Disease Modeling, 5,
248-255, (2020)

[6] Adam, J. K., Timothy, W. R., Charlie, D., Yang,
L., John, E., Sebastian, F., Rosalind, M. E.
Early dynamics and transmission and control
of COVID-19: a mathematical modeling study,
Center for Mathematical Modeling of Infectious
Diseases, (2020)

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2021.20.23

Faniran, T. S., Bakare, E. A., 
Potucek, R., Ayoola, E. O.

E-ISSN: 2224-2880 232 Volume 20, 2021

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
https://doi.org/10.1097/CM9.0000000000000722
https://doi.org/10.1016/S0140-6736(20)30567-5


[7] Ying, L., Gayle, A. A., Wilder-Smith, A., Rock-
löw, J. The reproduction number of COVID-19
is higher compared to SARS coronavirus, Jour-
nal of Travel Medicine, 1-4, (2020)

[8] Hernandez-Vargas, E. A., Velasco-
Hernandez, J. X. In host modeling
of COVID-19 in Humans, (2020).
https://doi.org/10.1101/2020.03.26.20044487

[9] Ivorra, B., Ferrandez, M. R., Vela-Perez
M., Ramos, A. M. Mathematical modeling
of the spread of the coronavirus disease
2019 (COVID-19) considering its particular
characteristics. The case of China, (2020).
https://doi.org/10.1016/j.cnsns.2020.105303

[10] Tridip, S., Shahid Nadim, S. K., Sourav, R.,
Joydev, C. Assessment of 21 days lockdown ef-
fect in some states and overall India: A predic-
tive mathematical study on COVID-19 outbreak,
Chaos, Solitions and Fractals, 139, (2020)

[11] Nkague Nkamba, L., Mann Manyombe, M. L.,
Manga, T. T., Mbang, J. Modeling Analysis of a
SEIQR Epidemic Model to Assess the Impact of
Undetected Cases andContainmentMeasures of
the COVID-19 Outbreak in Cameroon, London
Journal Press, 20 (2020)

[12] Enahoro, A. I., Sharomi, O. O., Ngonghala, C.
N., Gumel, A. B. Mathematical modeling and
analysis of COVID-19 in Nigeria, Mathematical
Biosciences and Engineering, 17(6), 7192-7220
(2020)

[13] Alsaeed, N. I., Alqaissi, E. Y., Siddiqui, M. A.
An Agent-based Simulation of the SIRDmodel of
COVID-19 Spread, International Journal of Bi-
ology and Biomedical Engineering, 14, 210-217
(2020)

[14] Rattanakul, C., Lenbury, Y.Model Analysis and
Simulation on Impacts of COVID-19 Pandemic
on the Economy: a Case Study of Thailand’s
Gdp and its Lock Down Measures, International
Journal of Biology and Biomedical Engineering,
14, 180-190 (2020)

[15] Olaniyi, S., Obabiyi, O. S., Okosun, K. O.,
Oladipo, A. T., Adewale, S. O. Mathematical
Modeling and Optimal Cost-Effectiveness Con-
trol of COVID-19 Transmission Dynamics, The
European Physical Journal Plus 135(11): 938,
(2020)

[16] Adeniyi, M. O., Ekun, M. I., Iluno, C., Ogun-
sanya, A. S., Akinyemi, J. A., Oke, S. I.,

Matadi, M. B.Dynamicmodel of COVID-19 dis-
ease with exploratory data analysis, Scientific
African, Elsevier, (2020)

[17] Enahoro, A. I., Ngonghala, C. N., Gumel, A. B.
Will an imperfect vaccine curtail the COVID-19
pandemic in the US?, Infectious Disease Mod-
eling, 5, 510-524, (2020)

[18] Adamoniene, R. Management Presumptions
and Possibilities of Human Resources Forma-
tion, Bekesiene S., Hoskova-Mayerova S. (eds.),
Challenges to National Defence in Contempo-
rary Geopolitical Situation (CNDCGS’ 2018),
157-166, (2018)

[19] Švarcová, I., Ptáček, B., Navrátil, J. Psychologi-
cal intervention as support in disaster prepared-
ness, In: Crisis Management and Solution of the
Crisis Situations 2015, 317-320, (2015)

[20] Tušer, I. The development of education in
emergency management, Studies in Systems,
Decision and Control 247, 169-175, (2020).
https://doi.org/10.1007/978-3-030-30659-5-10

[21] Tušer, I., Navrátil, J. Evaluation Criteria of
Preparedness for Emergency Events within
the Emergency Medical Services, Studies in
Systems, Decision and Control 208, 463-
472 (2020). https://doi.org/10.1007/978-3-030-
18593-0-33

[22] Urban, R., Hoskova-Mayerova, S. Threat life
cycle and its dynamics. Deturope 9 (2), 93-109,
(2017)

[23] Lasalle, J. P. The stability of dynamical systems,
SIAM Rev., 21(3), 418-420, (1976)

[24] Pien, H. What we know about the silent
spreaders of COVID-19. The coronavirus crisis,
WABE.org, (2020)

[25] Read, J. M., Bridgen, J. R. E., Cummings,
D. A. T., et al. Novel coronavirus 2019-nCoV:
early estimation of epidemiological parameters
and epidemic predictions, MedRxiv, (2020).
https://www.medrxiv.org/content/10.1101/2020

[26] Tang, B., Wang, X., Li, Q., Bragazzi, N. L.,
Tang, S., Xiao, Y., Wu, J. Estimation of the
transmission risk of the 2019-nCoV and its im-
plication for public health intervensions, Jour-
nal of Clinical Medicine, 9(2): 462, (2020)

[27] Lauer, S. A., Grantz, K. H., Bi, Q., Jones,
F. K., et al. The incubation period of coro-
navirus disease 2019 (COVID-19) from pub-
licly reported confirmed cases: Estimation and

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2021.20.23

Faniran, T. S., Bakare, E. A., 
Potucek, R., Ayoola, E. O.

E-ISSN: 2224-2880 233 Volume 20, 2021

https://doi.org/10.1101/2020.03.26.20044487
https://doi.org/10.1016/j.cnsns.2020.105303
https://doi.org/10.1007/978-3-030-30659-5_10
https://doi.org/10.1007/978-3-030-18593-0_33
https://doi.org/10.1007/978-3-030-18593-0_33
https://www.medrxiv.org/content/10.1101/2020.01.23.20018549v1.full.pdf


Application, Annals of Internal Medicine, 172,
577-582, (2020)

[28] Ferguson, N. M., Laydon, D., Nedjati-Gilani,
G., et al. Impact of non-pharmaceutical inter-
ventions (NPIs) to reduce COVID-19 mortality
and healthcare demand, Imperial College, Lon-
don, (2020)

[29] Guo, H., Li, M.Y. Global stability in a math-
ematical model of tuberculosis, Canadian Ap-
plied Mathematics quaterly, 14(2), (2006)

[30] Arriola, L. M., Hyman, J. M. Being sensitive
to uncertainty, Journal of Computing and Engi-
neering, (2007)

Contribution of individual authors to
the creation of a scientific article
(ghostwriting policy)
T. S. Faniran carried out the modeling and the opti-
mization.
E. A. Bakare provided the data, numerical simula-
tions and their basic processing.
R. Potucek and E. O. Ayoola were responsible for
the final editing of the text in the LATEX typesetting
system.

Follow:
https://www.wseas.org/multimedia/contributor-role

Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  

This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2021.20.23

Faniran, T. S., Bakare, E. A., 
Potucek, R., Ayoola, E. O.

E-ISSN: 2224-2880 234 Volume 20, 2021

https://www.wseas.org/multimedia/contributor-role-instruction.pdf

	Introduction
	Seven-Compartmental COVID-19 Model
	Basic Reproduction Number

	Global Stability Analysis
	Global Stability of COVID-19 Extinction Equilibrium Solution
	Global Stability of COVID-19 Persistence Equilibrium Point

	Sensitivity Analysis
	Interpretation of sensitivity indices obtained in Table 2

	Numerical Simulations
	Discussion and Conclusion



