
Abstract: This paper aims to study spacelike surfaces from a given spacelike curve in Minkowski 3–space.
Also, we investigate the necessary and sufficient conditions for the given space-like curve to be the line of
curvature on the space-like surface. Depending on the causal character of the curve, the necessary and
sufficient conditions for the given space-like curve to satisfy the line of curvature and the geodesic (resp.
asymptotic) requirements are also analyzed. Furthermore, we give with illustration some computational
examples in support of our main results.
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1 Introduction

A curve in E3
1, the three-dimensional Minkowski

space, is said to be time-like, space-like or null if
all its tangent vectors are always time-like, space-
like or null, respectively. Indeed, the distance
function 〈, 〉 in the Euclidean 3-space can only
be positive while in E3

1 it can be positive, neg-
ative or zero. Based on the classification of dis-
tance function mentioned above, curves are clas-
sified as space-like, time-like or null curve, respec-
tively, [1, 2].
The problem of investigating surfaces with a given
curve plays an important role in geometric design.
It was Wang et.al. [3], who proposed and studied
such type of problem for the first time. They pro-
vided a method for constructing a surface family
from a given spatial geodesic. They expressed the
required surface as a linear combination of the
marching-scale functions U(s, t), V(s, t), W(s, t)
and the Serret–Frenet frame {r1(s), r2(s), r3(s)}.
Also, they derived necessary and sufficient con-
ditions with correct parametric representation of
the surface pencil for a given curve. Further,
Kasap et al. [4] investigated the sufficient con-
ditions for a given curve to be a geodesic on a
surface by generalized the marching-scale func-
tions. Li et.al. [5] reported the surface pencil
with a common line of curvature by replacing the
characteristic curve from geodesic to line of curva-
ture. Bayram et.al. [6] tackled the problem of con-
structing surfaces passing through a given asymp-
totic curve. Important contributions to surface

passing through a given curve have been studied
in [5–8].
With the inspiration of work of Wang [3], we ex-
tend the work of Lie et al. [4] to deduce the neces-
sary and sufficient conditions for a space-like sur-
face pencil to contain β = β(s) as a line of curva-
ture. Subsequently, we analyze these conditions
when the given curve is a geodesic (resp. asymp-
totic) and line of curvature. As an application,
we verified the method by exact space-like sur-
face pencil formulations for some simple surfaces,
such as surfaces of revolution and ruled surfaces.

2 Preliminaries

The Minkowski 3-space E3
1 is the three-

dimensional real vector space R3 with standard
flat metric given by

〈da,da〉 =da21 + da22 − da23

where (a1, a2, a3) stands for rectangular coordi-
nate system of E3

1. An arbitrary vector a 6= 0 of
E3
1 is said to be space-like, time-like or null (light-

like) provided 〈a,a〉>0, 〈a,a〉<0 or 〈a,a〉=0, re-
spectively. A time-like or light-like vector in E3

1
is also known as causal. The norm of a vector
a ∈E3

1 is defined by ‖a‖ =
√
|〈a,a〉|. The vector

a ∈E3
1 is called a space-like or time-like unit vec-

tor if 〈a,a〉=1 or 〈a,a〉= −1. Similarly, a regular
curve in E3

1 can locally be space-like, time-like or
null (light-like), if all its velocity vectors are so,

Spacelike Surfaces with a Common Line of Curvature in 

Lorentz-Minkowski 3-Space 
 

M. KHALIFA SAAD, ABU ZAID ANSARI, M. AKRAM, F. ALHARBI 

Mathematics Department, Faculty of Science, Islamic University of Madinah, SAUDI ARABIA 
E-mail: mohammed.khalifa@iu.edu.sa 

Received: February 25, 2021. Revised: April 20, 2021. Accepted: April 27, 2021. Published: May 4, 2021.

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2021.20.22 M. Khalifa Saad, Abu Zaid Ansari, M. Akram, F. Alharbi

E-ISSN: 2224-2880 207 Volume 20, 2021



for more details, we refer, [1,2]. For any two vec-
tors a = (a1, a2, a3) and b = (b1, b2, b3) of E3

1,
the inner product and the vector product is de-
fined as 〈a,b〉= a1b1 + a2b2 − a3b3 and a× b =
((a2b3 − a3b2), (a3b1 − a1b3),−(a1b2 − a2b1)), re-
spectively.
Let β = β(s) be a unit speed space-like curve in
E3
1; by κ(s) and τ(s) we denote the natural cur-

vature and torsion of β = β(s), respectively.
Consider the Serret–Frenet frame {r1(s), r2(s),
r3(s)} associated with β = β(s) such that r1(s),
r2(s) and r3(s) are the unit tangent, the prin-
cipal normal and the binormal vector fields, re-
spectively. Depending on the causal character of
the curve β = β(s), we have the following Serret–
Frenet formulae:

d

ds


r1(s)

r2(s)

r3(s)

 =


0 κ(s) 0

κ(s) 0 τ(s)

0 τ(s) 0




r1(s)

r2(s)

r3(s)

 ,

(1)
where

r1(s)× r2(s) = r3(s),

r2(s)× r3(s) = r1(s),

r3(s)× r1(s) = −r2(s), (2)

if β = β(s) is a space-like curve with a time-like
principal normal r2, and

d

ds


r1(s)

r2(s)

r3(s)

 =


0 κ(s) 0

−κ(s) 0 τ(s)

0 τ(s) 0




r1(s)

r2(s)

r3(s)

 ,

(3)
where

r1(s)× r2(s) = −r3(s),

r2(s)× r3(s) = r1(s),

r3(s)× r1(s) = r2(s), (4)

if β = β(s) is a space-like curve with a space-like
principal normal r2.

Let P = P(s, t) be a parametric spacelike sur-
face in E3

1 based on the given spacelike curve β =
β(s) as follows:

M : P(s, t) = β(s) + U(s, t)r1(s)+V(s, t)r2(s)

+W(s, t)r3(s); 0 ≤ t ≤ T, 0 ≤ s ≤ L, (5)

where U(s, t), V(s, t) and W(s, t) stand for C1

functions. If t is the time parameter, then U(s, t),
V(s, t) and W(s, t) can be viewed as directed
marching distances of a point unit in the time
t in the direction r1; r2; and r3, respectively,
where the position vector β(s) is the initial lo-
cation of this point. A space-like surface with the
unit speed space-like curve β = β(s) satisfying
Eq. (1) or Eq. (3) is indicated by type M− or
type M+, respectively.

Definition 1 A surface in the Minkowski 3-space
E3
1 is called a time-like surface or a space-like

surface if the induced metric on the surface is
a Lorentz metric or a positive definite Rieman-
nian metric, which amounts to say the normal
vector on space-like (time-like) surface is a time-
like (space-like) vector.

According to this definition, we obtain two time-
like normal vector fields:
1- For the type M−, we can write

r2(s, t) :=
∂P(s, t)

∂s
× ∂P(s, t)

∂t

= η1(s, t)r1(s) + η2(s, t)r2(s) + η3(s, t)r3(s), (6)

where

η1(s, t) =
(
∂V(s,t)
∂s + U(s, t)κ(s) +W(s, t)τ(s)

)
∂W(s,t)
∂t

−
(
∂W(s,t)
∂s + V(s, t)τ(s)

)
∂V(s,t)
∂t

η2(s, t) =
(

1 + ∂U(s,t)
∂s + V(s, t)κ(s)

)
∂W(s,t)
∂t

−
(
∂W(s,t)
∂s + V(s, t)τ(s)

)
∂U(s,t)
∂t ,

η3(s, t) = (1 + ∂U(s,t)
∂s + V(s, t)κ(s))∂V(s,t)∂t

−(∂V(s,t)∂s + U(s, t)κ(s) +W(s, t)τ(s))∂U(s,t)∂t .


2- For the type M+, we can write

r2(s, t) = η1(s, t)r1(s)+η2(s, t)r2(s)+η3(s, t)r3(s),
(7)

where

η1(s, t) =
(
∂V(s,t)
∂s + U(s, t)κ(s) +W(s, t)τ(s)

)
∂W(s,t)
∂t

−
(
∂W(s,t)
∂s + V(s, t)τ(s)

)
∂V(s,t)
∂t

η2(s, t) = −
(

1 + ∂U(s,t)
∂s − V(s, t)κ(s)

)
∂W(s,t)
∂t

+
(
∂W(s,t)
∂s + V(s, t)τ(s)

)
∂U(s,t)
∂t ,

η3(s, t) = −(1 + ∂U(s,t)
∂s − V(s, t)κ(s))∂V(s,t)∂t

+(∂V(s,t)∂s + U(s, t)κ(s) +W(s, t)τ(s))∂U(s,t)∂t .


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3 M− with a common space-like

line of curvature

In this section, our objective is to derive the neces-
sary and sufficient conditions for which the given
space-like curve β(s) is an isoparametric line of
curvature on the type M−.
Firstly, since the directrix β(s) is an isoparametric
curve on the surface then there exists a parameter
t = t0 such that β(s) = P(s, t0), that is, we have

U(s, t0) = V(s, t0) =W(s, t0) = 0. (8)

Thus the time-like normal vector field becomes

r2(s, t0) = η1(s, t0)r1(s)+η2(s, t0)r2(s)+η3(s, t0)r3(s),
(9)

where

η1(s, t0) = ∂W(s,t0)
∂t

∂V(s,t0)
∂s − ∂W(s,t0)

∂s
∂V(s,t0)

∂t ,

η2(s, t0) = (1 + ∂U(s,t0)
∂s )∂W(s,t0)

∂t − ∂U(s,t0)
∂t

∂W(s,t0)
∂s ,

η3(s, t0) = (1 + ∂U(s,t0)
∂s )∂V(s,t0)∂t − ∂U(s,t0)

∂t
∂V(s,t0)
∂s ).


(10)

Secondly, let us choose a time-like unit vector

e(s) = cosh θr2(s)+ sinh θr3(s). (11)

Hence, from Eqs. (9) and (11), we have that
e(s)‖r2(s, t0) iff there exists a function λ(s) such
that

η1(s, t0) = 0, η2(s, t0) = λ(s) cosh θ,(12)

η3(s, t0) = λ(s) sinh θ.

Differentiating Eq. (11) and using the corre-
sponding Serret-Frenet formulae (1), we find

de

ds
= (

dθ

ds
+ τ)e⊥ + κ cosh θr1.

Hence, β = β(s) is a line of curvature on M− if
and only if de

ds ‖ r1, i.e. dθ
ds + τ = 0. This means

that

θ(s) = θ0 −
s∫

s0

τ(s)ds, (13)

where s0 is the initial value of arc length and θ0 =
θ(s0). It is worthy to note that the technique
we use is fundamentally different than in [9–13].
Now, we draw an important conclusion as follows:

Theorem 2 The given space-like curve β(s) is a
line of curvature on the type M− if and only if

U(s, t0) = V(s, t0) =W(s, t0) = 0,

0 ≤ t0 ≤ T, 0 ≤ s ≤ L, λ(s) 6= 0,

η1(s, t0) = 0, η2(s, t0) = λ(s) cosh θ,

η3(s, t0) = λ(s) sinh θ,


(14)

where λ(s) and θ(s) are called controlling func-
tions.

With M− we denote the space-like surfaces with
common space-like line of curvature described by
Eq. (5) and Eq. (14). For the sake of simplicity,
the marching-scale functions U(s, t), V(s, t) and
W(s, t) were decomposed into two factors [14,15]:

U(s, t) = l(s)U(t),

V(s, t) = m(s)V(t),

W(s, t) = n(s)W(t).

Here l(s),m(s), n(s), U(t), V(t) and W(t) are C1

functions and l(s),m(s) and n(s) are not identi-
cally zero. Thus, from the Theorem 1, we can get
the following corollary:

Corollary 3 A necessary and sufficient condi-
tion of the space-like curve β(s) being a line of
curvature on M− is

U(t0) = V(t0) =W(t0) = 0,
dW(t0)
dt = λ(s) cosh θ

n(s) , dV(t0)
dt = λ(s) sinh θ

m(s) .

}
(15)

However, we can assume that the marching-scale
functions depend only on the parameter t; that is,
l(s) = m(s) = n(s) = 1. Then condition (15) can
be analyzed according to the different expressions
of θ(s) :
(i) If the curve β(s) is a twisted curve, i.e., τ(s) 6=
0, then θ(s) is a non-constant function of variable
s and the condition (15) can be represented as

U(t0) = V(t0) =W(t0) = 0,
dW(t0)
dt = λ(s) cosh θ, dV(t0)

dt = λ(s) sinh θ.

}
(16)

(ii) If the curve β(s) is a planar curve, i.e., τ(s) =
0, then θ(s) = θ0, i.e., is a constant. However,
if θ0 6= 0, for convenience, we can assume that
U(s, t), V(s, t) and W(s, t) depend only on the
parameter t, that is l(s) = m(s) = n(s) = 1, then
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λ(s) is also a constant. After simplification, the
condition (15) becomes

U(t0) = V(t0) =W(t0) = 0,
dW(t0)
dt = λ(s) cosh θ0,

dV(t0)
dt = λ(s) sinh θ0.

}
(17)

(iii) In Case (ii), if θ0 = 0, substituting it to Eq.
(11) we have r2(s)‖r2(s, t0). According to the
geodesic theory [4], the curve β(s) is a geodesic
on M− if and only if at any point on the curve
β(s) the principal normal r2(s) to the curve and
the normal r2(s, t0) to M− are parallel to each
other. Hence, the curve β(s) is not only a line
of curvature but also a geodesic on M−. In this
case, the condition (15) has the simple form

U(t0) = V(t0) =W(t0) = 0,
dW(t0)
dt = λ(s), dV(t0)

dt = 0.

}

From above analysis, one can easily notice
that there are no constraints for the curves given
by Eqs. (14), (15) or (16). Thus, by choosing
suitable marching-scale functions M− can always
be determined.

3.1 Examples

In this section, our adopted methods are verified
by some illustrative examples.

Example 3.1 In this example, we construct M−

in which all the surfaces share a space-like helix
as common space-like line of curvature.
Given the space-like circular helix:

β(s) = (a sinh
s

c
, b
s

c
, a cosh

s

c
),

a > 0, b 6= 0, a2 − b2 = c2, −4 ≤ s ≤ 4.

One can easy to show that

r1(s) = (ac cosh s
c ,
b
c ,
a
c sinh s

c ),

r2(s) = (sinh s
c , 0, cosh s

c ),

r3(s) = ( bc cosh s
c ,−

a
c ,

b
c sinh s

c ),


and τ = b

c2
, then θ(s) = − b

c2
s+ θ0. If θ0 = 0, we

have θ(s) = − b
c2
s.

By choosing

l(s) = m(s) = n(s) = 1,

U(t) = αt, V(t) = tλ(s) sinh θ,

W(t) = tλ(s) cosh θ, λ 6= 0,

and from formula (4), the equation of M− is

P(s, t;α, λ) = (a sinh
s

c
, b
s

c
, a cosh

s

c
)

+t(α, λ sinh θ, λ cosh θ)


a
c cosh s

c
b
c

a
c sinh s

c

sinh s
c 0 cosh s

c
b
c cosh s

c −a
c

b
c sinh s

c

 .

So, if we choose t ∈ [−4, 4], a = 2, b = 1, then

for α = 1, λ = 1 and α = −
√
5
4 , λ =

√
5
2 , the cor-

responding space-like surfaces are shown in Fig.
1(a) and Fig. 1(b), respectively.

(a) (b)

Figure 1: Surfaces with a spacelike helix as a com-

mon spacelike line of curvature.

Example 3.2 Suppose that a parametric space-
like curve is given by

β(s) = (0, sinh s, cosh s), −2 ≤ s ≤ 2.

After simple computation, we have

r1(s) = (0, cosh s, sinh s),

r2(s) = (0, sinh s, cosh s), r3(s) = (1, 0, 0),

and τ = 0 which follows θ(s) = θ0 is a constant.
By choosing

l(s) = m(s) = n(s) = 1,

U(t) = αt, V(t) = tλ(s) sinh θ0,

W(t) = tλ(s) cosh θ0, λ 6= 0,

and from formula (2.4), the equation of M− is

P(s, t;α, λ) = (0, sinh s, cosh s)

+t(α, λ sinh θ0, λ cosh θ0)


0 cosh s sinh s

0 sinh s cosh s

1 0 0

 .

(18)
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So, if we choose t ∈ [−2, 2] and θ0 = 1.5
(resp. θ0 = 0), then for α = 0.3, λ = 0.5 and
α = 3, λ = 1, the corresponding spacelike sur-
faces are shown in Fig. 2(a), and Fig. 2(b), re-
spectively.

(a) (b)

Figure 2: M− spacelike surfaces with θ0 = 1.5

and θ0 = 0.

3.2 M− revolutions

In the following examples, we construct M− rev-
olutions in which all the surfaces passing through
a given curve as a line of curvature.

Example 3.3 Let

h(t)= (hx(t), 0, hz(t)), 0 ≤ t ≤ T,

be a parametric space-like curve in the oxz-plane
with the following condition:

h(t0) = (0, 0, 1),

h
′
(t0) = (λ cosh θ0, 0, λ sinh θ0), λ 6= 0, 0 ≤ t0 ≤ T.

By revolving generating curve h(t) about the
x−axis of our coordinate system. A parametriza-
tion of the surface of revolution is expressed as

R(s, t) = (hx(t), hz(t) sinh s, hz(t) cosh s), hx(t) 6= 0.
(19)

If Eqs. (18) and (19) represent the same family,
we have

hz(t) = 1 + λt sinh θ0, hx(t) = λt cosh θ0.

Hence, the equation of M−of revolutions can be
written as

P(s, t, λ, θ0) =


λt cosh θ0,

(1 + λt sinh θ0) sinh s,

(1 + λt sinh θ0) cosh s

 .

The parametric curve h(t) has the representation
of the form

h(t)= (λt cosh θ0, 0, 1 + λt sinh θ0).

This means that M− of revolutions is formed by a
uniparametric family of vertical hyperbolas. We
chose t ∈ [−10, 10] and s ∈ [−3, 3]. For λ = 1,
θ0 = 0.5 and λ = −1, θ0 = −0.5, the correspond-
ing spacelike surfaces are shown in Fig. 3(a) and
Fig. 3(b), respectively. In most of the practi-

(a) (b)

Figure 3: M− space-like surfaces of revolutions.

cal applications, the parameter of a given curve is
usually not its arc length. So, in the following ex-
ample, we present an algorithm for constructing
M− of revolutions from an arbitrarily parameter-
ized line of curvature being the generating curve.

Example 3.4 Suppose we are given a parametric
space-like curve in the oxz-plane:

β(r) = (f(r), 0, g(r)) ,

which when revolved about the x-axis produces
the space-like surface of revolution. Simple com-
putation leads to

r1(r) =
(
f

′
, 0, g

′
)∥∥∥β′∥∥∥−1 ,

r2(r) =
(
g
′
, 0, f

′
)∥∥∥β′∥∥∥−1 ,

r3(r) = (0,−1, 0), (′=
d

dr
),

where
∥∥∥β′∥∥∥2 = f

′2 − g′2 > 0. Then the equation

of type M− is expressed as

P(r, t) =


f + U(r,t)f ′+V(s,t)g′∥∥∥β′ ∥∥∥ ,

−W(r, t),

g + U(r,t)g′+V(r,t)f ′∥∥∥β′ ∥∥∥

 , (20)
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where 0 ≤ t ≤ T . Now we consider a member of
the above family. If the surface is generated by
rotation and parameter t as an angle of rotation
with the initial angle t0 = 0; then it took the
following form

P(r, t) = (f(r), g(r) sinh t, g(r) cosh t). (21)

Comparing to Eqs. (20) and (21), we have

W(r, t) = −g(r) sinh t,
U(r, t)f

′
+ V(s, t)g

′∥∥∥β′
∥∥∥ = 0,

U(r, t)g
′
+ V(r, t)f

′∥∥∥β′
∥∥∥ = g(cosh t− 1).

Then, the marching-scale functions are given by

U(r, t) =
gg

′
(1− cosh t)∥∥∥β′

∥∥∥ ,

V(r, t) = −gf
′
(1− cosh t)∥∥∥β′

∥∥∥ ,

W(r, t) = −g sinh t. (22)

Hence

U(t) = 1−cosh t, V(t) = 1−cosh t, W(t) = − sinh t.
(23)

According to Eqs. (15) and (23), we have

dW(t0)

dt
=

λ(r) cosh θ

n(r)
∥∥∥β′
∥∥∥ = −1,

dV(t0)

dt
=

λ(r) sinh θ

m(r)
∥∥∥β′
∥∥∥ = 0, λ 6= 0. (24)

Therefore, we have sinh θ = 0, that is β(r) is a
space-like line of curvature and also a geodesic on
M−. Thus, we set the marching-scale functions
as

U(r, t) =
β(r)gg

′
(1− cosh t)∥∥∥β′
∥∥∥ ,

V(r, t) = −γ(r)gf
′
(1− cosh t)∥∥∥β′
∥∥∥ ,

W(r, t) = −g sinh t, (25)

where β(r), γ(r) are all C1 functions and γ(r) 6=
0, 0 ≤ t ≤ L, to obtain M−,

{P(r, t, β(r), γ(r)) | β(r), γ(r) ∈ C1, γ(r) 6= 0}.

When β(r) = γ(r) = 1, the corresponding,

P(r, t, 1, 1) = P(r, t) = (f(r), g(r) sinh t, g(r) cosh t)

is thus also M− of revolutions whose generating
curve is a line of curvature and also a geodesic. It
is easy to validate that the marching-scale func-
tions satisfy the conditions r2(r)‖r2(r, t0), 0 ≤ t ≤
L given in Eq. (14) with t0 = 0. Thus, Eqs.
(20) and (25) are the required conditions. For
β = γ = 1 and β(r) = γ(r) = −1, the two mem-
bers are shown in Fig 4(a). Fig. 4(b); where the
generating curve is given as

β(r) = (sinh r, 0, r) , −2 ≤ r ≤ 2,

(a) (b)

Figure 4: M− of revolutions whose generating

curve is a line of curvature and also a geodesic.

3.3 M− ruled surfaces

In what follows, the M− ruled surfaces in which
all the surfaces share the same directrix are con-
structed. Let β(s) be a 3D space-like curve with
arc-length parameter s. Consider ruled surface
P(s, t) with the space-like directrix β(s), where
β(s) is the parametric curve of P(s, t), then there
exists t0 such that P(s, t0) = β(s). It follows that

P(s, t) = P(s, t0) + (t− t0)d(s),

0 ≤ s ≤ L, 0 ≤ t ≤ T, 0 ≤ t0 ≤ T,

where d(s) represents the direction of the rulings.
According to the formula (3), we have

(t− t0)d(s) =


U(s, t)r1(s)

+V(s, t)r2(s)

+W(s, t)r3(s),

 (26)

0 ≤ s ≤ L, 0 ≤ t ≤ T, 0 ≤ t0 ≤ T,
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which is a system of three equations with three
unknown functions U(s, t), V(s, t) and W(s, t).
The solutions of the above system can be deduced
as

U(s, t) := (t− t0)〈d(s), r1(s)〉,
−V(s, t) := (t− t0)〈d(s), r2(s)〉,
W(s, t) := (t− t0)〈d(s), r3(s)〉,

(27)

where 0 ≤ s ≤ L, 0 ≤ t ≤ T, 0 ≤ t0 ≤ T . The
above equations are the necessary and sufficient
conditions for which P(s, t) is a ruled surface with
a directrix β(s).

Next, it remains to verify that the curve β(s)
is also line of curvature on the surface P(s, t) by
using the conditions given in Eq. (15). Evidently,
these conditions become:

λ(s) cosh θ = 〈d(s), r3(s)〉,
λ(s) sinh θ = −〈d(s), r2(s)〉.

(28)

It follows that at any point on the curve β(s); the
ruling direction d(s) must be in the plane formed
by r3(s) and r2(s). Also, the ruling direction d(s)
can be expressed as:

d(s) = a1(s)r1(s)+a2(s)r2(s)+a3(s)r3(s), 0 ≤ s ≤ L,
(29)

for some real functions a1(s), a2(s) and a3(s).
Substituting it into the expressions in Eq. (27),
we get

a2(s)t = −λ(s) sinh θ, a3(s)t = λ(s) cosh θ.

Hence, the M−of ruled surfaces with the common
directrix β(s) can be expressed as

P(s, t;β, γ) =


β(s) + a1(s)r1(s)

tλ(s)(− sinh θr2(s)+ cosh θr3(s)),

0 ≤ s ≤ L, 0 ≤ t ≤ T,


(30)

where the functions a1(s) and λ(s) can control
M−of ruled surfaces. Every member of this fam-
ily is decided by two pencil parameters a1(s) and
λ(s) 6= 0; i.e., by the direction vector function
d(s). Fig. 5(a) shows the member of M−of ruled
surfaces whose line of curvature is the space-like
circular helix in Example 3.1, with t ∈ [−2, 2],
a = 2, b = 1, and the controlling functions
a1(s) = λ(s) = s. For the suitable choices of
controlling functions a1(s) = λ(s) = s

2 , the corre-
sponding member is shown in Fig. 5(b). From
these examples, the controlling functions can be
chosen variant expressions and we can find that,
they evidently control the shape of the members
in M−.

(a) (b)

Figure 5: M− of ruled surfaces with the common

directrix α(s).

4 M+ with a common space-like

line of curvature

In this section, we investigate the case of the fam-
ily of type M+ with common space-like line of
curvature. Firstly, as it was mentioned earlier,
the normal vector field becomes

r2(s, t0) = η1(s, t0)r1(s)+η2(s, t0)r2(s)+η3(s, t0)r3(s),
(31)

where

η1(s, t0) = ∂W(s,t0)
∂t

∂V(s,t0)
∂s − ∂W(s,t0)

∂s
∂V(s,t0)

∂t ,

η2(s, t0) = −(1 + ∂U(s,t0)
∂s )∂W(s,t0)

∂t + ∂U(s,t0)
∂t

∂W(s,t0)
∂s ,

η3(s, t0) = −(1 + ∂U(s,t0)
∂s )∂V(s,t0)∂t + ∂U(s,t0)

∂t
∂V(s,t0)
∂s ).


(32)

Secondly, let us choose a timelike unit vector

e(s) = sinh θr2(s)+ cosh θr3(s). (33)

Hence, from Eqs. (31) and (33), we have that
e(s)‖r2(s, t0) if and only if there exists a function
λ(s) such that

η1(s, t0) = 0, η2(s, t0) = λ(s) sinh θ,

η3(s, t0) = λ(s) cosh θ. (34)

Hence, we get the corresponding conditions and
we omit the details here.

Theorem 4 A space-like curve β(s) is a line of
curvature on M+ if and only if

U(s, t0) = V(s, t0) =W(s, t0) = 0,

0 ≤ t0 ≤ T, 0 ≤ s ≤ L, λ(s) 6= 0,

η1(s, t0) = 0, η2(s, t0) = λ(s) sinh θ,

η3(s, t0) = λ(s) cosh θ,


(35)

where λ(s) and θ(s) are the controlling functions.
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By a similar procedure we have:

Corollary 5 A necessary and sufficient condi-
tion of the space-like curve β(s) being a line of
curvature on M+ is

U(t0) = V(t0) =W(t0) = 0,
dW(t0)
dt = −λ(s) sinh θ

n(s) , dV(t0)
dt = −λ(s) cosh θ

m(s) .

}
(36)

By similar argument, we can also assume that the
marching-scale functions varies with parameter t;
that is, l(s) = m(s) = n(s) = 1. Then, we ana-
lyze the condition (36) for different expressions of
θ(s):
(i) If β(s) is a twisted curve, that is, τ(s) 6= 0,
then θ(s) is a non-constant function of variable s
and the condition (36) can be expressed as

U(t0) = V(t0) =W(t0) = 0,
dW(t0)
dt = −λ(s) sinh θ, dV(t0)

dt = −λ(s) cosh θ,

}
(37)

(ii) If β(s) is a planar curve, that is, τ(s) = 0,
then θ(s) = θ0, i.e. is a constant. However, if
θ0 6= 0, for the sake of simplicity, assume that
U(s, t), V(s, t) and W(s, t) are functions of the
parameter t only, that is, l(s) = m(s) = n(s) = 1,
then λ(s) is also a constant. By simplifying, the
condition (36) becomes

U(t0) = V(t0) =W(t0) = 0,
dW(t0)
dt = −λ(s) sinh θ0,

dV(t0)
dt = −λ(s) cosh θ0.

}
(38)

(iii) In Case (ii), if θ0 = 0, substituting it to (4.3)
we have r3(s)‖r2(s, t0). According to the asymp-
totic theory [4], the curve β(s) is asymptotic on
M+ if and only if at any point on the curve β(s)
the binormal r3(s) to the curve and the normal
r2(s, t0) to M+ are parallel to each other. Hence,
the curve β(s) is a line of curvature as well as
asymptotic of M+. In this case, the condition
(38) has the simple form

U(t0) = V(t0) =W(t0) = 0,
dW(t0)
dt = 0, dV(t0)

dt = −λ(s).

}
(39)

4.1 Examples

Next, we verify the validity of the formulae de-
rived above from the following examples.

Example 4.1 Given the space-like circular helix:

β(s) = (b
s

c
, a cosh

s

c
, a sinh

s

c
),

a > 0, b 6= 0, b2 − a2 = c2, −1 ≤ s ≤ 1.

It is easy to show that

r1(s) = ( bc ,
a
c sinh s

c ,
a
c cosh s

c ),

r2(s) = (0, cosh s
c , sinh s

c ),

r3(s) = (ac ,
b
c sinh s

c ,
b
c cosh s

c ),


and τ = b

c2
, then θ(s) = − b

c2
s+ θ0. If θ0 = 0, we

have θ(s) = − b
c2
s. By choosing

l(s) = m(s) = n(s) = 1,

U(t) = αt, V(t) = −tλ(s) cosh θ,

W(t) = −tλ(s) sinh θ, λ 6= 0,

and from formula (4), the equation of family M+

is
P(s, t;α, λ) = (b

s

c
, a cosh

s

c
, a sinh

s

c
)

+t(α,−λ cosh θ,−λ sinh θ)


b
c

a
c sinh s

c
a
c cosh s

c

0 cosh s
c sinh s

c
a
c

b
c sinh s

c
b
c cosh s

c

 .

So, if we choose t ∈ [−1, 1], a = 1, b = 2, then for

α = 1, λ = −1 and α =
√
3
2 , λ = −

√
3
2 , the cor-

responding space-like surfaces are shown in Fig.
6(a) and Fig. 6(b), respectively.

(a) (b)

Figure 6: M+ space-like surfaces with a common

space-like line of curvature.

Example 4.2 Consider a parametric space-like
curve

β(s) = (cos s, sin s, 0), 0 ≤ s ≤ 2π.

After straightforward computation, we get

r1(s) = (− sin s, cos s, 0),

r2(s) = (− cos s,− sin s, 0), r3(s) = (0, 0,−1),
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and τ = 0 which follows θ(s) = θ0 is a constant.
By choosing

l(s) = m(s) = n(s) = 1,

U(t) = αt, V(t) = −tλ(s) cosh θ0,

W(t) = −tλ(s) sinh θ0, λ 6= 0,

and from formula (4), the equation of M+ is

P(s, t;α, λ) = (cos s, sin s, 0)

+t(α,−λ cosh θ0,−λ sinh θ0)


− sin s cos s 0

− cos s − sin s 0

0 0 −1

 .

So, if we choose t ∈ [−1, 1] and θ0 = 1.5
(resp. θ0 = 0), then for α = 0.3, λ = 0.5 and
α = 3, λ = 1, the corresponding space-like sur-
faces are shown in Fig. 7(a), and Fig. 7(b), re-
spectively.

(a) (b)

Figure 7: M+ space-like surfaces corresponding

to space-like plane curves.

4.2 M+ revolutions

By the following examples, we showed that there
is no M+ revolutions.

Example 4.3 Consider a parametric space-like
curve in the oxz-plane:

β(t) = (hx(t), 0, hz(t)),
∥∥∥β′∥∥∥2 = h

′2
x (t)−h′2

z (t) > 0.

(40)

which when revolved about the z-axis produces
the space-like surface of revolution

P(s, t) = (hx(t) cos s, hx(t) sin s, hz(t)). (41)

Since the surface is space-like, we must have that

∥∥∥∥∂P(s, t)

∂s
× ∂P(s, t)

∂t

∥∥∥∥2 = h2x(h
′2
x (t)− h′2

z (t)) < 0,

(42)
which is a contradiction, the result is clear.

Example 4.4 Consider a parametric space-like
curve in the oxy-plane:

β(r) = (f(r), g(r), 0) .

After straightforward calculations, we get

r1(r) =
(
f

′
, g

′
, 0
)
, r2(r) =

(
−g′

, f
′
, 0
)
,

r3(r) = (0, 0,−1), (′=
d

dr
),

where f
′2

+ g
′2 = 1. Then the equation of type

M+ is expressed as

P(r, t) =

(
f + U(r, t)f

′ − V(s, t)g
′
, g(r)

+U(r, t)g
′
+ V(r, t)f

′
,−W(r, t)

)
, 0 ≤ t ≤ T.

(43)
Since P(r, t) is a surface of revolution, it can also
be expressed as

P(r, t) = (f(r) cosh t, g(r), f(r) sinh t). (44)

Comparing to Eqs. (43) and (44), we obtain

U(r, t) = f
′
(1− cosh t),

V(r, t) = −g′
(1− cosh t),

W(r, t) = −f sinh t. (45)

Hence

U(t) = 1−cosh t, V(t) = −1+cosh t, W(t) = − sinh t.
(46)

According to Eqs. (38) and (46), we have

dW(t0)

dt
= −λ(r) sinh θ

n(r)
∥∥∥β′
∥∥∥ = −1,

dV(t0)

dt
= −λ(r) cosh θ

m(r)
∥∥∥β′
∥∥∥ = 0, λ 6= 0. (47)

Therefore, we have cosh θ = 0 which is impossible.
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4.3 M+ ruled surfaces

In what follows, the M+ ruled surfaces in which
all the surfaces share the same directrix is con-
structed. Following the same procedures, we have

U(s, t) := (t− t0)〈d(s), r1(s)〉,
V(s, t) := (t− t0)〈d(s), r2(s)〉,
−W(s, t) := (t− t0)〈d(s), r3(s)〉,

(48)

where 0 ≤ s ≤ L, 0 ≤ t ≤ T, 0 ≤ t0 ≤ T . The
above equations are the necessary and sufficient
conditions for which P(s, t) is a ruled surface with
a directrix β(s).

Likewise, a simple calculation shows that

P(s, t;β, γ) =


β(s) + a1(s)r1(s)

+tλ(s)(− cosh θr2(s)+ sinh θr3(s)),

0 ≤ s ≤ L, 0 ≤ t ≤ T,


(49)

where a1(s) and λ(s) can control M+of ruled sur-
faces. Every member of this family is decided by
two pencil parameters a1(s) and λ(s) 6= 0; i.e.,
by the direction vector function d(s). Fig. 8(a)
shows the member of M+of ruled surfaces whose
line of curvature is the space-like circular helix
in Example 4.1, with t ∈ [−2, 2], a = 2, b = 1,
and the controlling functions a1(s) = λ(s) = s.
For the choice of controlling functions a1(s) =
λ(s) = s

2 , the corresponding member is shown in
Fig. 8(b).

(a) (b)

Figure 8: M+ ruled surfaces whose line of curva-

ture is a space-like circular helix.

Concluding Remarks

In this article, we explored a method for find-
ing a space-like surface family whose members

share a given space-like line of curvature as an
isoparametric line of curvature. We derive the
necessary and sufficient conditions for the given
space-like curve to be the line of curvature for the
parametric space-like surface by combining of the
given space-like curve and the three vectors de-
composed along the directions of Serret–Frenet
frame. In the process of derivation, we define
two controlling functions θ(s) and λ(s). Using
these controlling functions, one can obtain vari-
ant forms of ruled and developable surfaces with
unique features. Different form of surfaces are
quite applicable in industry. Also, these param-
eters can improve the position of cutting tools
which are used in the field of oil and energy. Some
examples are constructed to illustrate that these
controlling functions can control the shape of the
space-like surface flexibly. The results, in addition
to being of theoretical interest, have application
in geometric modeling and the manufacturing of
products. For example, designing agriculture ma-
chines’ tools as development models of bulldozer’s
moldboard by geometric modeling method (for
design engineering).
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