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Abstract: - This paper describes a special one-dimensional convection-diffusion equation and analyzes two 
types of difference schemes. Numerical solutions of the two difference methods for this equation are 
implemented to estimate the parameters of the velocity component of the fluid and the diffusion coefficient. 
Good results of parameters estimated are not achieved because of the larger approximation errors by the 
difference schemes. Then multiple linear regression is applied to estimating the corresponding parameters by 
using the analytical solution of this special equation. By this means, the better estimated values of the 
parameters are obtained.  
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1 Introduction 

The convection-diffusion equation arises in many 
important applications, such as conservative solute 
transport in porous media, mass transfer and heat 
transfer etc. [1-8]. This is one of the most frequently 
used models in science and engineering. For 
example, the model describes how the concentration 
of one or more substances (e.g., pollutants) 
distributed in a medium changes under the influence 
of three processes, namely, convection, diffusion, 
and reaction for groundwater pollution and air 
pollution in environmental science [5-11]. 

The goal of this article is to estimate the 
parameters of the convection and diffusion terms in 
the one-dimensional convection-diffusion equation 
as the form [3]  
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where ),( txu is unknown and denotes the 
concentration of the pollutant in the medium, v  and 
  are parameters of velocity component of the fluid 
and diffusion coefficient, respectively. Its 
corresponding initial condition is a Gaussian 
distribution of the substance in an infinite medium. 

It is known that it is very difficult to obtain 
analytical solution to Eq.(1) when initial and 

boundary conditions are complicated, even with 
constant parameter coefficients [4-5]. Generally 
speaking, we can develop numerical solution of 
Eq.(1) to estimate the parameters, which means to 
optimally adapt models to given data by 
determining their parameter values such that the 
deviation of model and data is minimized in a 
suitable norm. 

Fortunately, a lot of numerical techniques for 
Eq.(1) are by now well developed such as finite 
differences, finite elements, spectral procedures, 
wavelet-Galerkin methods, discontinuous Galerkin 
methods and Graphical methods etc. [5-16]. In this 
paper, we concentrate on the parameters estimation 
by using the finite difference approach and the 
multivariate linear regression method, respectively.  

This paper is organized as follows: In Section 2, 
two types of finite differences are introduced and 
applied to solving numerically Eq.(1). Section 3 
utilizes the least squares approach to estimate the 
parameters in Eq.(1) by using the numerical 
solutions. In Section 4, the multivariate linear 
regression method is implemented to estimate the 
parameters v  and  in Eq.(1) with analytical 
solution situation. Conclusions of the parameter 
estimation methods for Eq.(1) and some suggestions 
for future research are given at the end in Section 5.  
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2 Two types of difference schemes for 

convection-diffusion equation 
 In this section, the two finite differences such as 

forward-time centered-space and upwind difference 
schemes are described and compared for solving 
Eq.(1) with constant coefficients. 

.For clarity, we begins with a discretization of 
the domains R]1 ,0[ and ] ,0[ T of the independent 
the space variable x  and the time variable , 
respectively. We subdivide the interval ]1 ,0[  in t to 
M  sub-intervals and the interval ] ,0[ T into N  sub-
intervals such that 1Mh  and TN  , where h  is 
space step and  denotes time step, respectively. 
Then, the grid points ),(

nj
tx  are defined as 

，Mjjhx
j

,,2 ,1 ,0    ,  .,,2 ,1 ,0    , Nnnt
n

    (2) 
Note that the numerical solution is to find the 

difference approximation values n

j
u  of ),( txu at the 

points ),(
nj

tx . 
 
2.1 Forward-time centered-space difference 

method 
The simplest difference scheme of all is the 

forward-time centered-space discretization of the 
full Eq.(1), i.e. 
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which can be transformed into an explicit finite 
difference scheme of the form 
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where hv /   and 2/ h  . Obviously, the 
truncation error of the (3) is  2h  and the 
corresponding stability requirement satisfies 

5.02/2   , i.e. the choice of extremely small 
values for  (Isenberg, 1972). Furthermore, its 
implicit form is demonstrated that  
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which is obtained by the backward-difference for 
the time derivative and centered-difference forms 
for all spatial derivatives. 

In addition, the explicit form means to solving the 
value of grid-node in 1n  time level by using the 
values of grid-nodes in n  time level. Although this 
implicit difference technique needs to solve a 
system of algebraic equations for each time step, it 
is unconditionally von Neumann stable [3-7]. 
Consequently, there is no restriction to selecting the 
size of time step  . 

 

2.2 Upwind difference scheme 
The discretization of the upwind difference 

scheme can be specifically described as 
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which is specifically interpreted as the forward-
difference for the time derivative, backward-
difference for the convection term and centered-
difference for the diffusive derivatives, respectively. 
Similarly, the explicit upwind difference has the 
below form 
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The corresponding truncation error is  h   and 
the stability condition is 2/)1(2/)1(    
for the scheme. When the backward-difference, 
backward difference and centered-difference are 
applied to the time, convection diffusive derivatives 
in Eq.(1) respectively, the implicit difference form 
is obtained as 
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3 Parameter estimation by the 

difference schemes 
Generally, mathematical models are often 

developed to describe natural phenomena, but the 
models contain a number of parameters that cannot 
be measured or calculated. Consequently, parameter 
estimation is an important scientific problem in 
various fields [1-7]. 

In this Section, we concentrate on estimation of 
the parameters v ,   in Eq.(1) by using the 
difference solutions and the least squares approach. 
For simplicity, we first consider the convection-
diffusion with exact solution as [3] 


























,10           ],00125.0/)5.0(exp[)0,(

,10   ,10                  ,

2

2

2

xxxu

tx
x

u

x

u
v

t

u
    (9) 

where the parameters 1v , 01.0  and its exact 
solution is 

)]04.000125.0/()5.0(exp[
02.0000625.0

025.0),( 2 ttx
t

txu 


  (10) 

and the boundary conditions are decided by the 
analytical solution (10).  

In this example, the steps of the difference grid 
points are set as 02.0 hx , 004.0 t for the 
spacial and time steps, respectively. Then Eq.(9) is 
numerically solved by the forward-time centered-
space method and the upwind difference scheme, 
respectively. In Figure 1, the absolute errors 
between the forward-time centered-space difference 
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and the exact solutions are described at the grid 
points 25151 . Additionally, the 1L  error of this 
scheme is 0.0086. 

 
Figure 1. The error of forward-time centered-space 
solution compared with exact solution 
Accordingly, Figure 2 depicts the comparisons of 
the numerical and the exact solutions at time 7.0t , 

8.0t , respectively. 

 
Figure 2. The solution by the forward-time centered-
space difference scheme with different time 

Similarly, Figure 3 demonstrates the absolute 
errors between the upwind difference and the exact 
solutions and its 1L  error of this scheme is 0.0244. 
In Figure 4, the comparisons of the upwind 
difference solution and the exact solution at time 

7.0t , 8.0t  are shown, respectively. 

 
Figure 3. The error of the upwind difference 
solution compared with exact solution 

 
Figure 4. Comparison of the numerical and exact 
solutions with different time 

Now we turn to the parameter estimation and we 
firstly use the values ),(

nj
txu of the analytical 

solution at the grid points ),(
nj

tx as given sets of 
data. Secondly, we solve the numerical solution n

j
u  

in (9) by using the above difference schemes. 
Finally, we utilize the least squares technique to 
optimally adapt this model to the data ),(

nj
txu by 

determining the parameter values for v  and  . 
Then the deviation of model and data is minimized 
by the form 
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where n

j
u  is the difference solution at the grind point. 

Then, by using the difference numerical solution 
and the least squares method, the estimated values 
Ev , E  of the parameters v ,   in Eq.(9) are shown 
in Table 1. 
Table 1.  The results of parameters estimated by the 
two difference schemes 

     
From Figure1 and Figure 3, we can see that the error 
between the difference decomposition and the exact 
solution is larger with the increase of x and t . 
Furthermore, the results in Table 1 demonstrate that 
when v , i.e. the convection term is domnating, 
the error of the difference solution compared with 
the exact solution is large and the good result of the 
corresponding parameter estimation is not obtained. 
Consequently, we should find other validity 
methods for the parameter estimation in Eq.(9). 
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Exact solution t=0.7

Numerical solution t=0.7

Exact solution t=0.8

Numerical solution t=0.8

Method t Ev v Eµ µ 

Forward-time 
centered-space 

0.3 1.0125 1 0.0105 0.01 

Upwind 
difference 

0.3 1.4282 1 0.0104 0.01 
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4 Multivariate linear regression 

technique for the parameter 

estimation 
We are looking forward to seeing you at the 

Conference.All the major problems with the 
difference solutions of the convection-diffusion 
equation are associated with the parameter v  of the 
convection term in Eq.(1). Concretely, numerical 
solutions of the convection dominated problems 
obtained by the above differences methods are 
polluted by spurious oscillations which spread over 
the whole spatial domain. In this Section, we 
consider the case that the convection-diffusion 
equation (1) has the convenient analytical solution 
denoted by [3] 
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for the initial condition of a Gaussian distribution of 
the substance in an infinite medium 
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where A  is the initial amplitude, 0x  is the 
abscissa of the gravity centre of the profile and 0L  is 
a measure of the width of the Gaussian profile. Thus 
in a perfect solution, the original bump will move 
off at a constant speed and widen and decrease in 
amplitude.  

The task is to estimate the parameters v ,   of the 
convection-diffusion equation with the initial 
condition (13) by using the analytical solution other 
than the above differences schemes. Now in order to 
simplify the (12), we set 
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Then, the analytical solution (12) can be 
transformed into a simple form 

])(exp[),( 2CxBAtxu                                     (15) 
which is taken by the logarithm on both sides and 
another form is obtained as 
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If we set 

n
tt  , i.e. we only analyse the parameter 

estimation at time point 
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In order to identify the validity of this method, the 
data set },,1 ,0   ,,,1 ,0),({ NnMjtxu

nj
  from 

the analytical solution (12) is utilized to estimate 
regression coefficients 0b , 1b  and 2b  in (17) 

containing the parameters v  and   in the 
convection-diffusion by the multivariate linear 
regression.  
Now a special problem, i.e. m/s 1v , /sm 01.0 2  
for Eq.(1) is taken from the literature [3] to test this 
parameter estimation for Eq.(9). 
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and its analytical solution is as (10). Then the results 
of parameters estimated by the multivariate linear 
regression are described in Table 2. 
 
Table 2.  The results of parameters estimated by the 
multivariate linear regression at time t=0.3 

 
From Table 2, if the convection-diffusion 

equation has analytical solution, we can obtain the 
good results of the parameter estimation. Otherwise 
we should utilize better technique to numerically 
solve Eq.(1) to obtain optimal parameter estimated 
values. 

 
5 Conclusion 

In this paper, the two difference schemes are 
applied to solving the one-dimensional convection-
diffusion equation and the numerical solutions are 
designed to adapt the parameters v  and   of this 
model. The estimated values of the two parameters 
show that the multivariate linear regression applied 
to the analytical solution is better than the difference 
methods used to estimate the parameters. Of course, 
better approximation solution to Eq.(1) developed 
can improve the accuracy of the parameters 
estimated. Finally, the techniques of the parameter 
estimation can be utilized to optimally adapt other 
mathematical models to given data by determining 
their parameter values such that the deviation of 
model and data is minimized in a suitable norm. 
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