Planar of special idealization rings

MANAL Al-LABADI Eman Mohammad Almuhur Department of Mathematics University Of Petra Amman, JORDAN

Department of Mathematics, Faculty of Basic Sciences and Humanities, Applied Science Private University, Amman, JORDAN

Abstract: Let $\mathbf{R}_{(+)N}$ be the idealization of the ring \mathbf{R} by the \mathbf{R} -module N. In this paper, we investigate when $\Gamma(\mathbf{R}_{(+)}\mathbf{N})$ is a Planar graph where \mathbf{R} is an integral domain and we investigate when $\Gamma(\mathbf{Z}_n(+)\mathbf{Z}_m)$ is a Planar graph.

Key-Words: The idealization rings R, Planar graph, Zero-divisor graph.

Received: July 27, 2020. Revised: November 23, 2020. Accepted: December 10, 2020. Published: December 23, 2020.

1 Introduction

I. Beck in [6] introduce the concept of zero-divisor graph also, D. D. Anderson and M. Naseer in [3] studied the context of coloring which is an interest concept of graph theory. Anderson and Livingston in [4, *Theorem* 2.3] give the definition of the zero-divisor graph. For more information in zero-divisor graph see, [5].

/Let **R** be a commutative ring, the zero-divisor graph is the graph $\Gamma(\mathbf{R})$ which vertices are the non-zero zero divisors of **R**, with *a* and *b* adjacent if a = b and a.b = 0.

For each ring **R**, the set of all zero-divisors of the ring **R** is $Z(\mathbf{R})$.

The idealization ring $\mathbf{R}(+)N$ is defined as \mathbf{N} be an \mathbf{R} -module and let $\mathbf{R}(+)\mathbf{N} = \{(a_1, h_1) : a_1 \in \mathbf{R}, h_1 \in \mathbf{N}\}$ we have two operations $(a_1, h_1) + (a_2, h_2) = (a_1 + a_2, h_1 + h_2)$ and $(a_1, h_1)(a_2, h_2) = (a_1a_2, a_1h_2 + a_2h_1)$.

Another concept of interest in the graph theory. The Planar graph is a graph isomorphic to a Plane graph. A Plane graph is graph that can be drawn on the plane without cross edging. If the graph has induced subgraph isomorphic to K_5 that is not a Planar graph, by Kuratoskies Theorem.

2 When $\Gamma(\mathbf{R}(+)\mathbf{N})$ is a Planar graph?

In this section, we investigate when $\Gamma(\mathbf{R}(+)\mathbf{N})$ is Planar graph where **R** is an integral domain and **N** be an **R**-module.

We begin with the following lemma when R

is an integral domain for the idealization ring $\mathbf{R}(+)\mathbf{N}$.

Lemma 1:

[2] Suppose that \mathbf{R} is an integral domain and \mathbf{N} is an \mathbf{R} -module. Then we have the following cases:

- Case 1. If **R** is an integral domain with $\mathbf{N} \cong \mathbf{Z}_2$ is an **R**-module and annihilator of \mathbf{Z}_2 is equal to zero, then the integral domain **R** is $\mathbf{R} \cong \mathbf{Z}_2$.
- Case 2. If R be an integral domain with $N \cong Z_3$ is an R-module and annihilator of Z_3 is equal to zero, then the integral domain R is $R \cong Z_3$.

Theorem 1:

Suppose that **R** is an integral domain and $\mathbf{N} \cong \mathbf{Z}_2$ is an **R**-module. Then the graph $\Gamma(\mathbf{R}(+)\mathbf{Z}_2)$ is a Planar.

Proof:

To proof we have the following two cases to thought-fulness:

- Case 1: If the annihilator of \mathbb{Z}_2 is equal to zero, then $\Gamma(\mathbb{Z}_2(+)\mathbb{Z}_2)$ is equal to $\{(0,1)\}$ which is a Planar graph.
- Case 2: If the annihilator of \mathbb{Z}_2 is not equal to zero, then the graph $\Gamma(\mathbb{R}(+)\mathbb{Z}_2) = \{(0,1), (k_i, 0), (k_j, 1) : k_i, k_j \in ann(\mathbb{Z}_2)\}$. So, the graph $\Gamma(\mathbb{R}(+)\mathbb{Z}_2)$ is a star which is a Planar graph.

Theorem 2:

Suppose that **R** is an integral domain and $N \cong \mathbb{Z}_3$ is an **R**-module. Then the graph $\Gamma(\mathbb{R}(+)\mathbb{Z}_3)$ is a

Planar.

Proof:

To proof we must note the following two cases to thoughtfulness:

- Case 1: If annihilator of \mathbb{Z}_3 is equal zero, then $\Gamma(\mathbb{R}(+)\mathbb{Z}_3)$ is equal to $\{(0,1), (0,2)\}$ that is a Planar graph.
- Case 2: If annihilator of \mathbb{Z}_3 is not equal zero, then graph $\Gamma(\mathbb{R}(+)\mathbb{Z}_3)$ is equal to $\{(0,1), (0,2), (r_i, 0), (r_i, 1), (r_i, 2) : r_i \in ann(\mathbb{Z}_3)\}$. So, that is a Planar graph.

Figure 1: A graph which is a Planar graph.

We begin with the following lemma can be found in [7] to discus the case **N** of order 4.

Lemma 2:

If the graph **G** is a 3-connected planar, then there is a cycle through any five vertices of the graph **G**. **Theorem 3**:

Suppose that **R** is an integral domain and $|\mathbf{N}| = 4$ is an **R**-module. Then we have the following cases:

- Case 1. If the order of N is equal 4 and annihilator of N is equal to zero, then the graph $\Gamma(\mathbf{R}(+)\mathbf{N})$ is a Planar.
- Case 2. If the order of N is equal 4 and annihilator of N is not equal to zero, then the graph $\Gamma(\mathbf{R}(+)\mathbf{N})$ is not a Planar.

Proof:

To proof must note two cases to thoughtfulness:

• Case 1. If the order of N is equal 4 and annihilator of N is equal to zero, then the graph $\Gamma(\mathbf{R}(+)\mathbf{N})$ is equal to $\{(0, l_1), (0, l_2), (0, l_3) : l_i \in \mathbf{N}\}$. That is a Planar graph. • Case 2. If the order of N is equal 4 and annihilator of N is not equal to zero, then the graph $\Gamma(\mathbf{R}(+)\mathbf{N}) = \{(r_i, l_i), (0, l_1), (0, l_2), (0, l_3) : l_i \in \mathbf{N}, r_i \in ann(\mathbf{N})\}$, by previous lemma then the graph is not a Planar graph.

Figure 2: A graph which is not a Planar graph.

The next theorem will discuss when the order of N is greater than or equal 5.

Theorem 4:

Suppose that **R** is an integral domain and $|\mathbf{N}| \ge 5$ is an **R**-module. Then we have the following cases:

- Case 1. If the order of N is equal to 5 and annihilator of N is equal to zero, then the graph $\Gamma(\mathbf{R}(+)\mathbf{N})$ is a Planar.
- Case 2. If the order of N is equal to 5 and annihilator of N is not equal to zero, then the graph $\Gamma(\mathbf{R}(+)\mathbf{N})$ is not a Planar.
- Case 3. If the order of N is greater than 5, then the graph $\Gamma(\mathbf{R}(+)\mathbf{N})$ is not a Planar.

Proof:

To proof must note two cases to thoughtfulness:

- Case 1. If the order of N is equal 5 and annihilator of N is equal zero, then the graph $\Gamma(\mathbf{R}(+)\mathbf{N})$ is equal to $\{(0, l_1), (0, l_2), (0, l_3), (0, l_4) : l_i \in \mathbf{N}\}$. That is a Planar graph.
- Case 2. If the order of N is equal 5 and annihilator of N is not equal zero, then the graph $\Gamma(\mathbf{R}(+)\mathbf{N}) = \{(r_i, l_i), (0, l_1), (0, l_2), (0, l_3), (0, l_4) : l_i \in \mathbf{N}, r_i \in ann(\mathbf{N})\}$ has an induced subgraph isomorphic to K_5 . That is not a Planar graph.

Figure 3: A graph which is not a Planar graph.

• Case 3. If the order of N is greater than 5, then graph $\Gamma(\mathbf{R}(+)\mathbf{N})$ is equal to $\{(0, l_1), (0, l_2), (0, l_3), (0, l_4), (0, l_5), ..., (0, l_i) : l_i \in \mathbf{N}\}$. That has an induced subgraph isomorphic to K_5 . So, the graph is not a Planar.

Figure 4: A graph which is not a Planar graph.

3 When $\Gamma(\mathbf{Z}_n(+)\mathbf{Z}_m)$ is Planar grah? In this section, we consider the planar for the zerodivisor graph of the idealization ring $\mathbf{Z}_n(+)\mathbf{Z}_m$, $\Gamma(\mathbf{Z}_n(+)\mathbf{Z}_m)$ where \mathbf{Z}_m be \mathbf{Z}_n -module.

Al-Labdi [1], she classified the zero-divisor graph of the idealization ring $\mathbf{Z}_n(+)\mathbf{Z}_m$.

We begin with the following lemma, when n is a prime number such that $n = p^{\alpha}$ and m = p. Lemma 3:

Let $n = p^{\alpha}$ and m = p where p is a prime number. Then the graph $\Gamma(\mathbf{Z}_n(+)\mathbf{Z}_m)$ have the following cases:

Case 1: If *n* is equal 4 and *m* is equal 2, then the graph $\Gamma(\mathbf{Z}_4(+)\mathbf{Z}_2)$ is a Planar.

Case 2: If *n* is equal p^{α} and *m* is equal *p* where *p* is a prime number, $\alpha \geq 3$, then the graph $\Gamma(\mathbf{Z}_{p^{\alpha}}(+)\mathbf{Z}_{p})$ is not a Planar.

Proof:

We consider two cases to proof:

Case 1: If *n* is equal 4 and *m* is equal 2, then graph $\Gamma(\mathbf{Z}_4(+)\mathbf{Z}_2)$ is equal to $\{(0,1), (2,0), (2,1)\}$. So, that the graph is a Planar. **Case 2**: If *n* is equal p^{α} and *m* is equal *p*

where p is a prime number greater than 2, $\alpha \geq 3$, then the graph $\Gamma(\mathbf{Z}_{p^{\alpha}}(+)\mathbf{Z}_{p})$ is equal $\{(0,1), (0,2), ..., (0, p-1), (kp, 0), ..., (kp, p-1) : k \in \}$. So, it has an induced subgraph K_5 that is not a Planar graph.

Figure 5: A graph which is not a Planar graph.

Theorem 5:

Let *m* is a product of powers of prime numbers $m = p_1^{k_1} \times p_2^{k_2} \times ... \times p_l^{k_l}$ and *n* is product power of primes $n = p_1^{s_1} \times p_2^{s_2} \times ... \times p_r^{s_r}$ where p_i is a prime number and $l \leq r$. Then the graph $\Gamma(\mathbf{Z}_n(+)\mathbf{Z}_m)$ is not a Planar graph. **Proof**

l **UUI** la aanaidan tuu

We consider two cases to proof:

If *m* is product power of primes $m = p_1^{k_1} \times p_2^{k_2} \times \ldots \times p_l^{k_l}$ and *n* is product power of primes $n = p_1^{s_1} \times p_2^{s_2} \times \ldots \times p_r^{s_r}$ where p_i is a prime number and $l \leq r$. Then the graph $\Gamma(Z_{p_1^{s_1} \times p_2^{s_2} \times \ldots \times p_r^{s_r} \quad (+)Z_{p_1^{k_1} \times p_2^{k_2} \times \ldots \times p_l^{k_l}})$ is equal to $\{(0, h_i), (b_i, h_i) : b_i \in n \ h_i \in m\}$ such that $gcd(b_i, n) \neq 1$ or $gcd(b_i, m) \neq 1$. So, it has an induced subgraph K_5 that is not a Planar graph.

Figure 6: A graph which is not a Planar graph.

4 Outcome and questions

In this article, we classify the planarity for the graph of idealization $\Gamma(\mathbf{R}(+)\mathbf{N})$, we conclude in the following theorem. **Theorem 6**:

Let $\mathbf{R}(+)\mathbf{N}$ be an idealization ring. Then the graph $\Gamma(\mathbf{R}(+)\mathbf{N})$ is a Planar graph if the ring \mathbf{R} is an integral domain and the order of \mathbf{N} is less than or equal 4 with $ann(\mathbf{N}) = 0$, or the order of \mathbf{N} is equal to 5 with $ann(\mathbf{N}) = 0$ and the graph $\Gamma(\mathbf{Z}_n(+)\mathbf{Z}_m)$ is a Planar when n = 4, m = 2.

One can ask the following questions:

(1) When the graph $\Gamma(\mathbf{R}(+)\mathbf{N})$ are Eulerian graph?

(2) When the complement graph of idealization ring $\Gamma(\mathbf{R}(+)\mathbf{N})$ are Planar graph?

(3) What is the matching number of the graph $\Gamma(\mathbf{R}(+)\mathbf{N})$?

Possible engineering applications of this study can be found in problems of [8] and [9].

References:

[1] M. Allabadi M, Futher results on the diameter of zero-divisor graphs of some special idealizations, *International Journal of Algebra*, Vol. 12 (2010), pp. 609-614.

[2] M. Allabadi, On the Diameter of Zero-Divisor Graphs of Idealizations with Respect to Integral Domain, *Jordan Journal of Mathematics and Statistics*, Vol. 3 (2010), pp. 127-131.

[3] DD. Anderson, M. Naseer, Beck's coloring of a commutative ring, *J. Algebra* Vol.159 (1993), pp. 500-514.

[4] DF. Anderson, PS. Livingston, The zerodivisor graph of a commutative, *J. Algebra*, Vol.217 (1999), pp. 434-447.

[5] M. Axtell, J. Stickle, The zero-divisor graph of a commutative rings, textitJornal of Pure and Applied Algebra, Vol.204 (2006), pp. 235-243.

[6] I.Beck, Coloring of a commutative ring, J. Algebra, Vol. 116 (1988), pp. 208-226.

[7] B. Jackson, Longest cycles in 3-connected cubic, *J. Combin. Theory Ser B*, Vol. 41 (1986), pp. 17-26.

[8] N. Boonsim, Racing Bib Number Localization on Complex Backgrounds, *WSEAS Transactions on Systems and Control*, Vol.13 (2018), pp. 226-231.

[9] T. Ashkan Tashk, H.Jurgen, Esmaeil Nadimi, Automatic Segmentation of Colorectal Polyps based on a Novel and Innovative Convolutional Neural Network Approach, WSEAS Transactions on Systems and Control, Vpl.14 (2019), pp. 384-391.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0 <u>https://creativecommons.org/licenses/by/4.0/deed.en_US</u>