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Abstract: - As it is well known the problem of solving the Fredholm integral equation of the first kind belongs to 
the class of ill-posed problems. The Tikhonov regularization method is well known. This method is usually 
applied to an integral equation and a system of linear algebraic equations. The authors firstly propose to reduce 
the integral equation of the first kind to a system of linear algebraic equations. This system is usually extremely 
ill-posed. Therefore, it is necessary to carry out the Tikhonov regularization for the system of equations. In this 
paper, to form a system of linear algebraic equations, local polynomial and non-polynomial spline 
approximations of the second order of approximation are used. The results of numerical experiments are 
presented. 
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1 Introduction 
As is well known, the problem of solving the 
Fredholm integral equation of the first kind  

∫ 𝐾(𝑥, 𝑠)𝑦(𝑠)𝑑𝑠 = 𝑓(𝑥)
𝑏

𝑎

 

belongs to the class of ill-posed problems. This is 
manifested in the fact that the equation cannot be 
solved for an arbitrary right-hand side 𝑓(𝑥). If the 
equation has a solution, then this solution may not 
be the only one. In addition, small errors introduced 
in the right side of the equation can lead to large 
errors in the solution. 
   The Tikhonov regularization method for such 
problems is well known (see [1]). As a result a 
system of linear algebraic equations is obtained. The 
approximate values of the required function are 
found at the grid nodes after solving the system of 
the linear algebraic equations. Richard Bellman said 
that the theory of matrices can be regarded as the 
arithmetic of higher mathematics and that solving a 
linear system is the most fundamental problem in 

analysis, to which researchers attempt to reduce 
many other problems and, to their horror, are 
sometimes successful. 
    Suppose an integral equation has a unique 
solution. The authors propose to first reduce the 
integral equation of the first kind to a system of 
linear algebraic equations. This system is usually 
extremely ill-posed. Therefore, it is necessary to 
carry out the Tikhonov regularization for the system 
of equations ([2], [3]). 
    There are many methods for reducing an integral 
equation to a system of linear algebraic equations 
[4]. Good results are obtained by using various 
quadrature formulas (middle rectangles, trapezoids, 
Simpson's or more exact quadrature formulas). The 
method of moments (Galerkin's method) gives a 
good result. At present, spline approximations are 
used to solve various problems [3], [5]. Of particular 
interest are the approximations using integro-
differential splines [5]. To solve the Fredholm 
integral equation of the second kind, they gave a 
lesser error than when using traditional methods [4].  
Note that recently many authors have investigated 
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the feasibility and effectiveness of using splines and 
wavelets to construct a numerical solution of 
integral equations. 

A new collocation technique for the numerical 
solution of the Fredholm, Volterra and mixed 
Volterra-Fredholm integral equations of the second 
kind was introduced and also developed a numerical 
integration formula on the basis of the linear 
Legendre multi-wavelets in paper [ 6]. 

In [7], the tension spline approximation to obtain 
the numerical solution of the Volterra–Fredholm 
integral equation is developed.  

In paper [8], a general spline maximum entropy 
method for the approximation of solutions for 
solving the Fredholm integral equations is 
described. 

In paper [9], the quadratic rule for the numerical 
solution of the linear and nonlinear two-dimensional 
Fredholm integral equations based on spline quasi-
interpolant is suggested. 

In paper [10], the solution of the Fredholm integro-
differential equations of the second kind is approximate 
by using an exponential spline function. 

In paper [11], an iterative numerical method for 
approximating the solution of fuzzy functional 
integral equations of the Fredholm type is proposed. 

In paper [12], a numerical scheme based on the 
modified moving least-square (MMLS) method for 
solving the Fredholm–Hammerstein integral 
equations on 2D irregular domains is described. 

The approximations with splines on the irregular 
set of nodes are of particular interest [13].  

The application of the generalized Haar spaces is 
very useful [14]. 
In this paper, we compare the results of applying 
various methods for solving the Fredholm integral 
equation of the first kind under the assumption that 
the solution is unique.  

 

2 Problem Formulation 

The integral equation 

 𝐴𝑧 ≡ ∫ 𝐾(𝑥, 𝑠)𝑦(𝑠)𝑑𝑠 =
1

0
𝑓(𝑥), 𝑥 ∈ [0,1]   (1) 

is considered. 
Here the kernel 𝐾(𝑥, 𝑠) is a given continuous 
function, 𝑦(𝑠) is an unknown continuous function, 
and the right-side 𝑓(𝑥) belongs to space 𝐿2[0,1] or 
𝐶[0,1].  The problem of solving the equation  

𝐴𝑧 = 𝑓 

belongs to the class of ill-posed problems (see [1]). 
Suppose the operator 

1A
 exists but is not limited. 

In this case, small errors introduced in the right side 
of the equation can lead to large errors in the 
solution. 
      Let us choose some quadrature formula of the 
form  

∫ 𝑔(𝑠)𝑑𝑠 ≈ ∑ 𝐴𝑘𝑔(𝑠𝑘)

𝑛

𝑘=1

1

0

 

and apply it to calculate the integral in (1), as a 
result of which we arrive at the approximate 
equation  

              ∑ 𝐴𝑘𝐾(𝑥, 𝑠𝑘)𝑦(𝑠𝑘) = 𝑓(𝑥)𝑛
𝑘=1 .            (2)  

Let us substitute , 1,...,jx s j n  . As a result we 
obtain a system of linear algebraic equations 
(SLAE) 

∑ 𝐴𝑘𝐾𝑗𝑘𝑧𝑘 = 𝑓𝑗,   𝑗 = 1, . . . , 𝑛.

𝑛

𝑘=1

 

Here 𝑧𝑘 = 𝑦(𝑠𝑘). Let us write it in the matrix form:  

𝐶𝑍 = 𝐹.                                          (3)  

This system is ill-posed, i.e. its condition number is 
large, and to solve it, it is necessary to apply 
regularization methods. In standard form, the 
Tikhonov regularization method [1] leads to the 
Euler equation 

(𝐶∗𝐶 + 𝛼𝐸)𝑍 = 𝐶∗𝐹, 

whose solution, for some choice 𝛼 ↓ 0, tends to the 
normal solution of the system 𝐶𝑍 = 𝐹 (see [1]). Let 
us call it the framework of an approximate solution 
to equation (1) by analogy with the general scheme 
of approximate methods [4]. In [2], methods of 
constructing a SLAE of the Euler equation with the 
smallest condition numbers are described. 
      The described scheme fits the following 
approach: we will obtain an approximate solution of 
equation (1) in the form of an expansion  

𝑧𝑛(𝑠) = ∑ 𝑐𝑘𝑤𝑘(𝑠)

𝑛

𝑘=1
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in some system of functions {𝜔𝑘}. After substituting 
this expansion into the left-hand side of equation 
(1), we calculate the integrals  

∫ 𝐾(𝑥, 𝑠)𝑤𝑘(𝑠)𝑑𝑠
1

0

, 

and substitute 𝑥𝑗, 𝑗 = 1, … , 𝑛, instead of 𝑥. Now we 
arrive at an equation of the form (3), and then 
proceed as described above. As {𝑤𝑘} we can select 
polynomial or non-polynomial spline functions (see 
[3], [5]). 
      Book [1] describes the following regularization 
method for the original equation (1).  
Suppose that there is a unique solution to the 
original equation (1), which belongs to some 
compact subset of the space 𝐶[0,1]. To define the 
compact set, a functional 

𝛺(𝑧) = ∫ (𝑧2(𝑠) + 𝑝(𝑧′
1

0

)2)𝑑𝑠, 𝑝 > 0 

 is used. The functional is nonnegative in the space 
𝐿2(0,1). 
It has the property that the set of all elements z 
satisfying the inequality 𝛺(𝑧) ≤ 𝑑 is compact in 
𝐶[0,1] for any number 𝑑 > 0. Then the problem is 
posed to minimize the functional 
 

𝑀𝛼(𝐴, 𝑓, 𝑧) = ||𝐴𝑧 − 𝑓||𝐿2

2 + 𝛼𝛺(𝑧) 
 

for a fixed positive value of the regularization 
parameter 𝛼. It leads to the Euler equation 
 
  (𝐴∗𝐴 + 𝛼𝐿)𝑧 = 𝐴∗𝑓, 𝐿𝑧 = 𝑧(𝑠) − 𝑝𝑧 ′′(𝑠), 𝑝 > 0, 
 
with some boundary conditions [1].  
Solutions of the Euler equation, for a certain choice 
𝛼 ↓ 0, converge to the desired solution. Of course, 
to solve this integro-differential equation, the 
discretization of this integro-differential equation is 
required. The discretization leads to a SLAE.  
   The Galerkin method for solving our problem is 
effective. We obtain an approximate solution in the 
form 

𝑧𝑛(𝑠) = ∑ 𝑐𝑘𝑤𝑘(𝑠)𝑛
𝑘=1 . 

The coefficients  𝑐𝑘 are determined from the 
condition of equality of the moments 

(𝐴𝑧𝑛, 𝑤𝑗) = (𝑓, 𝑤𝑗), 𝑗 = 1, . . . , 𝑛, 

which leads to the SLAE 

∑ 𝑐𝑘(𝐴𝑤𝑘, 𝑤𝑗) = (𝑓, 𝑤𝑗), 𝑗 = 1, . . . , 𝑛

𝑛

𝑘=1

. 

This SLAE is ill-posed, and the techniques 
described above should be used to regularize it. 
Note the rather high complexity of the method and 
its high efficiency. 

3 Numerical experiments 

The polynomial basis splines can be taken in the 
form: 

𝜔𝑗(𝑠) =
𝑠 − 𝑥𝑗+1

𝑥𝑗 − 𝑥𝑗+1
, 𝑠 ∈ [𝑥𝑗, 𝑥𝑗+1], 

𝜔𝑗+1(𝑠) =
𝑠 − 𝑥𝑗

𝑥𝑗+1 − 𝑥𝑗
, 𝑠 ∈ [𝑥𝑗, 𝑥𝑗+1]. 

The function 𝑢(𝑠) can be approximated by the 
polynomial spline (see [15]) 

 
𝑈(𝑠) = 𝑢(𝑥𝑗)𝜔𝑗(𝑠) + 𝑢(𝑥𝑗+1)𝜔𝑗+1(𝑠),       (4) 

𝑠 ∈ [𝑥𝑗, 𝑥𝑗+1], 

llowing theorem was proved in [15]. 

Let us denote 

∥ 𝑢′′ ∥[𝑥𝑗,𝑥𝑗+1]= max
[𝑥𝑗,𝑥𝑗+1]

|𝑢′′(𝑥)|, ℎ𝑗 = 𝑥𝑗+1 − 𝑥𝑗. 

Theorem 1. Let 𝑢 ∈ С2[𝑎, 𝑏]. To approximate the 
function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], by spline (4), the 
following inequality is valid:      

    | 𝑢(𝑥) − 𝑈(𝑥)| ≤ 𝐾ℎ𝑗
2 ∥ 𝑢′′ ∥[𝑥𝑗,𝑥𝑗+1], 𝐾 = 1/8. 

Proof. It is easy to notice that 𝑈 is an interpolation 
polynomial of the first degree, and 𝑥𝑗, 𝑥𝑗+1 are the 
interpolation nodes, 𝑢(𝑥𝑗) = 𝑈(𝑥𝑗), 𝑢(𝑥𝑗+1) =

𝑈(𝑥𝑗+1). Using the remainder term we get 

 𝑢(𝑥) − 𝑈(𝑥) =
𝑢′′(𝜏)

2!
(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+1).  

Thus, 

 max
[𝑥𝑗,𝑥𝑗+1]

|𝑢(𝑥) − 𝑈(𝑥)| ≤
1

8
ℎ𝑗

2 max
[𝑥𝑗,𝑥𝑗+1]

|𝑢′′(𝑥)|.  

The details can be seen in paper [15].  
The proof is complete. 
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As it is shown in paper [5], if the functions 𝜑1, 𝜑2 
form a Chebyshev system, then the basis functions 
𝜔𝑘 , 𝑘 = 𝑗, 𝑗 + 1, can be determined by solving the 
system of equations 

       𝜑1(𝑥𝑗)𝜔𝑗(𝑥) + 𝜑1(𝑥𝑗+1)𝜔𝑗+1(𝑥) = 𝜑1(𝑥), 

𝜑2(𝑥𝑗)𝜔𝑗(𝑥) + 𝜑2(𝑥𝑗+1)𝜔𝑗+1(𝑥) = 𝜑2(𝑥), 

𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. 

The determinant of the system should be not equal 
zero. 
      We construct a non-polynomial approximation 
of function 𝑢(𝑥), 𝑢 ∈ С2[𝑎, 𝑏],  on each grid interval 
[𝑥𝑗, 𝑥𝑗+1] in the form 

𝑈(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1(𝑥),       (5) 
  𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1].              

Suppose 𝜑1(𝑥) = 1, 𝜑2(𝑥) = 𝜑(𝑥). In this case the 
non-polynomial basis splines can be taken in the 
form: 

𝜔𝑗(𝑥) =
𝜑(𝑥) − 𝜑(𝑥𝑗+1)

𝜑(𝑥𝑗) − 𝜑(𝑥𝑗+1)
, 

𝜔𝑗+1(𝑥) =
𝜑(𝑥) − 𝜑(𝑥𝑗)

𝜑(𝑥𝑗+1) − 𝜑(𝑥𝑗)
. 

We can take 𝜑(𝑥) = exp(𝑥) or (𝑥) = exp(−𝑥) . 
The error of approximation for this case can be seen 
in paper [15]. When 𝜑(𝑥) = exp(−𝑥)the basis 
functions 𝜔𝑗(𝑥), 𝜔𝑗+1(𝑥) have the form: 

𝜔𝑗(𝑥𝑗 + 𝑡ℎ) = (exp(ℎ − 𝑡ℎ) − 1)/(exp(ℎ) − 1), 

𝜔𝑗+1(𝑥𝑗 + 𝑡ℎ) = (exp(ℎ) − exp(ℎ − 𝑡ℎ))/(exp(ℎ)

− 1)), 

The plots of the basis functions when  ℎ = 1 are 
given in the Fig.2 

When 𝜑(𝑥) = exp(𝑥) the basis functions 𝜔𝑗(𝑥), 
𝜔𝑗+1(𝑥) have the form: 

𝜔𝑗(𝑥𝑗 + 𝑡ℎ) = (exp(ℎ) − exp (𝑡ℎ))/(exp(ℎ)

− 1)), 
𝜔𝑗+1(𝑥𝑗 + 𝑡ℎ) = (exp(𝑡ℎ) − 1)/(exp(ℎ) − 1)). 

 
The plots of the basis functions ℎ = 1 are given in 
the Fig.3. 

    Now let us investigate the approximation of 
function 𝑢(𝑥) when we use the system 𝜑1(𝑥) =
cos(𝑥) , 𝜑2(𝑥) = sin(𝑥). In this case we obtain 
𝜔𝑗(𝑥𝑗 + 𝑡ℎ) =

sin(ℎ−𝑡ℎ)

sin(ℎ)
, 𝜔𝑗+1(𝑥𝑗 + 𝑡ℎ) =

cos(𝑡ℎ)

sin(ℎ)
 

when 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 𝑥 = 𝑥𝑗 + 𝑡ℎ, 𝑥𝑗+1 = 𝑥𝑗, 𝑡 ∈

[0, 1]. 
    To estimate the approximation error, we apply the 
method described in paper [5]. 

 
Fig.1. The plots of the basis functions  

𝜔𝑗(𝑥𝑗 + 𝑡ℎ) =
sin(ℎ−𝑡ℎ)

sin(ℎ)
, 𝜔𝑗+1(𝑥𝑗 + 𝑡ℎ) =

cos(𝑡ℎ)

sin(ℎ)
. 

 
Fig.2. The plots of the basis functions 𝜔𝑗(𝑥𝑗 + 𝑡ℎ), 

𝜔𝑗+1(𝑥𝑗 + 𝑡ℎ) when 𝜑(𝑥) = exp(−𝑥). 
 

 
Fig.3. The plots of the basis functions 𝜔𝑗(𝑥𝑗 + 𝑡ℎ), 

𝜔𝑗+1(𝑥𝑗 + 𝑡ℎ) when 𝜑(𝑥) = exp(𝑥). 

Note that this formula for function interpolation can 
also be applied on a uniform grid of nodes. 

Table 1 shows the actual errors of approximation of 
some functions 𝑢(𝑥) obtained with the use of the 
polynomial and non-polynomial splines when ℎ =
0.1, [𝑎, 𝑏] = [−1,1]. 

Table 2 shows the theoretical errors of 
approximation of some functions obtained with the 
use of the polynomial splines when ℎ = 0.1, 
[𝑎, 𝑏] = [−1,1]. 
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Table 1. The actual errors of approximation of some 
functions obtained with the use of the polynomial 

and non-polynomial splines 
𝑢(𝑥) 𝜑1(𝑥) = 1,

𝜑2(𝑥) = 𝑥.   
𝜑1(𝑥)
= cos(𝑥), 
  𝜑2(𝑥)
= sin(𝑥)   

𝜑1(𝑥) = 1,
𝜑2(𝑥)
= exp (−𝑥) 

exp(𝑥) 0.00323 0.00647 0.00646 

𝑠in(𝑥) 0.00102 0.0 0.00177 

𝑥2 0.00250 0.00363 0.00487 

exp(−𝑥) 0.00323 0.00647 0.0 

𝑠in(2𝑥) 0.00498 0.00374 0.00558 

Table 2. The theoretical errors of approximation of 
some functions with the polynomial splines 

𝑢(𝑥) max
[−1,1]

|𝑢 − 𝑈| 

exp(𝑥) 0.00340 

sin(𝑥) 0.00105 

𝑥2 0.00250 

Let ordered distinct nodes {𝑥𝑗} be such that 𝑥𝑗+1 −

𝑥𝑗 = ℎ. 

Theorem 2. Let function 𝑢(𝑥) be such that 𝑢 ∈

 𝐶2([𝑎, 𝑏]). Suppose the basis splines 
𝜔𝑗(𝑥), 𝜔𝑗+1(𝑥) are constructed when 

𝑈(𝑥) = 𝑢(𝑥), 𝑢(𝑥) = 𝜑1(𝑥), 𝜑2(𝑥), 
for 𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1], 

 𝜑1(𝑥) = cos(𝑥) , 𝜑2(𝑥) = sin(𝑥). 

Then, 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1] we have  

|𝑢(𝑥) − 𝑈(𝑥)|  ≤ 𝐾2ℎ2‖𝐿𝑢‖, 

𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1],  𝐾2 > 0. 

Here 𝐿𝑢 = 𝑢′′(𝑥) + 𝑢(𝑥) . 

Proof. In the case of the non-polynomial splines as 
it was shown in paper [5] we construct a 
homogeneous equation, which has a fundamental 
system of solutions 𝜑1(𝑥) = cos(𝑥) , 𝜑2(𝑥) =
sin(𝑥). 

𝐿𝑢 = |

cos (𝑥) sin(𝑥) 𝑢(𝑥)

−sin (𝑥) cos(𝑥) 𝑢′(𝑥)

−cos (𝑥) −sin(𝑥) 𝑢′′(𝑥)
| = 0. 

It is easy to see, that the Wronskian 𝑊(𝑥) =

|
cos (𝑥) sin(𝑥)

−sin (𝑥) cos(𝑥)
| does not equal zero. Now we 

can construct a general solution of the 

nonhomogeneous equation 𝐿𝑢 =  𝐹 by the method 
of variation of the constants. 
      Expanding the determinant according to the 
elements of the last column and dividing all terms of 
the equation by 𝑊(𝑥) we obtain the equation 𝐿𝑢 =
0 in the form. 𝑢′′ + 𝑞𝑢′ + 𝑝𝑢 = 0. Here  𝑞 and 𝑝 
are some coefficients.  
      After we have constructed a general solution of 
nonhomogeneous equation 𝐿𝑢 = 𝐹 by the method 
of variation of the constants we obtain the function 
𝑢(𝑥), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. 

𝑢(𝑥) = ∫ sin(𝑡) (𝑢′′(𝑡) +  𝑢(𝑡))𝑑𝑡
𝑥

𝑥𝑗

+  𝑐1cos (𝑥)

+ 𝑐2sin(𝑥). 

Here 𝑐𝑖, 𝑖 =  1, 2,  are some arbitrary constants,𝑥 ∈
[𝑥𝑖, 𝑥𝑖+1]. We construct the approximation of 𝑢(𝑥) 
in the form: 

𝑈(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1(𝑥),         
𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. 

Thus, using the results from paper [5], we get 

|𝑢(𝑥) − 𝑈(𝑥)|  ≤ 𝐾2ℎ2‖𝐿𝑢‖, 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

The proof is complete. 

In Table 3 we compare the actual errors of 
approximation of some functions with the 
polynomial splines and trigonometrical splines 
when ℎ = 0.1. 

Table 3. The actual errors of approximation of some 
functions with the polynomial splines and trigonometrical 
splines 

𝑢(𝑥) max
[−1,1]

|𝑢 − 𝑈| 

Polynomial 
splines 

max
[−1,1]

|𝑢 − 𝑈| 

Trigonometric 
splines 

1/(1 + 25𝑥2)  0.0418 0.0407 

sin(5𝑥) 0.0311 0.0298 

sin(2𝑥) 0.00498 0.00374 

The plots of the errors of approximation of the 
Runge function 𝑢(𝑥) = 1/(1 + 25𝑥2), 𝑢(𝑥) =
sin(5𝑥), 𝑢 = sin(2𝑥), with the polynomial splines 
when ℎ = 0.1 is shown in Figs.4, 7, 9. The plots of 
the errors of approximation of the Runge function 
1/(1 + 25𝑥2)with the trigonometric splines when 
ℎ = 0.1 is shown in Fig.5, 6, 8. 
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Fig.4.The plot of the error of approximation of the Runge 

function 1/(1 + 25𝑥2)  with the polynomial splines.  

 
Fig.5.The plot of the error of approximation of the Runge 
function 1/(1 + 25𝑥2)  with the trigonometric splines.  

 

Fig.6.The plot of the error of approximation of function 
sin(5𝑥),  with the trigonometric splines.  

 

 
Fig.7.The plot of the error of approximation of function 

sin(5𝑥)  with the polynomial splines.  

Having analyzed the results of the presented 
numerical experiments, we can draw the following 
conclusions: A decrease in the approximation error 
is possible both by increasing the number of nodes 
and by choosing a different type of approximation 
for a given approximation order. 

 

Fig.8.The plot of the error of approximation of function 
sin(2𝑥)  with the trigonometric splines.  

 
Fig.9.The plot of the error of approximation of function 

sin(2𝑥)  with the polynomial splines.  

With a small number of grid nodes, the choice of 
trigonometric splines can significantly reduce the 
approximation error. 

    Now we will consider in detail the construction of 
computational schemes for solving the Volterra 
equation of the second kind. In the construction of 
the computational schemes, we will use the 
approximation formulas with polynomial and non-
polynomial splines of the second order of 
approximation. 
    Transforming the integral ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠

𝑥𝑗+1

𝑥𝑗
 

using formula (4) or (5), we obtain 

∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠 
𝑥𝑗+1

𝑥𝑗

= 𝑢(𝑥𝑗) ∫ 𝐾(𝑥, 𝑠)𝜔𝑗(𝑠)𝑑𝑠 +
𝑥𝑗+1

𝑥𝑗

 

𝑢(𝑥𝑗+1) ∫ 𝐾(𝑥, 𝑠)𝜔𝑗+1(𝑠)𝑑𝑠 + 𝑂(ℎ3).
𝑥𝑗+1

𝑥𝑗

 

To construct a numerical method, we discard the 
error and denote 𝑢 ̃(𝑥𝑗) ≈ 𝑢(𝑥𝑗).  
      It is assumed that the integrals can be 
calculated exactly, or can be applied a 
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quadrature formula with an error not less than 
𝑂(ℎ3). 
     The polynomial and non-polynomial splines are 
easy to apply on irregular grid of nodes.  

Now apply the splines to the solution of the integral 
equations. Let us we have the equation 

𝐴𝑧 ≡ ∫ 𝐾(𝑥, 𝑠)𝑦(𝑠)𝑑𝑠 =
1

0

𝑓(𝑥), 𝑥 ∈ [0,1]. 

We take 𝑦(𝑠) = 1 and calculate the corresponding 
right-hand side 𝑓(𝑥) for the given kernel 𝐾(𝑥, 𝑠) =
cos (5 +  𝑥 −  𝑠).   

Next, we will consider the application of three 
methods for solving the integral equation. The 
calculations will be done using Maple with 𝛼 =
10−15, Digits=20. 

In the interval [0,1] we construct an equidistant 
grid of nodes 𝑥𝑗, 𝑗 = 1, … , 𝑛. Method 1 uses a 
composite middle rectangle rule. Мethods 2 and 3 
use piecewise linear polynomial splines. Note that 
the piecewise splines of the second order of 
approximation cannot guarantee the reliability of the 
result at the points 𝑥0, 𝑥𝑛. The application of the 
composite trapezoidal rule also do not guarantee the 
reliability of the result at the points 𝑥0, 𝑥𝑛. 

 

Method 1. At first we take the composite middle 
rectangle rule with 32 equidistant nodes on the 
interval [0,1]. The plot of the error between the 
exact solution and the approximate solution 
obtained with the composite middle rectangle rule 
before regularization is given in Fig.10. Here we 
connected the points with straight line segments for 
clarity of the drawing. The graph shows the nodes of 
the grid at the interval [0,1] and the values of the 
errors at these nodes. 

 
Fig.10. The plot of the error between the exact 

solution and the approximate solution before the 
regularization. 

The plot of the error between the exact solution 
and the approximate solution obtained with the rule 
of composed middle rectangles after regularization 
is given in Fig.11. The graph shows the nodes of the 
grid at the interval [0,1] and the values of the errors 
at these nodes. 

 
Fig.11.The plot of the error between the exact solution 

and the approximate solution after the regularization. 
 

Method 2. Now again we take 32 equidistant 
nodes on the interval [0,1]. We calculate  

∫ 𝐾(𝑥, 𝑠)𝑦(𝑠)𝑑𝑠
𝑥𝑗+1

𝑥𝑗

 

using the polynomial spline. 

∫ 𝐾(𝑥, 𝑠)𝑦(𝑠)𝑑𝑠
𝑥𝑗+1

𝑥𝑗

= 𝑦(𝑥𝑗) ∫ 𝐾(𝑥, 𝑠)𝜔𝑗(𝑠)𝑑𝑠 +
𝑥𝑗+1

𝑥𝑗

 

𝑦(𝑥𝑗+1) ∫ 𝐾(𝑥, 𝑠)𝜔𝑗+1(𝑠)𝑑𝑠 + 𝑂(ℎ3).
𝑥𝑗+1

𝑥𝑗

 

To construct a numerical method, we discard the 
error and denote 𝑢 ̃(𝑥𝑗) ≈ 𝑦(𝑥𝑗). Let us introduce 
the notation 

𝑊𝑗(𝑥) = 𝑢 ̃(𝑥𝑗) ∫ 𝐾(𝑥, 𝑠)𝜔𝑗(𝑠)𝑑𝑠 +
𝑥𝑗+1

𝑥𝑗

 

𝑢 ̃(𝑥𝑗+1) ∫ 𝐾(𝑥, 𝑠)𝜔𝑗+1(𝑠)𝑑𝑠.
𝑥𝑗+1

𝑥𝑗
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Next, we substitute 𝑥 with 𝑥𝑘  (𝑥 = 𝑥𝑘) and solve the 
system of equations 

∑ 𝑊𝑗(𝑥𝑘)𝑛
𝑗=1 = 𝑓(𝑥𝑘), 𝑘 = 1, … 𝑛. In this case, 

we first have to regularize this system according to 
Tikhonov method. The plot of the error between the 
exact solution and the approximate solution 
obtained with the polynomial splines before 
regularization is given in Fig.12. The graph shows 
the nodes of the grid at the interval [0,1] and the 
values of the errors at these nodes. 

 

Fig.12.The plot of the error between the exact solution 
and the approximate solution before the regularization. 

 
Fig.13. The plot of the error in absolute value between 

the exact solution and the approximate solution after the 
regularization. 

 
The plot of the error between the exact solution 

and the approximate solution obtained with the 
polynomial splines after regularization is given in 
Fig.13. The graph shows the results of calculations 
at 𝑗 = 2, … , 𝑛 − 1. 

Method 3. Now we obtain an approximate solution 
using Galerkin’s method. The plot of the error 
between the exact solution and the approximate 
solution obtained with the polynomial splines before 
regularization is given in Fig.14. The plot of the 
error between the exact solution and the 
approximate solution obtained with the polynomial 

splines after regularization is given in Fig.15. The 
graph shows the results of calculations at 𝑗 =
2, … , 𝑛 − 1. 

 

Fig.14.The plot of the error between the exact 
solution and the approximate solution before the 

regularization. 

 
Fig.15. The plot of the error between the exact 

solution and the approximate solution after the 
regularization. 

Table 4. The maximum of the error in absolute value 
between the exact solution of the equation and the 
numerical solutions obtained with methods1,2,3. 

𝑛 The error 
obtained with 
the use of the 
composite 
middle 
rectangle rule 

The error 
obtained with 
the use of  
method 2 

The error 
obtained with 
the use of  
method 3 

64 0.822∙ 10−1  0.721∙ 10−1 0.721∙ 10−1 
32   0.785 ∙ 10−1 0.577 ∙ 10−1 0.577 ∙ 10−1 
16 0.712∙ 10−1 0.711∙ 10−1   0.711∙ 10−1 
  8 0.578∙ 10−1 0.107 0.107 

 
Table 4 shows the maximum of the error in 

absolute value between the exact solution of the 
equation and the numerical solution obtained with 
the application of the composite middle rectangle 
rule (column 2). The numerical solution obtained 
with the application of method 2 with the 
polynomial splines is presented in column 3. The 
numerical solution obtained with the application of 
method 3 with the polynomial splines is given in 
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column 4. The number of nodes (n) is given in the 
first column of Table 4.  

The application of the non-polynomial splines 
gives us a similar result. Polynomial and 
nonpolynomial splines can be used at irregular grid 
nodes. The next question is how to connect the 
values of solution on the grid points. Using 
trigonomertic splines for connecting the points can 
provide a lesser error in solution at the point 
between two nodes of grid than when using 
polynomial splines. 
     This paper discusses the method for solving 
integral equations of the first kind by reducing it to a 
system of linear algebraic equations and subsequent 
regularization of this system of equations. This 
method is simple to use, but not very accurate. If we 
apply regularization to the Fredholm integral 
equation of the first kind, and then use some 
quadrature formula to obtain a system of linear 
algebraic equations, then the approximation error 
turns out to be smaller. This is shown by the 
following numerical experiment. 
 
Method 4 (Tikhonov method). We begin with the 
regularization of the integral equation under 
consideration by the Tikhonov method, and then we 
apply the composite middle rectangle rule. Having 
solved the resulting system of linear algebraic 
equations, we obtain an approximate solution of the 
original integral equation. Fig. 16 shows the error of 
the solution when the number of nodes is 32.  
        Let us compare the solution errors obtained by 
both variants of the regularization (they are shown 
in Fig. 11 and Fig.16). It can be seen that the 
application of Tikhonov’s regularization applied 
directly to the integral equation gives a smaller 
error. Note that this approach requires more work 
and knowledge of theory. 

 
Fig.16. The plot of the error between the exact solution 
and the approximate solution after the regularization. 

 
4 Conclusion 
In this paper, we considered the results of solving 
the solution of the Fredholm integral equation of the 
first kind in several ways. Numerical experiments 

have shown that methods based on the use of splines 
can give a lesser error than when using traditional 
methods (for example, the composite middle 
rectangle rule). In the future, it is proposed to 
construct numerical methods based on splines of a 
higher order of approximation. As it was noted, 
piecewise-linear basic splines do not guarantee the 
accuracy of the result at the first node 𝑥0 and at the 
last node 𝑥𝑛 of the interval [0,1]. The best result is 
obtained with the number of nodes from 16 to 64. 
This paper proposes second order trigonometric 
splines. These splines ensure the coincidence of the 
approximation and the function being approximated 
if this function is a sine or cosine. As the results of 
numerical experiments show, these approximations 
(in comparison with polynomial approximations) 
give a smaller approximation error in absolute 
value, but may required more Digits in the mantissa 
of numbers for numerical calculations. 
     To reduce the error, we can apply Tikhonov’s  
regularization directly to the integral equation. It 
will give a smaller error, but requires more work 
and knowledge of theory. 
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