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1 Introduction 
Here we study the application of the local 

polynomial and non-polynomial interpolation 

splines of the third order of approximation for the 

construction the numerical scheme for the solution 

of the Volterra integral equation of the second kind. 

There are many numerical methods for solving 

Volterra integral equations of the second kind. The 

most common numerical methods are based on the 

use of quadrature formulas. 
     In connection with the emerging needs for 

constructing methods of high accuracy, many 

researchers, again, resort to modernizing the known 

methods for solving integral equations and 

construction the new ones. The authors of papers 

[1]-[10] devoted a lot of attention to the 

modification of the known numerical methods and 

the construction of new numerical methods for 

solving integral equations. In study [1] a numerical 

scheme for approximating the solutions of the 

nonlinear system of fractional-order Volterra-

Fredholm integral differential equations was 

proposed. The main characteristic of this approach 

is that it reduces such problems to a linear system of 

algebraic equations.  

In paper [2], a new and efficient method for solving 

the three-dimensional Volterra-Fredholm integral 

equations of the second kind, first kind and even 

singular type of these equations is presented. Here, 

the authors discuss three variable Bernstein 

polynomials and their properties. This method has 

several advantages in reducing the computational 

burden with a good degree of accuracy. 

Furthermore, the authors obtain an error bound for 

this method. A computational technique based on a 

special family of the Mёuntz-Legendre polynomials 

to solve a class of Volterra-Fredholm integral 

equations is presented in paper [3]. The proposed 

method reduces the integral equation into algebraic 

equations via the Chebyshev-Gauss-Lobatto points, 

so that the system matrix coefficients are obtained 

by the least squares approximation method. The 

useful properties of the Jacobi polynomials are 

exploited to analysis the approximation error.  

     Spline functions were used to propose a new 

scheme for solving the linear Volterra–Fredholm 

integral equations of the second kind in paper [4]. 

     Two types of non-polynomial spline functions 

(linear, and quadratic) were used in paper [5] to find 
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the approximate solution of Volterra integro–

differential equations. 

      A computational method for solving nonlinear 

Volterra-Fredholm Hammerstein integral equations 

is proposed in [6], by using compactly supported 

semiorthogonal cubic B-spline wavelets as basis 

functions. The non-polynomial spline basis and 

Quasi-linearization method to solve the nonlinear 

Volterra integral equation were used in [7]. A new 

collocation technique for the numerical solution of 

the Fredholm, Volterra and mixed Volterra-

Fredholm integral equations of the second kind is 

introduced in [8], and a numerical integration 

formula on the basis of the linear Legendre multi-

wavelets is also developed in [8]. 

Note that in papers [4]-[10] splines are used to 

construct new numerical methods. The construction 

of various splines and wavelet splines is considered 

in papers [11]-[16]. The approximations with 

splines on the irregular set of nodes are of particular 

interest [13].  

The application of the generalized Haar spaces is 

sometimes very useful [14]. Paper [15] deals with 

the use of the first two vanishing moments for 

constructing cubic spline-wavelets orthogonal to 

polynomials of the first degree. The method 

proposed in [16] can be used to calculate the real 

eigenvalues of an arbitrary matrix with real 

elements. This method uses splines of the 

Lagrangian type of the fifth order and/or polynomial 

integro-differential splines of the fifth order. 

In paper [17] the application of the finite-difference 

methods are investigated to compute the definite 

integrals. 

      At present, the theory of approximation by local 

interpolation splines continues to evolve. 

Approximation with local polynomial and local non-

polynomial splines of the Lagrange types can be 

used in many applications. Approximation with the 

use of these splines is constructed on each mesh 

interval separately as a linear combination of the 

products of the values of the function at the grid 

nodes and basic functions. The basis functions are 

defined as a solution of a system of linear algebraic 

equations (approximation relations). The 

approximation relations are formed from the 

conditions of accuracy of approximation on the 

functions forming the Chebyshev system. The 

constructed basic splines provide an approximation 

of the prescribed order which is equal to the number 

of equations in the system, or, in other words, it is 

equal to the number of grid intervals in the support 

of the basic splines. Using the basic splines, we can 

construct continuous types of approximation [10]-

[12], [16]. This paper continues the construction of 

numerical methods based on the use of spline 

approximations [10]. The proposed numerical 

methods extend the set of known numerical methods 

for solving integral equations [18].  

   The paper is organized as follows. Section 2 

discusses the theoretical aspects of the application 

of polynomial and non-polynomial splines of the 

second order of approximation. Section 3 considers 

the properties of polynomial and non-polynomial 

splines of the third order of approximation. A 

numerical method for solving the Volterra equation 

of the second kind is also proposed here. Section 4 

presents the results of the numerical solution of the 

Volterra equations of the second kind using the 

trapezoidal method, using polynomial and non-

polynomial splines of the second order of 

approximation, as well as using splines of the third 

order of approximation. 

 

2 Application of Splines of the 

Second Order of Approximation 
In paper [10] the numerical solution of Volterra-

Fredholm integral equations of the second kind was 

constructed with the use of local splines of the 

second order of approximation.  

     As it is shown in paper [11], if the functions 𝜑1, 

𝜑2 form a Chebyshev system, then the basis 

functions 𝜔𝑘 , 𝑘 = 𝑗, 𝑗 + 1, can be determined by 

solving the system of equations 

𝜑1(𝑥𝑗)𝜔𝑗(𝑥) + 𝜑1(𝑥𝑗+1)𝜔𝑗+1(𝑥) = 𝜑1(𝑥), 

𝜑2(𝑥𝑗)𝜔𝑗(𝑥) + 𝜑2(𝑥𝑗+1)𝜔𝑗+1(𝑥) = 𝜑2(𝑥), 

𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. 

Suppose that the determinant of the system  

does not equal zero. Let us take 𝜑1(𝑥) =
1, 𝜑2(𝑥) = 𝜑(𝑥). We constructed a non-

polynomial approximation of function 𝑢(𝑥), on each 

grid interval [𝑥𝑗, 𝑥𝑗+1] in the form: 

𝑈(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1(𝑥),        (1) 

𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

where 

𝜔𝑗(𝑥) =
𝜑(𝑥) − 𝜑(𝑥𝑗+1)

𝜑(𝑥𝑗) − 𝜑(𝑥𝑗+1)
, 

𝜔𝑗+1(𝑥) =
𝜑(𝑥) − 𝜑(𝑥𝑗)

𝜑(𝑥𝑗+1) − 𝜑(𝑥𝑗)
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Note that this formula for function interpolation can 

also be applied on a uniform grid of nodes. 

Depending on the choice of the function 𝜑(𝑥), we 

obtain slightly different estimates of the error (see 

papers [10]-[11]), but they all have an 

approximation error of the order of 𝑂(ℎ2). This 

approximation error can be obtained using Taylor's 

theorem. Let ordered distinct nodes {𝑥𝑗} be such that 

𝑥𝑗+1 − 𝑥𝑗 = ℎ. But we can apply the method 

described in paper [11]. Let us denote 

∥ 𝑢′′ ∥[𝑥𝑗,𝑥𝑗+1]= max
[𝑥𝑗,𝑥𝑗+1]

|𝑢′′(𝑥)|, 

 ℎ = ℎ𝑗 = 𝑥𝑗+1 − 𝑥𝑗. 

Theorem 1. Let function 𝑢(𝑥) be such that 𝑢 ∈

 𝐶2[𝑎, 𝑏]. Suppose the basis splines 

𝜔𝑗(𝑥), 𝜔𝑗+1(𝑥) are constructed when 𝑈(𝑥) =

𝑢(𝑥), 𝑢(𝑥) = 1, 𝜑(𝑥), for 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. 

 Then, for 𝜑(𝑥) = exp(𝑥) , exp(−𝑥) , 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1] 

we have  

|𝑢(𝑥) − 𝑈(𝑥)|  ≤ 𝐾2ℎ2‖𝐿𝑢‖,  

 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1],  𝐾2 > 0. 

Here 𝐿𝑢 = exp(−𝑥) (𝑢′′(𝑥) + 𝑢′(𝑥)) in the case of 

𝜑1(𝑥) = 1, 𝜑2(𝑥) = exp(−𝑥) , 

𝐿𝑢 = exp(𝑥) (𝑢′′(𝑥) − 𝑢′(𝑥)) in the case of 

𝜑1(𝑥) = 1, 𝜑2(𝑥) = exp(𝑥) . 

Proof can be found in paper [10]. 

Theorem 2. Let 𝑢 ∈ С2[𝑎, 𝑏]. To approximate the 

function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], by spline (4), the 

following inequality is valid:      

    | 𝑢(𝑥) − 𝑈(𝑥)| ≤ 𝐾ℎ𝑗
2 ∥ 𝑢′′ ∥[𝑥𝑗,𝑥𝑗+1], 𝐾 = 1/8. 

Proof can be found in paper [10]. 

Theorem 3. Let function 𝑢(𝑥) be such that 𝑢 ∈

 𝐶2[𝑎, 𝑏]. Suppose the basis splines 

𝜔𝑗(𝑥), 𝜔𝑗+1(𝑥) are constructed when 

𝑈(𝑥) = 𝑢(𝑥), 𝑢(𝑥) = 𝜑1(𝑥), 𝜑2(𝑥), 

for 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], 

 𝜑1(𝑥) = cos(𝑥) , 𝜑2(𝑥) = sin(𝑥). 

Then, 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1] we have  

|𝑢(𝑥) − 𝑈(𝑥)|  ≤ 𝐾2ℎ2‖𝐿𝑢‖, 

𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1],  𝐾2 > 0. 

Here 𝐿𝑢 = 𝑢′′(𝑥) + 𝑢(𝑥) . 

Proof can be found in paper [19]. 

The linear Volterra equation of the second kind 

has the form:  

 

𝑢(𝑥) + ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑓(𝑥)
𝑥

𝑎
,   𝑥 ∈ [𝑎, 𝑏],      

 

where ƒ is a given function, 𝐾, 𝑓 are continuous 

functions and 𝑢(𝑥)  is an unknown function. 

Now transforming the integral ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠
𝑥𝑗+1

𝑥𝑗
 

using formula (1), we can obtain 

∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠
𝑥𝑗+1

𝑥𝑗

= 𝑢(𝑥𝑗) ∫ 𝐾(𝑥, 𝑠)𝜔𝑗(𝑠)𝑑𝑠 +
𝑥𝑗+1

𝑥𝑗

 

𝑢(𝑥𝑗+1) ∫ 𝐾(𝑥, 𝑠)𝜔𝑗+1(𝑠)𝑑𝑠 + 𝑂(ℎ3).
𝑥𝑗+1

𝑥𝑗

 

To construct a numerical method, we discard the 

error and denote 𝑢 ̃(𝑥𝑗) ≈ 𝑢(𝑥𝑗). Let us introduce 

the notation 

𝑊𝑗(𝑥) = 𝑢 ̃(𝑥𝑗) ∫ 𝐾(𝑥, 𝑠)𝜔𝑗(𝑠)𝑑𝑠 +
𝑥𝑗+1

𝑥𝑗

 

𝑢 ̃(𝑥𝑗+1) ∫ 𝐾(𝑥, 𝑠)𝜔𝑗+1(𝑠)𝑑𝑠.
𝑥𝑗+1

𝑥𝑗

 

Setting 𝑥 = 𝑥𝑘,  we obtain the numerical method 

𝑢 ̃(𝑥𝑘) + ∑ 𝑊𝑠(𝑥𝑘)

𝑘−1

𝑠=0

= 𝑓(𝑥𝑘), 

𝑘 = 0, … , 𝑛. 
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In a more detailed notation, the system of equations 

has the form 

𝑢 ̃(𝑥0) = 𝑓(𝑥0), 

𝑢 ̃(𝑥1) + 𝑢 ̃(𝑥0) ∫ 𝐾(𝑥1, 𝑠)𝜔0(𝑠)𝑑𝑠 +
𝑥1

𝑥0

 

𝑢 ̃(𝑥1) ∫ 𝐾(𝑥1, 𝑠)𝜔1(𝑠)𝑑𝑠 = 𝑓(𝑥1),
𝑥1

𝑥0

 

………………… 

𝑢 ̃(𝑥𝑛) + ∑ 𝑊𝑠(𝑥𝑛)

𝑛−2

𝑠=0

 

+𝑢 ̃(𝑥𝑛−1) ∫ 𝐾(𝑥𝑛, 𝑠)𝜔𝑛−1(𝑠)𝑑𝑠
𝑥𝑛

𝑥𝑛−1

 

+𝑢 ̃(𝑥𝑛) ∫ 𝐾(𝑥𝑛, 𝑠)𝜔𝑛(𝑠)𝑑𝑠 = 𝑓(𝑥𝑛).
𝑥𝑛

𝑥𝑛−1

 

We determine the unknowns 𝑢 ̃(𝑥𝑘), 𝑘 = 2, … , 𝑛,  
sequentially, starting from the first equation. 

We find the approximate values of the solution of 

the Volterra integral equation at the grid nodes by 

solving each equation sequentially. It is assumed 

that the integrals can be calculated exactly, or can be 

applied to a quadrature formula with an error not 

less than 𝑂(ℎ3). 

 

3 Application of Splines of the 

Third Order of Approximation 

Suppose 𝐾(𝑥,∙), 𝑢 ∈ С3[𝑎, 𝑏]. Let us consider the 

numerical solution of the Volterra equation of the 

second kind with the same assumptions  

𝑢(𝑥) + ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑓(𝑥)
𝑥

𝑎
                 (2) 

using splines of the third order of approximation. 

On a finite interval [𝑎, 𝑏], it is necessary to apply 

left and right spline approximations. First, we recall 

the features of the approximation of functions by 

splines near the right end of the interval [𝑎, 𝑏]. 
Continuous polynomial approximation near the right 

end of the interval [𝑎, 𝑏] uses the basic spline 

𝜔𝑗
𝐿(𝑥) of the form: 

𝜔𝑗
𝐿(𝑥) =

(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗+2)

(𝑥
𝑗

− 𝑥𝑗+1)(𝑥
𝑗

− 𝑥𝑗+2)
, 𝑥 ∈ [𝑥𝑗+1, 𝑥𝑗+2], 

𝜔𝑗
𝐿(𝑥) =

(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗−1)

(𝑥
𝑗

− 𝑥𝑗+1)(𝑥
𝑗

− 𝑥𝑗−1)
, 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

𝜔𝑗
𝐿(𝑥) =

(𝑥 − 𝑥𝑗−1)(𝑥 − 𝑥𝑗−2)

(𝑥
𝑗

− 𝑥𝑗−1)(𝑥
𝑗

− 𝑥𝑗−2)
, 𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗], 

 𝜔𝑗
𝐿(𝑥) = 0, 𝑥 ∉ [𝑥𝑗−1, 𝑥𝑗+2]. 

The support of the basic spline occupies three 

adjacent grid intervals, supp 𝜔𝑗
𝐿 = [𝑥𝑗−1, 𝑥𝑗+2].The 

function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], can be approximated 

by the polynomial spline (see [11]) using the form: 

𝑈𝑗
𝐿(𝑥) = 𝑢(𝑥𝑗−1)𝜔𝑗−1

𝐿 (𝑥) + 𝑢(𝑥𝑗)𝜔𝑗
𝐿(𝑥) +

𝑢(𝑥𝑗+1)𝜔𝑗+1
𝐿 (𝑥),         (3) 

where 

𝜔𝑗−1
𝐿 (𝑥) =

(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+1)

(𝑥
𝑗−1

− 𝑥𝑗)(𝑥
𝑗−1

− 𝑥𝑗+1)
, 

𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

𝜔𝑗
𝐿(𝑥) =

(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗−1)

(𝑥
𝑗

− 𝑥𝑗+1)(𝑥
𝑗

− 𝑥𝑗−1)
, 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

𝜔𝑗+1
𝐿 (𝑥) =

(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗−1)

(𝑥
𝑗+1

− 𝑥𝑗)(𝑥
𝑗+1

− 𝑥𝑗−1)
, 

𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. 

Now let us recall how the approximation is 

constructed near the left end of the interval [𝑎, 𝑏]. 

The continuous polynomial approximation near the 

left end of the interval [𝑎, 𝑏] uses the basic spline 

𝜔𝑗
𝑅(𝑥) of the form: 

𝜔𝑗
𝑅(𝑥) =

(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗+2)

(𝑥𝑗 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗+2)
, 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

𝜔𝑗
𝑅(𝑥) =

(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗−1)

(𝑥𝑗 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗−1)
, 𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗], 

𝜔𝑗
𝑅(𝑥) =

(𝑥 − 𝑥𝑗−1)(𝑥 − 𝑥𝑗−2)

(𝑥𝑗 − 𝑥𝑗−1)(𝑥𝑗 − 𝑥𝑗−2)
, 𝑥 ∈ [𝑥𝑗−2, 𝑥𝑗−1], 

𝜔𝑗
𝑅(𝑥) = 0, 𝑥 ∉ [𝑥𝑗−2, 𝑥𝑗+1]. 

The support of the basic spline occupies three 

adjacent grid intervals, supp 𝜔𝑗
𝑅 = [𝑥𝑗−2, 𝑥𝑗+1]. 

The function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], can be 

approximated by the polynomial spline (see [11]) 

using the form: 

𝑈𝑗
𝑅(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗

𝑅(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1
𝑅 (𝑥) +

  𝑢(𝑥𝑗+2)𝜔𝑗+2
𝑅 (𝑥),                         (4) 
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where 

𝜔𝑗
𝑅(𝑥) =

(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗+2)

(𝑥𝑗 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗+2)
, 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

𝜔𝑗+1
𝑅 (𝑥) =

(𝑥 − 𝑥𝑗+2)(𝑥 − 𝑥𝑗)

(𝑥𝑗+1 − 𝑥𝑗+2)(𝑥𝑗+1 − 𝑥𝑗)
, 

𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

𝜔𝑗+2
𝑅 (𝑥) =

(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗)

(𝑥𝑗+2 − 𝑥𝑗+1)(𝑥𝑗+2 − 𝑥𝑗)
, 

𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. 

The approximation properties of these basic splines 

are well studied. Let us denote ∥ 𝑢′′′ ∥[𝑥𝑗,𝑥𝑗+1]=

max
[𝑎,𝑏]

|𝑢′′′(𝑥)|. The following theorem was proved in 

[11]. 

Theorem 4. Let 𝑢 ∈ С3[𝑎, 𝑏].To approximate the 

function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], by spline (3), (4), 

the following inequality is valid: 

|𝑢(𝑥) − 𝑈𝑗
𝐿(𝑥)| ≤ 𝐾ℎ3 ∥ 𝑢′′′ ∥[𝑥𝑗−1,𝑥𝑗+1]. 

To approximate the function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

by spline (2), the following inequality is valid: 

|𝑢(𝑥) − 𝑈𝑗
𝑅(𝑥)| ≤ 𝐾ℎ3 ∥ 𝑢′′′ ∥[𝑥𝑗,𝑥𝑗+2]. 

Proof. It is easy to notice that 𝑈𝑗
𝑅 is an interpolation 

polynomial of the first degree, and 𝑥𝑗, 𝑥𝑗+1 are the 

interpolation nodes, 𝑈𝑗
𝑅(𝑥𝑗) = 𝑢(𝑥𝑗), 𝑈𝑗

𝑅(𝑥𝑗+1) =

𝑢(𝑥𝑗+1), 𝑈𝑗
𝑅(𝑥𝑗+2) = 𝑢(𝑥𝑗+2). Using the remainder 

term we get 

𝑢(𝑥) − 𝑈𝑗
𝑅(𝑥) =

𝑢′′′(𝜏)

3!
(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+1)(𝑥 −

𝑥𝑗+2).  

It follows that 

max
𝑥∈[𝑥𝑗,𝑥𝑗+2]

|𝑢(𝑥) − 𝑈𝑗
𝑅(𝑥)| ≤

0.0625ℎ3 max
[𝑥𝑗,𝑥𝑗+2]

|𝑢′′′|. 

Thus, 𝐾 = 0.0625. 

We can also apply a non-polynomial approximation. 

As is known, in a number of cases the use of non-

polynomial splines provides a better approximation, 

although the order of approximation remains the 

same. 

Let us recall the features of constructing an 

approximation using non-polynomial splines. 

First, consider the construction of basic splines near 

the left end of the interval [𝑎, 𝑏].As shown in paper 

[10], if the functions 𝜑1, 𝜑2, 𝜑3 form a Chebyshev 

system, then the basis functions 𝜔𝑘
𝑅(𝑥), 𝑘 = 𝑗, 𝑗 +

1,j+2 can be determined by solving the system of 

equations 

𝜑1(𝑥𝑗)𝜔𝑗
𝑅(𝑥) + 𝜑1(𝑥𝑗+1) 𝜔𝑗+1

𝑅 (𝑥) +

𝜑1(𝑥𝑗+2) 𝜔𝑗+2
𝑅 (𝑥) = 𝜑1(𝑥), 

𝜑2(𝑥𝑗)𝜔𝑗
𝑅(𝑥) + 𝜑2(𝑥𝑗+1) 𝜔𝑗+1

𝑅 (𝑥)

+ 𝜑2(𝑥𝑗+2) 𝜔𝑗+2
𝑅 (𝑥) = 𝜑2(𝑥), 

𝜑3(𝑥𝑗)𝜔𝑗
𝑅(𝑥) + 𝜑3(𝑥𝑗+1) 𝜔𝑗+1

𝑅 (𝑥) +

𝜑3(𝑥𝑗+2) 𝜔𝑗+2
𝑅 (𝑥) = 𝜑3(𝑥), 

     𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. 

Suppose that the determinant of the system does not 

equal zero. We find the basic splines near the right 

end of the interval [𝑎, 𝑏] in a similar way. Basic 

splines are determined by solving a system of 

equations: 

𝜑1(𝑥𝑗−1)𝜔𝑗−1
𝐿 (𝑥) + 𝜑1(𝑥𝑗) 𝜔𝑗

𝐿(𝑥)

+ 𝜑1(𝑥𝑗+1) 𝜔𝑗+1
𝐿 (𝑥) = 𝜑1(𝑥), 

𝜑2(𝑥𝑗−1)𝜔𝑗−1
𝐿 (𝑥) + 𝜑2(𝑥𝑗) 𝜔𝑗

𝐿(𝑥)

+ 𝜑2(𝑥𝑗+1) 𝜔𝑗+1
𝐿 (𝑥) = 𝜑2(𝑥), 

𝜑3(𝑥𝑗−1)𝜔𝑗−1
𝐿 (𝑥) + 𝜑3(𝑥𝑗) 𝜔𝑗

𝐿(𝑥) +

𝜑3(𝑥𝑗+1) 𝜔𝑗+1
𝐿 (𝑥) = 𝜑3(𝑥),     𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. 

Suppose that the determinant of the system  does not 

equal zero. 

 

Theorem 5. Let function 𝑢(𝑥) be such that 𝑢 ∈

 𝐶3[𝑎, 𝑏]. Suppose the basis splines 

𝜔𝑗(𝑥), 𝜔𝑗+1(𝑥), 𝜔𝑗−1(𝑥),  are constructed when 

𝑈𝑗
𝐿(𝑥) = 𝑢(𝑥𝑗−1)𝜔𝑗−1

𝐿 (𝑥) + 𝑢(𝑥𝑗)𝜔𝑗
𝐿(𝑥)

+ 𝑢(𝑥𝑗+1)𝜔𝑗+1
𝐿 (𝑥), 

𝑈𝑗
𝐿(𝑥) = 𝑢(𝑥), 𝑢(𝑥) = 𝜑1(𝑥), 𝜑2(𝑥), 𝜑3(𝑥), 

for 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

  𝜑1(𝑥) = 1, 𝜑2(𝑥) = exp (𝑥), 𝜑3(𝑥) = exp(−𝑥). 
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Then, 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1] we have  

|𝑢(𝑥) − 𝑈𝑗
𝐿(𝑥)|  ≤ 𝐾3ℎ3‖𝐿𝑢‖[𝑥𝑗−1,𝑥𝑗+1], 

𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1],  𝐾3 > 0. 

Here 𝐿𝑢 = 𝑢′(𝑥) − 𝑢′′′(𝑥) . 

Proof follows from the method described in [11]. In 

the case of the non-polynomial splines as it was 

shown in paper [11] we construct a homogeneous 

equation, which has a fundamental system of 

solutions 𝜑1(𝑥) = 1, 𝜑1(𝑥) = exp(𝑥) , 𝜑2(𝑥) =
exp(−𝑥).

  

We have 

𝐿𝑢 = |

1 𝑒−𝑥

0 −𝑒−𝑥
𝑒𝑥 𝑢(𝑥)

𝑒𝑥 𝑢′(𝑥)

0 𝑒−𝑥

0 −𝑒−𝑥

𝑒𝑥 𝑢′′(𝑥)

𝑒𝑥 𝑢′′′(𝑥)

| = 

2𝑢′(𝑥) − 2𝑢′′′(𝑥) = 0. 

It is easy to see, that the Wronskian 𝑊(𝑥) =

|
1 𝑒−𝑥 𝑒𝑥

0 −𝑒−𝑥 𝑒𝑥

0 𝑒−𝑥 𝑒𝑥
| = −2 does not equal zero. Now we 

can construct a general solution of the 

nonhomogeneous equation 𝐿𝑢 =  𝐹 by the method 

of variation of the constants. 

      Expanding the determinant according to the 

elements of the last column and dividing all terms of 

the equation by 𝑊(𝑥) we obtain the equation 𝐿𝑢 =
0 in the form. 𝑢′′ + 𝑞𝑢′ + 𝑝𝑢 = 0. Here  𝑞 and 𝑝 

are some coefficients.  

      After we have constructed a general solution of 

nonhomogeneous equation 𝐿𝑢 = 𝐹 by the method 

of variation of the constants we obtain the function 

𝑢(𝑥), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. 

In particular, we obtain using the method from 

[11] the formula for 𝑢(𝑥) when 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]: 

𝑢(𝑥) = ∫ (𝑢′(𝑡) − 𝑢′′′(𝑡))(exp(𝑥 − 𝑡)
𝑥

𝑥𝑗

+ 2 exp(𝑡 − 𝑥) − 2) 𝑑𝑡 + 𝑐1

+ 𝑐2 exp(𝑥) + 𝑐3 exp(−𝑥). 

Here 𝑐1, 𝑐2, 𝑐3  are some arbitrary constants, 𝑥 ∈

[𝑥𝑗, 𝑥𝑗+1]. We construct the approximation of 𝑢(𝑥) 

in the form: 

𝑈𝑗
𝐿(𝑥) = 𝑢(𝑥𝑗−1)𝜔𝑗−1

𝐿 (𝑥) + 𝑢(𝑥𝑗)𝜔𝑗
𝐿(𝑥)

+ 𝑢(𝑥𝑗+1)𝜔𝑗+1
𝐿 (𝑥), 

Thus, using the results from paper [11], we get 

|𝑢(𝑥) − 𝑈(𝑥)|  ≤ 𝐾3ℎ3‖𝐿𝑢‖[𝑥𝑗−1,𝑥𝑗+1], 𝑥 ∈

[𝑥𝑗, 𝑥𝑗+1], 

The proof is complete. 

 

Theorem 6. Let function 𝑢(𝑥) be such that 𝑢 ∈

 𝐶3[𝑎, 𝑏]. Suppose the basis splines 

𝜔𝑗(𝑥), 𝜔𝑗+1(𝑥), 𝜔𝑗+2(𝑥),  are constructed when 

𝑈𝑗
𝑅(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗

𝑅(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1
𝑅 (𝑥)

+   𝑢(𝑥𝑗+2)𝜔𝑗+2
𝑅 (𝑥), 

𝑈𝑗
𝑅(𝑥) = 𝑢(𝑥), 𝑢(𝑥) = 𝜑1(𝑥), 𝜑2(𝑥), 𝜑3(𝑥), 

for 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

  𝜑1(𝑥) = 1, 𝜑2(𝑥) = cos(𝑥) , 𝜑3(𝑥) = sin(𝑥). 

Then, 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1] we have  

|𝑢(𝑥) − 𝑈𝑗
𝑅(𝑥)|  ≤ 𝐾2ℎ3 ∥ 𝐿𝑢 ∥[𝑥𝑗,𝑥𝑗+2], 

𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1],  𝐾2 > 0. 

Proof follows from the method described in [11] 

and is similar to the proof of Theorem 5. In 

particular, we obtain using the method from [11] the 

formula for 𝑢(𝑥) when 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]: 

𝑢(𝑥) = 2 ∫ (𝑢′′′(𝑡) + 𝑢′(𝑡))sin2
𝑥

𝑥𝑗

𝑥 − 𝑡

2
𝑑𝑡 + 𝑐1

+ 𝑐2 sin(𝑥) + 𝑐3 cos(𝑥). 

Here 𝑐1, 𝑐2, 𝑐3  are arbitrary constants 

Here 𝐿𝑢 = 𝑢′′′(𝑥) + 𝑢′(𝑥) . The proof is complete. 

Theorem 7 is similar to Theorem 6. 

Theorem 7. Let function 𝑢(𝑥) be such that 𝑢 ∈

 𝐶3[𝑎, 𝑏]. Suppose the basis splines 

𝜔𝑗(𝑥), 𝜔𝑗+1(𝑥), 𝜔𝑗−1(𝑥),  are constructed when 

𝑈𝑗
𝐿(𝑥) = 𝑢(𝑥𝑗−1)𝜔𝑗−1

𝐿 (𝑥) + 𝑢(𝑥𝑗)𝜔𝑗
𝐿(𝑥)

+ 𝑢(𝑥𝑗+1)𝜔𝑗+1
𝐿 (𝑥), 

𝑈𝑗
𝐿(𝑥) = 𝑢(𝑥), 𝑢(𝑥) = 𝜑1(𝑥), 𝜑2(𝑥), 𝜑3(𝑥), 

for 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

  𝜑1(𝑥) = 1, 𝜑2(𝑥) = cos(𝑥) , 𝜑3(𝑥) = sin(𝑥). 

Then, 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1] we have  

|𝑢(𝑥) − 𝑈𝑗
𝐿(𝑥)|  ≤ 𝐾2ℎ3 ∥ 𝐿𝑢 ∥[𝑥𝑗−1,𝑥𝑗+1], 

𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1],  𝐾2 > 0. 
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Here 𝐿𝑢 = 𝑢′′′(𝑥) + 𝑢′(𝑥) . 
Proof follows from the method described in [11] 

and is similar to the proof of Theorem 5. In 

particular, we obtain using the method from [11] the 

formula for 𝑢(𝑥) when 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]: 

𝑢(𝑥) = 2 ∫ (𝑢′′′(𝑡) + 𝑢′(𝑡))sin2
𝑥

𝑥𝑗

𝑥 − 𝑡

2
𝑑𝑡 + 𝑐1

+ 𝑐2 sin(𝑥) + 𝑐3 cos(𝑥). 

Here 𝑐1, 𝑐2, 𝑐3  are arbitrary constants. The proof is 

complete. 

The cases when 𝑈𝑗
𝑅(𝑥) = 𝑢(𝑥), 

 𝑢(𝑥) = 𝜑1(𝑥), 𝜑2(𝑥), 𝜑3(𝑥), for 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], or 

𝑈𝑗
𝐿(𝑥) = 𝑢(𝑥), 𝑢(𝑥) = 𝜑1(𝑥), 𝜑2(𝑥), 𝜑3(𝑥), 

  𝜑1(𝑥) = 1, 𝜑2(𝑥) = exp (𝑥), 𝜑3(𝑥) = exp (2𝑥) 

and   𝜑1(𝑥) = 1, 𝜑2(𝑥) = exp (−𝑥), 𝜑3(𝑥) =

exp (−2𝑥) are investigated in the similar way. In all 

these cases we get a third-order approximation, that 

is, an error of the order 𝑂(ℎ3). Here we note that in 

the first case (1, exp(𝑥), exp(2𝑥)) the solution on 

the interval 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], can be represented in the 

form  

𝑢(𝑥) = 2 ∫ (𝑢′′′(𝑡) − 3𝑢′′(𝑡)
𝑥

𝑥𝑗

+ 2𝑢′(𝑡))(exp(3𝑡) (
exp(2𝑥 − 2𝑡)

2
− exp (x − t) + 1/2) 𝑑𝑡 + 𝑐1

+ 𝑐2 exp(𝑥) + 𝑐3 exp(2𝑥). 

In the second case (1, exp(−𝑥), exp(−2𝑥)) the 

solution on the interval 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], can be 

represented in the form: 

𝑢(𝑥) = 2 ∫ (𝑢′′′(𝑡) + 3𝑢′′(𝑡) + 2𝑢′(𝑡))
𝑥

𝑥𝑗

 

× exp(−3𝑡) (
exp(2𝑡−2𝑥)

2
− exp(t − x) +

1

2
) 𝑑𝑡 

+𝑐1 + 𝑐2 exp(−𝑥) + 𝑐3 exp(−2𝑥). 

We can do some experiments using Maple when 

ℎ = 0.1  on  [−1,1]. Tables 1, 2 show the actual 

errors of approximation of some functions obtained 

with the use of the polynomial and non-polynomial 

splines of the third order of approximation. Table 3 

shows the actual errors of approximation of some 

functions obtained with the use of the polynomial 

and non-polynomial splines of the second order of 

approximation. 

 
    Table 1. The actual errors of approximation of some 

functions obtained with the use of the polynomial and 

non-polynomial splines of the third order of 

approximation 

𝑢(𝑥) 𝜑
1
(𝑥) = 1,

𝜑
2
(𝑥) = 𝑥, 

𝜑
2
(𝑥) = 𝑥2  

𝜑
1
(𝑥) = 1 

𝜑2
(𝑥)

= cos(𝑥), 
  𝜑3(𝑥)
= sin(𝑥)  

𝜑
1
(𝑥) = 1,

𝜑
2
(𝑥)

= exp(−𝑥), 

𝜑3
(𝑥)

= exp (𝑥) 

exp(𝑥) 0.000160 0.000320 0.0 

𝑠in(𝑥) 0.0000641 0.0 0.000128 

𝑥2 0.0 0.000127 0.000126 

exp(−𝑥) 0.000172 0.000344 0.0 

𝑠in(2𝑥) 0.000512 0.000384 0.000639 
1

1 + 25𝑥2
 

0.0296 0.0294 0.0297 

 

Table 2. The actual errors of approximation of some 

functions obtained with the use of the polynomial and 

non-polynomial splines of the third order of 

approximation 

𝑢(𝑥) 𝜑
1
(𝑥) = 1,

𝜑
2
(𝑥)

= exp(𝑥), 

𝜑3
(𝑥)

= exp (2𝑥 ) 

𝜑
1
(𝑥) = 1,

𝜑
2
(𝑥)

= exp(−𝑥), 

𝜑3
(𝑥)

= exp (−2𝑥) 

exp(𝑥) 0.0 0.0 

𝑠in(𝑥) 0.000200 0.000187 

𝑥2 0.000666 0.000593 

exp(−𝑥) 0.00108 0.0 

𝑠in(2𝑥) 0.000843 0.000775 
1

1 + 25𝑥2
 

0.0272 0.0311 

 

Table 3. The actual errors of approximation of some 

functions obtained with the use of the polynomial and 

non-polynomial splines of the second order of 

approximation 

𝑢(𝑥) 𝜑
1
(𝑥) = 1,

𝜑
2
(𝑥) = 𝑥.   

𝜑
1
(𝑥)

= cos(𝑥), 
  𝜑2(𝑥)
= sin(𝑥)  

𝜑
1
(𝑥) = 1,

𝜑
2
(𝑥)

= exp (−𝑥) 

exp(𝑥) 0.00323 0.00647 0.00646 

𝑠in(𝑥) 0.00102 0.0 0.00177 

𝑥2 0.00250 0.00363 0.00487 

exp(−𝑥) 0.00323 0.00647 0.0 

𝑠in(2𝑥) 0.00498 0.00374 0.00558 
1

1 + 25𝑥2
 

0.0418 0.0407 0.0443 

Consider the approximation by polynomial splines. 

Let the second and third derivatives of the function  
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𝑢(𝑥) be such that max
[𝑎,𝑏]

|𝑢′′′| ≤ 𝐶, max
[𝑎,𝑏]

|𝑢′′| ≤

𝐶, 𝐶 = 𝑐𝑜𝑛𝑠𝑡 > 0. The example is function   

𝑢(𝑥) = exp(𝑥)The calculation results presented in 

Tables 1-3 confirm the fact, that the splines of the 

third order of approximation in this case give a 

smaller error than the splines of the second order of 

approximation if in both cases we apply the same 

step ℎ. A similar statement can be formulated for 

non-polynomial splines. The theorems formulated 

above give asymptotic estimates. This allows us to 

hope that for sufficiently small ℎ, the use of splines 

of the third order of approximation will give a 

smaller error than the use of splines of the second 

order of approximation. 

 Сonsider the following example. We will 

approximate the Runge function  𝑢(𝑥) =
1

1+25𝑥2 on 

a uniform grid of nodes built on the interval [𝑎, 𝑏] =
[−1,1] with the step ℎ . Fig. 1 shows a graph of the 

absolute value of the second derivative of the Runge 

function. Fig. 2 shows a graph of the absolute value 

of the third derivative of the Runge function. We 

use the results of Theorem 2 and Theorem 4. 

Let us introduce the notations: 

𝐴(ℎ) = ℎ2/8 max
[0,1]

|𝑢′′(𝑥)|, 

𝐵(ℎ) = 0.0625ℎ3 max
[0,1]

|𝑢′′′(𝑥)|. 

The plots of 𝐴(ℎ) (blue), and   𝐵(ℎ) (red) are given 

in Fig.3. 

Solving the equation 𝐴(ℎ) = 𝐵(ℎ), we find ℎ0 ≈
0.171. At this point, the graph lines intersect. When 

ℎ is greater than this value (ℎ > ℎ0), the theoretical 

error when using polynomial splines of the second 

order of approximation will be lesser then when 

using polynomial splines of the third order of 

approximation. It is easy to calculate that when ℎ =
0.3 we get 𝐴(ℎ) ≈ 0.985, 𝐵(ℎ) ≈ 0.562. 
Let ℎ = 1/3. Fig. 4 shows plot of the actual error of 

approximation of the Runge function by splines of 

the second order of approximation. The maximum 

of the absolute value of the actual error is 0.0623. 

Fig. 5 shows plot of the actual error of 

approximation of the Runge function by splines of 

the third order of approximation. The maximum of 

the absolute value of the actual error is 0.236. 

 
Fig.1. The plot of graph of the absolute value of the 

second derivative of the Runge function. 

 

 
Fig.2. The plot of the graph of the absolute value of the 

third derivative of the Runge function 

 

 
Fig.3. The plots of 𝐴(ℎ) (blue), and   𝐵(ℎ) (red). 

 

 
Fig.4. The plot of the actual error of approximation of the 

Runge function by splines of the second order of 

approximation 

 

 

Fig.5. The plot of the actual error of approximation of the 

Runge function by splines of the third order of 

approximation 

Thus, there are cases when linear polynomial splines 

will give a smaller approximation error than 

quadratic ones. therefore, to verify the result, both 

types of approximations should be applied. 

Now let's apply splines to the calculation of the 

integral ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠
𝑥

𝑎
. 

Transforming the integral ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠
𝑥𝑗+1

𝑥𝑗
  , 

𝑗 = 1, … 𝑛 − 1, using formula (3), we obtain 
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∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠 =
𝑥𝑗+1

𝑥𝑗

 

𝑢(𝑥𝑗−1) ∫ 𝐾(𝑥, 𝑠)𝜔𝑗−1(𝑠)𝑑𝑠 +
𝑥𝑗+1

𝑥𝑗

 

𝑢(𝑥𝑗) ∫ 𝐾(𝑥, 𝑠)𝜔𝑗(𝑠)𝑑𝑠 +
𝑥𝑗+1

𝑥𝑗

 

𝑢(𝑥𝑗+1) ∫ 𝐾(𝑥, 𝑠)𝜔𝑗+1(𝑠)𝑑𝑠 + 𝑂(ℎ3).
𝑥𝑗+1

𝑥𝑗

 

Let us introduce the notations: 

𝑉𝑗(𝑥) = 𝑢̃(𝑥𝑗−1) ∫ 𝐾(𝑥, 𝑠) 𝜔𝑗−1
𝐿 (𝑠)𝑑𝑠 +

𝑥𝑗+1

𝑥𝑗

 

𝑢̃(𝑥𝑗) ∫ 𝐾(𝑥, 𝑠) 𝜔𝑗
𝐿(𝑠)𝑑𝑠 +

𝑥𝑗+1

𝑥𝑗

 

𝑢̃(𝑥𝑗+1) ∫ 𝐾(𝑥, 𝑠) 𝜔𝑗+1
𝐿 (𝑠)𝑑𝑠

𝑥𝑗+1

𝑥𝑗
,  𝑗 = 1, … 𝑛 − 1. 

Using formula (4), we obtain 

𝑄𝑗(𝑥) = 𝑢̃(𝑥𝑗) ∫ 𝐾(𝑥, 𝑠) 𝜔𝑗
𝑅(𝑠)𝑑𝑠

𝑥𝑗+1

𝑥𝑗

 

+𝑢̃(𝑥𝑗+1) ∫ 𝐾(𝑥, 𝑠) 𝜔𝑗+1
𝑅 (𝑠)𝑑𝑠

𝑥𝑗+1

𝑥𝑗
 

+𝑢̃(𝑥𝑗+2) ∫ 𝐾(𝑥, 𝑠) 𝜔𝑗+2
𝑅 (𝑠)𝑑𝑠

𝑥𝑗+1

𝑥𝑗
, 𝑗 = 0, … , 𝑛 − 2. 

Setting 𝑥 = 𝑥𝑘,  we obtain the numerical method: 

𝑢̃(𝑥𝑘) + ∑ 𝑄𝑠(𝑥𝑘)

𝑘−2

𝑠=0

+ ∑ 𝑉𝑠(𝑥𝑘)

𝑘−1

𝑠=𝑘−1

= 𝑓(𝑥𝑘), 

𝑘 = 0, … , 𝑛. 

As a result of solving the system of equations, we 

obtain approximate values 𝑢̃ of the solution 𝑢 to 

equation (2) at the grid nodes  𝑥𝑘. First we have 

𝑢(𝑥0) = 𝑓(𝑥0). Next, we solve the system of two 

equations and find 𝑢̃(𝑥𝑖), 𝑖 = 1,2. Solving each next 

equation, we find the approximate values of the 

solution at the next grid points. 

     In the case of a grid consisting of three nodes, the 

system of equations has the form: 

𝑢(𝑥0) = 𝑓(𝑥0), 

𝑢̃(𝑥1) + 𝑢̃(𝑥0) ∫ 𝐾(𝑥1, 𝑠) 𝜔0
𝑅(𝑠)𝑑𝑠 +

𝑥1

𝑥0

 

+𝑢̃(𝑥1) ∫ 𝐾(𝑥1, 𝑠) 𝜔1
𝑅(𝑠)𝑑𝑠

𝑥1

𝑥0

 

+𝑢̃(𝑥2) ∫ 𝐾(𝑥1, 𝑠) 𝜔2
𝑅(𝑠)𝑑𝑠 = 𝑓(𝑥1),

𝑥1

𝑥0

 

𝑢̃(𝑥2) + 𝑢̃(𝑥0) ∫ 𝐾(𝑥2, 𝑠) 𝜔0
𝑅(𝑠)𝑑𝑠 +

𝑥1

𝑥0

 

+𝑢̃(𝑥1) ∫ 𝐾(𝑥2, 𝑠) 𝜔1
𝑅(𝑠)𝑑𝑠

𝑥1

𝑥0

 

+𝑢̃(𝑥2) ∫ 𝐾(𝑥2, 𝑠) 𝜔2
𝑅(𝑠)𝑑𝑠

𝑥1

𝑥0

 

+𝑢̃(𝑥0) ∫ 𝐾(𝑥2, 𝑠) 𝜔0
𝐿(𝑠)𝑑𝑠

𝑥2

𝑥1

 

+𝑢̃(𝑥1) ∫ 𝐾(𝑥2, 𝑠) 𝜔1
𝐿(𝑠)𝑑𝑠

𝑥1

𝑥1

 

+𝑢̃(𝑥2) ∫ 𝐾(𝑥2, 𝑠) 𝜔2
𝐿(𝑠)𝑑𝑠 = 𝑓(𝑥2).

𝑥2

𝑥1

 

The advantages of the proposed method include the 

ability to calculate the exact integral 

∫ 𝐾(𝑥, 𝑠) 𝜔0
𝑅(𝑠)𝑑𝑠

𝑥𝑖+1

𝑥𝑖
 (without error). However, in 

case of difficulties with calculating the integral, we 

can apply a quadrature formula that provides the 

order of approximation 𝑚, 𝑚 ≥ 3. 

3  Numerical results 
Now we apply the polynomial, the non-

polynomial splines of the second order of 

approximation, and the composite trapezoidal rule 

for solving some Volterra integral equations. We 

will carry out the calculations in the package 

MAPLE with 𝐷𝑖𝑔𝑖𝑡𝑠 = 15 and the number of nodes 

𝑛 = 32, 64, 128. 

Problem 1. We take the equation 7 from paper 

[8]:  

𝑢(𝑥) = exp(−𝑥) + 𝑥 exp(𝑥)

− ∫ exp(𝑥 + 𝑡)𝑢(𝑡)𝑑𝑡, 𝑥 ∈ [0, 1].   
𝑥

0
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The exact solution of the equation is 𝑢(𝑥) =
exp(−𝑥). 

Build a grid of equally spaced nodes with a step 

ℎ. We will solve by different methods: using 

polynomial and non-polynomial splines, as well as 

the trapezoidal method. 

Table 4 shows the maximum of the error in 

absolute value between the exact solution of the 

equation and the numerical solution obtained with 

the application the linear polynomial splines 

(column 2). The numerical solution obtained with 

the application of the non-polynomial splines 

(𝜑1(𝑥) = 1 𝜑2(𝑥) = sin(𝑥), 𝜑3(𝑥) = cos(𝑥)) is 

given in the third column. The numerical solution 

obtained with the application of the non-polynomial 

splines (𝜑1(𝑥) = 1, 𝜑2(𝑥) = exp(𝑥), 𝜑3(𝑥) =
exp(2𝑥)) is presented in the fourth column of Table 

1. The number of nodes (n) is given in the first 

column of Table 4. The application of the 

quadrature formula of trapeziums for this equation 

gives us the exact solution (see Fig.6). 

 
Fig.6. The plot of error between the exact solution of 

the equation (problem 1) and the numerical solution 

obtained with the application of the quadrature formula of 

trapeziums when we use 64 nodes 

As it is known, the composite trapezoidal rule for 

calculating an integral has the following form:  

∫ 𝑔(𝑠)𝑑𝑠 ≈ ℎ
𝑏

𝑎
∑ 𝑔(𝑥𝑗)𝑛−1

𝑗=1 + (𝑔(𝑥0) + 𝑔(𝑥𝑛))/2. 

If the function 𝑢 is as such that 𝑔 ∈ 𝐶2[𝑎, 𝑏], then 

the remainder can be written in the form:  

∫ 𝑔(𝑠)𝑑𝑠 − ℎ
𝑏

𝑎

∑ 𝑔(𝑥𝑗) −

𝑛−1

𝑗=1

 

−
𝑔(𝑥0) + 𝑔(𝑥𝑛)

2
= −

(𝑏 − 𝑎)ℎ2

12
𝑔′′(𝜉),

𝑎 ≤ 𝜉 ≤ 𝑏. 

We have the equation 

𝑢(𝑥) + ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑓(𝑥)
𝑥

𝑎
,   𝑥 ∈ [𝑎, 𝑏].  

Consistently applying the composite trapezoidal rule 

for calculating the integral in the linear Volterra 

equation of the second kind, taking into account the 

error in calculating the integral and putting 𝑥 = 𝑥𝑗, 

we obtain the system of equations: 

𝑢(𝑥0) = 𝑓(𝑥0), 

𝑢 ̃(𝑥1) =
−ℎ𝐾10𝑢(𝑥0)

2
− ℎ𝐾11𝑢 ̃(𝑥1)/2 + 𝑓(𝑥1), 

𝑢 ̃(𝑥𝑘) = −
ℎ𝐾𝑘0𝑢(𝑥0)

2
− ℎ ∑ 𝐾𝑘𝑗𝑢 ̃(𝑥𝑗)

𝑘−1

𝑗=1

−
ℎ𝐾𝑘𝑘𝑢 ̃(𝑥𝑘)

2
+ 

+𝑓(𝑥𝑘), 𝑘 = 2, . . . , 𝑛. 

Here  𝐾𝑘𝑗 = 𝐾(𝑥𝑘 , 𝑠𝑗), 𝑢 ̃(𝑥𝑘) ≈ 𝑢(𝑥𝑘). 

The calculations can be carried out according to the 

following scheme: 

𝑢 ̃(𝑥𝑘) =
1

1 +
ℎ𝐾𝑘𝑘

2

(
−ℎ𝐾𝑘0𝑢(𝑥0)

2
+ 𝑓(𝑥𝑘)

− ℎ ∑ 𝐾𝑘𝑗𝑢 ̃(𝑥𝑗)

𝑘−1

𝑗=1

). 

Calculating sequentially according to this scheme, 

we get 𝑢 ̃(𝑥0) = exp(−𝑥0) + 𝑥0 exp(𝑥0), 

For 𝑥0 = 0, we have 𝑢 ̃(𝑥0) = 1. Further, for 𝑥1 =
ℎ, we obtain  

𝑢 ̃(𝑥1)=
exp(−ℎ)+ℎ exp(ℎ)/2

1+ℎ exp(2ℎ)/2
= exp(−ℎ), 

Continuing to calculate, we obtain 𝑢 ̃(𝑥𝑘) =
𝑒𝑥𝑝(−𝑥𝑘), which coincides with the exact solution. 

Applying the quadrature trapezoidal formula to 

other integral equations, such a good result can 

hardly be expected. 

When we use the linear piecewise polynomial 

splines with the 64 nodes on the interval [0,1] we 

receive the plot of the error 𝑅 = 𝑢 − 𝑢̃ between the 

exact solution of the equation and the numerical 

solution obtained with the application the 
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polynomial splines of the third order approximation 

which is shown in Fig.7. When we use the non-

polynomial splines of the third order approximation 

(𝜑1(𝑥) = 1, 𝜑2(𝑥) = exp(𝑥), 𝜑3(𝑥) = exp(2𝑥)) 

with the 64 nodes on the interval [0,1] we receive 

the plot of the error between the exact solution of 

the equation and the numerical solution obtained 

with the application which is shown in Fig.8.  

When we use the non-polynomial splines of the 

third order approximation (𝜑1(𝑥) = 1, 𝜑2(𝑥) =
exp(−𝑥), 𝜑3(𝑥) = exp(−2𝑥)) with the 64 nodes on 

the interval [0,1] we receive the plot of the error 

between the exact solution of the equation and the 

numerical solution obtained with the application 

which is shown in Fig.9. Here we connected the 

points with straight line segments for clarity of the 

drawing. The graph shows the nodes of the grid at 

the interval [0,1] and the values of the errors 𝑅 at 

these nodes. 

 

 
Fig.7. The plot of error between the exact solution of 

the equation (problem 1) and the numerical solution 

obtained with the application of the linear polynomial 

splines when we use 64 nodes 

 

 
Fig.8. The plot of error between the exact solution of 

the equation (problem 1) and the numerical solution 

obtained with the application of the non-polynomial 

exponential splines of the third order approximation 

(𝜑1(𝑥) = 1, 𝜑2(𝑥) = exp(𝑥), 𝜑3(𝑥) = exp(2𝑥)) when 

we use 64 nodes 

 

When we use the non-polynomial splines 

(𝜑(𝑥) = sin(𝑥)) with the 128 nodes on the interval 

[0,1] we receive the plot of the error which is shown 

in Fig.10. When we use the polynomial splines of 

the third order approximation with the 64 nodes on 

the interval [0,1] we receive the plot of the error 

which is shown in Fig.11. When we use the 

polynomial splines of the third order approximation 

with the 128 nodes on the interval [0,1] we receive 

the plot of the error which is shown in Fig.12. 

 
Fig.9. The plot of error between the exact solution of 

the equation (problem 1) and the numerical solution 

obtained with the application of the non-polynomial 

splines of the third order approximation (𝜑1(𝑥) =
1, 𝜑2(𝑥) = exp(−𝑥), 𝜑3(𝑥) = exp(−2𝑥)) when we use 

32 nodes 

Table 4. The maximum of the error in absolute value 

between the exact solution of the equation from problem 

2 and the numerical solution obtained with the 

application of the polynomial splines, and the non-

polynomial splines of the third order approximation 

 

𝑛 

The error 

obtained 

with the use 

the 

polynomial 

splines 

The error 

obtained with 

the use the 

trigonometric 

splines  

The error 

obtained with 

the use the non-

polynomial 

splines 𝜑1(𝑥) =
1, 𝜑2(𝑥) =
exp(𝑥), 𝜑3(𝑥) =
exp(2𝑥))  

32 0.396 ∙ 10−7 0.792 ∙ 10−7 0.235 ∙ 10−6 

64 0.247 ∙ 10−8 0.496 ∙ 10−8 0.148 ∙ 10−7 

128  0.163 ∙ 10−9 0.310 ∙ 10−9 0.933 ∙ 10−9 

 

 
Fig.10. The plot of error between the exact solution of 

the equation (problem 1) and the numerical solution 

obtained with the application of the non-polynomial 

splines (𝜑1(𝑥) = 1 𝜑2(𝑥) = sin(𝑥), 𝜑3(𝑥) = cos(𝑥)) 

when we use 128 nodes 
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Fig.11. The plot of error between the exact solution of 

the equation (problem 1) and the numerical solution 

obtained with the application of the polynomial splines of 

the third order approximation when we use 64 nodes. 

 

 
Fig.12. The plot of error between the exact solution of 

the equation (problem 1) and the numerical solution 

obtained with the application of the polynomial splines of 

the third order approximation when we use 128 nodes. 

 

Note that to calculate the integral on the interval 

[𝑥𝑗, 𝑥𝑗+1], we can use a quadrature formula, for 

example the formula of the middle rectangles. We 

have in this case: ℎ = 𝑥𝑗+1 − 𝑥𝑗, 

𝑉𝑗(𝑥)≈𝑢̃(𝑥𝑗−1)ℎ𝐾 (𝑥, 𝑥𝑗 +
ℎ

2
)  𝜔𝑗−1

𝐿 (𝑥𝑗 +
ℎ

2
) 

+𝑢̃(𝑥𝑗)ℎ𝐾(𝑥, 𝑥𝑗 + ℎ/2) 𝜔𝑗
𝐿(𝑥𝑗 + ℎ/2) + 

𝑢̃(𝑥𝑗+1)ℎ𝐾(𝑥, 𝑥𝑗 + ℎ/2) 𝜔𝑗+1
𝐿 (𝑥𝑗 + ℎ/2), 

𝑄𝑗(𝑥) ≈ 𝑢̃(𝑥𝑗)ℎ𝐾 (𝑥, 𝑥𝑗 +
ℎ

2
)  𝜔𝑗

𝑅 (𝑥𝑗 +
ℎ

2
) 

+𝑢̃(𝑥𝑗+1)ℎ𝐾 (𝑥, 𝑥𝑗 +
ℎ

2
)  𝜔𝑗+1

𝑅 (𝑥𝑗 +
ℎ

2
) 

+𝑢̃(𝑥𝑗+2)ℎ𝐾 (𝑥, 𝑥𝑗 +
ℎ

2
)  𝜔𝑗+2

𝑅 (𝑥𝑗 +
ℎ

2
). 

Fig.13 shows the plot of error between the exact 

solution of the equation (problem 1) and the 

numerical solution obtained with the application of 

the polynomial splines of the third order 

approximation and  the middle rectangles formula  

when we use 128 nodes. 

 

 
Fig.13. The plot of error between the exact solution of 

the equation (problem 1) and the numerical solution 

obtained with the application of the polynomial splines of 

the third order approximation when we use 128 nodes. 

3 Application to Solving a 

Nonlinear Equation 

Let us now consider the application of splines of 

the second order of approximation to the solution of 

the nonlinear Volterra equation of the second kind. 

𝑢(𝑥) + ∫ 𝐾(𝑥, 𝑠, 𝑢(𝑠))𝑑𝑠 = 𝑓(𝑥)
𝑥

𝑎
,   𝑥 ∈ [𝑎, 𝑏]. 

We approximate 𝑢(𝑠) with the expression: 

𝑈(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1(𝑥),        (5) 

𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

Now transforming the integral 

∫ 𝐾(𝑥, 𝑠, 𝑢(𝑠))𝑑𝑠
𝑥𝑗+1

𝑥𝑗
 using formula (5), we obtain 

∫ 𝐾(𝑥, 𝑠, 𝑢(𝑠))𝑑𝑠 ≈
𝑥𝑗+1

𝑥𝑗
∫ 𝐾(𝑥, 𝑠, 𝑈(𝑠))𝑑𝑠

𝑥𝑗+1

𝑥𝑗
. 

Using formulas (3), (4) we obtain the approximate 

solution with the lesser error. 

Here we take the nonlinear Volterra equation of 

the second kind of the form: 

𝑢(𝑥) + ∫ 𝐾(𝑥, 𝑠, 𝑢2(𝑠))𝑑𝑠 = 𝑓(𝑥)
𝑥

𝑎
,   𝑥 ∈ [𝑎, 𝑏] .     

Now let us solve equation from paper [8] and 

compare the results with the result obtained with 

splines. First, in problem 4 we consider problem 6 

from paper [8]. 

Problem 2. We take the equation 

𝑢(𝑥) = 𝑔(𝑥) + ∫ 𝑥𝑠2𝑢2(𝑠)𝑑𝑠,    𝑥 ∈ [0, 1].
𝑥

0
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Here 𝑔(𝑥) = (1 + 2𝑥4/9 − 𝑥3/3 + 2𝑥2/3 +
11𝑥/9)log (𝑥 + 1) + 5𝑥3/18 − 11𝑥2/9 −

2𝑥4/27 + (−
𝑥4

3
−

𝑥

3
) (ln(𝑥 + 1))2. 

The exact solution is taken by 𝑢(𝑥) = log(𝑥 + 1). 

At first, we build a grid of nodes on the interval 

[0,1]: 

𝑥𝑘 = 𝑘ℎ, 𝑘 = 0,1, … 𝑛, ℎ =
1

𝑛
. 

To solve the problem, we need the following 

expressions:  

𝑊𝑘(𝑥) = ∫ 𝐾(𝑥, 𝑠)(𝑢𝑘𝜔𝑘(𝑠) + 𝑢𝑘+1𝜔𝑘+1(𝑠)
𝑥𝑘+1

𝑥𝑘

+ 𝑢𝑘+2𝜔𝑘+2(𝑠))2 𝑑𝑠; 

𝑊1
𝑘(𝑥) = ∫ 𝐾(𝑥, 𝑠)(𝑢𝑘−1𝜔𝑘−1(𝑠) + 𝑢𝑘𝜔𝑘(𝑠)

𝑥𝑘+1

𝑥𝑘

+ 𝑢𝑘+1𝜔𝑘+1(𝑠))2 𝑑𝑠; 

Hereinafter 𝑢𝑘 ≈ 𝑢(𝑥𝑘). Then we sequentially 

calculate 𝑢𝑘. We have 𝑢0 = 𝑢̃(𝑥0): 𝑢̃(𝑥0) = 𝑓(𝑥0), 

To determine 𝑢1 𝑢2, we solve the system of 

equations 𝑉1 = 0, 𝑉2 = 0: 

𝑉1 = 𝑢1 − 𝑊0(𝑥1) − 𝑓(𝑥1), 

𝑉2 = 𝑢2 − 𝑊0(𝑥2) − 𝑊1
1(𝑥2) − 𝑓(𝑥2), 

Next, we sequentially find 𝑢𝑚 by solving the 

equations: 

𝑢3 − ∑ 𝑊1
𝑗(𝑥3)

2

𝑗=1

− 𝑊0(𝑥3) − 𝑓(𝑥3) = 0, 

𝑢𝑚 − ∑ 𝑊1
𝑗(𝑥𝑚)

𝑚−1

𝑗=1

− 𝑊0(𝑥𝑚) − 𝑓(𝑥𝑚) = 0. 

When we use the linear piecewise polynomial 

splines with the 64 nodes on the interval [0,1] we 

receive the plot of the error between the exact 

solution of the equation and the numerical solution 

obtained with the application of the polynomial 

splines of the third order approximation which is 

shown in Fig.14. When we use the linear piecewise 

polynomial splines with the 128 nodes on the 

interval [0,1] we receive the plot of the error 

between the exact solution of the equation and the 

numerical solution obtained with the application of 

the third order approximation polynomial splines 

which is shown in Fig.15.  

 
Fig.14. The plot of error between the exact solution of 

the equation (problem 2) and the numerical solution 

obtained with the application of the polynomial splines of 

the third order approximation when we use 64 nodes 

 
Fig.15. The plot of error between the exact solution of 

the equation (problem 2) and the numerical solution 

obtained with the application of the polynomial splines of 

the third order approximation when we use 128 nodes 

Table 5 shows the maximum of the error in 

absolute value between the exact solution of the 

equation (Problem 2) and the numerical solution 

obtained with the application of the linear 

polynomial splines of the second order 

approximation (column 2). The numerical solution 

obtained with the application the polynomial splines 

of the third order approximation (𝜑(𝑥) = 𝑠𝑖𝑛(𝑥)) is 

presented in column 3. The numerical solution 

obtained with the application the non-polynomial 

splines of the second order approximation (𝜑(𝑥) =
𝑒𝑥𝑝(−𝑥)) is given in column 4. The number of 

nodes (n) is given in the first column of Table 5.  

Table 5. The maximum of the error in absolute value 

between the exact solution of the equation from problem 

2 and the numerical solution obtained with the 

application of the linear polynomial splines, non-

polynomial splines  

𝑛 The error 

obtained with 

the use the 

linear 

polynomial 

splines of the 

second order 

approximation 

The error 

obtained with 

the use the 

polynomial 

splines of the 

third order 

approximation 

The error 

obtained with 

the use the non-

polynomial 

splines of the 

second order 

approximation 

𝜑(𝑥) =
𝑒𝑥𝑝 (−𝑥) 

32 0.116 ∙ 10−4 0.216 ∙ 10−6 0.856 ∙ 10−5 

64 0.290 ∙ 10−5 0.267 ∙ 10−7 0.214 ∙ 10−5 

128 0.724 ∙ 10−6 0.332 ∙ 10−8 0.536 ∙ 10−6 
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When we use the non-polynomial splines of the 

second order approximation 𝜑(𝑥) = exp (−𝑥) with the 

64 nodes on the interval [0,1] we receive the plot of 

the error which is shown in Fig.16. When we use the 
non-polynomial splines of the second order 

approximation 𝜑(𝑥) = exp (−𝑥) splines with the 128 

nodes on the interval [0,1] we receive the plot of the 

error which is shown in Fig.17. 

 

 
Fig.16. The plot of error between the exact solution of 

the equation (problem 2) and the numerical solution 

obtained with the application of the polynomial splines of 

the second order approximation when we use 64 nodes 

 

 
Fig.17. The plot of error between the exact solution of 

the equation (problem 2) and the numerical solution 

obtained with the application of the polynomial splines of 

the second order approximation when we use 128 nodes 

 

4 Conclusion 

In this paper, polynomial and non-polynomial 

splines of the third order of approximation are used 

to solve the linear and nonlinear models of the 

Volterra integral equations of the second kind. It is 

assumed, that the integral of the product of the 

kernel and the basis spline can be calculated exactly 

(in the form of a formula). The basis spline is the 

polynomial spline or non-polynomial spline of the 

third order of approximation. The numerical 

examples are done. The graphs of the error between 

the exact and approximate solutions at the different 

number of grid points are also drawn. As it is 

shown, the application of the local interpolation 

splines of the third order of approximation for the 

Volterra integral equations of the second kind can 

give an appropriate result, better than the local 

interpolation splines of the second order of 

approximation. But it is quite possible that the 

splines of the second order of the approximation 

order will give a smaller error (for example, if the 

absolute value of the maximum of the second 

derivative of the function turns out to be less than 

the absolute value of the maximum of the third 

derivative). The use of various methods allows us to 

verify the result. The non-polynomial spline can 

sometimes provide the result better than the 

polynomial splines.  
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