
A Novel Controller Placement Using Petri-Nets for SDNs

WAEL HOSNY FOUAD ALY
College of Engineering and Technology
American University of the Middle East

KUWAIT

Abstract: - Software defined networking (SDN) separates the control and the data planes. This separation

brings flexibility to the network. But the decoupling has some drawbacks such as the controller placement
problem (CPP). Controller placement is a crucial task which affects the overall networks’ performance. This
paper proposes a novel controller placement model that is based on petri-nets to place the SDN’s controllers. The
proposed model is called controller placement using petri-nets for SDNs (CPPNSDN). CPPNSDN aims to reduce
the average propagation latency among switches and their associated controllers. CPPNSDN divides the network
into sub-networks. Each sub-network is governed by a controller. Experiments were conducted on the
Internet2/OS3E topology to evaluate the performance of CPPNSDN. Experiments show that CPPNSDN reduces the
average latency significantly compared to two reference models. The first reference model is the Modified
Density Peaks Clustering (MDPC) and the Optimized Kmeans model. In terms of the overall average latency, the
CPPNSDN has shown promising results as it outperformed the MDPC and optimized Kmeans reference models by
7% and 17% respectively. Confidence Interval (CI) used was 90%. This is an ongoing work and the results are
promising for more future investigation.

Key-Words: - Software-defined network; controller placement problem; density peaks clustering; petri-nets;

modified density peaks clustering; optimized Kmeans.

Received: June 1, 2020. Revised: October 13, 2020. Accepted: November 9, 2020. Published: December 8, 2020.

1 Introduction

Software-defined networking (SDN) design

started by having one centralized controller that
manages the entire network. Single controller based
architectures are usually appropriate for small LAN
networks. WANs cover larger areas with different
propagation delays and hence single controller
architectures are not adequate for WANs due to
scalability constraints. For that reason multi-
controllers based architectures are suitable for
WANs where the network is divided into sub-
networks. Each sub-network is assigned a single
controller.

Petri-net modeling is one of the most powerful
modeling tools that facilitates modeling both
mathematically and graphically for various network
designs [1]. This paper proposes a novel petri-net
framework that is mathematically proven to be valid
for SDN architectures. The proposed model is called
controller placement using petri-nets for SDN
networks (CPPNSDN). CPPNSDN adapts towards
different types of controllers in a CPP. Typically, a
controller could be a master controller or a slave
controller. CPPNSDN uses a mathematical model that
is based on petri-net frameworks to define different
SDN network components. CPPNSDN is evaluated
through computing the network’s overall average

and worse-case propagation delays. These values
are compared to two reference models namely
modified density peaks clustering (MDPC) and
optimized Kmeans. In this work, the controller
propagation latency is defined as the time that an
incoming request takes at the ingress switch until
the new data plane rules are established in the
appropriate switch. It is assumed that the switches
are responsible for the data forwarding. Switches
forward various data based on flow rules. Switches
request flow rules from the associated controller.
Since the switches and their associated controllers
have different distances, various propagation delays
are observed for different flow rules. Since the
propagation delays drastically vary among different
controllers based on their physical locations, there is
a desperate need to carefully place the controllers.
Controllers’ placement should aim to minimize the
overall average propagation latencies.

The paper is organized as follows: Section 2 has
the related work. Section 3 has the basic idea to
model SDNs using the petri-net concept. Section 4
has the Modified density peaks clustering (MDPC)
and optimized Kmeans reference models. Section 5
has the controller placement using petri-nets for
SDNs (CPPNSDN) proposed model. Section 6 has
the experimental results. Section 7 has the
conclusion and the future work.

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.65 Wael Hosny Fouad Aly

E-ISSN: 2224-2880 598 Volume 19, 2020

2 Related Work

This section has a short literature survey about
different modelling techniques that are used for the
controller placement problem (CPP). CPP was first
discussed by Heller et al. [2] where the CPP was
modelled as a K-mean problem. Since the CPP has
an influence on the propagation delays, authors
defined a set of metrics that are considered as the
base of the research in the CPP. Guo et al. [3]
studied both network latency and network reliability
through a solution that is based on greedy algorithm.

The proposed solution proved to outperform the
reliability of similar approaches. Bari et al. [4]
modelled the CPP as a backpack problem using
greedy-knapsack model. The cost function used was
the reciprocal of the cost path among the controllers
and their associated switches. Loops were used as
cost functions to find the controllers’ coordinates.
Zhang et al. [5] proposed a used the minimum-cut
algorithm to model the CPP. The minimum-cut
algorithm breaks the network into a set of clusters.
Each subcluster contains two or more nodes. The
number of clusters used is the number of controllers.
Each subcluster is considered as the controller
collision domain. MacQueen et al. [6] modelled the
controller placement problem using integer
programming models. Authors used the percentage
of control path loss as the performance metric. Jalili
et al. [7] modelled the CPP problem as a multi-
objective programming problem. The model uses a
compromising technique with different performance
constraints where the network was sub-divided into
clusters.

Aly et al. [8] worked on applying petri-net
frameworks to improve the SDN fault tolerance.
The approach used was successfully proven to be
sound and gave promising result to increase the
reliability of the controllers in SDNs when
comparing the results to reference models. Using
petri-nets to improve fault tolerance of controllers in
SDN environment was promising and encouraging.
Aly et al. [9] [10] proposed a feedback control
theoretic techniques to implement fault tolerance for
controllers. The work gave promising results, but
the feedback control theoretic techniques have put
extra burden on the controllers. The ECFT [11]
introduced load balancing at controller’s failure, the
proposed ECFT model focuses on balancing the
load among other neighboring controllers. The
proposed ECFT uses only delay among switches
and their associated controllers in order to compute
the load for each neighbor controller and sort the
slave controllers accordingly

Qi et al. [1] proposed a model called modified
density peaks clustering (MDPC). MDPC uses the
density of switches to partition a large network into
several single controller sub-networks. Due to the
spacing between the controllers and their associated
switches, a large variety of propagation latencies are
observed during the various requests of flow rules.
Authors observed a correlation between the
placement of the controller and the propagation
delay between the controllers and their associated
switches. Different values for the propagation
delays have an important influence on the overall
network performance.

3 Modelling using Petri-Nets

The section starts with a brief background about
petri-nets and their different architectures to model
the SDN networks.

3.1 Background about Petri-nets

In recent years, many network systems have been

modeled using petri-nets. Petri-nets provide
graphical representations for distributed systems
 [12]. For that reason petri-nets are used to model
systems in which synchronization, communication
and resource sharing are significant. Petri-nets have
computer tools that support various design,
simulation, and performance analysis of petri-net
models [13]. Petri-nets are scalable and used to
design and implement various systems without
considering the size of these systems. Petri-nets
have the ability to provide accurate demonstration
of the behavior and the structure of modeling
dynamic and transitional systems. They are
particularly attractive for capturing features such as
concurrency, asynchronous operation,
synchronization, and flow of control. Once a petri-
net model of a system is created, it can be utilized in
a variety of ways [1].

Petri-nets are directed graphs that are mainly
composed of two elements. The first element is the
transition element Transition elements are
represented graphically by rectangles. The second
element is the place element. Place elements are
represented graphically by circles. A place element
could be connected to one or more transition
elements, and a transition element could also be
connected to one or more place elements. Fig. 1
shows the place element when it is connected to one
transition element. As shown in Fig. 1, the solid
circles are tokens. Tokens represent the activities

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.65 Wael Hosny Fouad Aly

E-ISSN: 2224-2880 599 Volume 19, 2020

performed by the transition elements. Activities
reside in places [14].

An empty place element that is connected to a
transition element could disable a transition element
from being executed. A transition element is said to
be enabled if and only if there is no empty place
elements connected to it. A transition element could
“fire” after being enabled. The result of the firing
process could be through the removal of the tokens
from each of the transitions’ input. This process
could result in creating tokens in each of the output
places. Arcs are labeled with the positive integers
called weights. Each place element contains
nonnegative tokens. The distribution of token
elements over the places represents a configuration
of the net called the marking [15]. Petri-nets
modelling was successfully used in the field of SDN
fault tolerance [8].

Place

Arc

Token

P2 P3 Pn

Transition
t1 t2 t3 tn

P1

Fig. 1: Petri-net concept

A transition element is able to fire a token if each
input place of the transition contains at least one
token and the number of tokens is not less than the
weight of the arc from the place to the transition.
Firing occurs while the transition is enabled. It
depends on whether the event actually takes place.

3.2 Modelling SDN Architectures using

Petri-Nets

This section discusses the modeling of different

SDN architectures using petri-nets. Three
architectures are presented: (1) Single SDN
controller, (2) multiple master SDN controller, and
(3) hierarchical SDN controller architecture models.

3.2.1 Single SDN Controller Architecture

This section has the single controller architecture

using petri-net components as shown in Fig. 2. The
model has a single master controller where a set of
switches are connected to it. Computation of the
forwarding path is performed at the master
controller. The computation depends on the flow
request. Moreover, the master controller updates the
switches by sending entries to the flow tables.
Subsequently, packets of the incoming flow are
forwarded based on the values of computed
forwarding decisions.

Switch

Controller

P1

t5

t6

P2

P3

P4

t1

t2

t3

t4

Fig. 2: Single SDN Controller Model

3.2.2 Multiple Master SDN controller Model

Multiple master SDN model is an example of a
distributed architecture. This architecture consists of
a set of master-controllers that communicate
through message passing technique as shown in Fig.
3. In this model, switches are connected directly to
their associated master-controllers.

Master-controller
Switch

Fig. 3: Distributed SDN Controllers Model

3.2.3 Hierarchical SDN Controller Model

The hierarchical SDN controller architecture is a
centralized model where there is more than one
level of nodes. The model is composed of a master-
controller and a set of slave-controllers that are
connected to the master-controller. Switches are
connected to the slave controllers as shown in Fig.
4. Network components whether they are switches
or controllers are represented as circles.

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.65 Wael Hosny Fouad Aly

E-ISSN: 2224-2880 600 Volume 19, 2020

Slave
Controller Switc

Master
Controller

P1

t5

t6

t7

t14

t13

t12

t11

t10

t9

t8

P2

P3

P4

P8

P7

P6

P5

t1

t2

t3

t4

Fig. 4: Hierarchical SDN Controller Model

4 Reference Models

This section has the reference models used in this
paper. The first subsection discusses the optimized
K-mean algorithm.

4.1 Optimized K-median Algorithm

The first reference model is described by Wang

et al. [17]. The model is called optimized K-median
algorithm. The optimized K-median algorithm
subdivides the network into group of clusters.
Authors in [17] have divided the longest path in
each partition to reduce the propagation delays for
each sub-network. The optimized K-median
experimental results show that the worst-case
latency is given better results when compared to
classical K-median by MacQueen et al. [6]. Wang et
al. [17] measured the distance between the two
nodes using Euclidean method rather than the
physical link distance used in the classical K-
median algorithm.

4.2 Modified Density Peaks Clustering

(MDPC)

The second reference model used in this paper is
called the modified density peaks clustering
(MDPC) by Qi et al. [1]. MDPC is built on top of
the classical density peaks clustering technique.
The classical density peaks clustering technique is
discussed by Rodriguez et al. [5]. It relies on two
assumptions. The first assumption states that the
SDN clusters’ centres have relatively high local
densities compared to non-centers. The second

assumption states that the cluster centers are located
in large dense compared to other non-centric points.

MDPC model clusters the network components
into multiple areas. Switches are assumed to be
connected to their associated controllers. MDPC
uses metrics such as the average degree parameter
and closeness centrality parameter to ensure
controllers’ centricity. In the MDPC model, the
SDN is denoted by the undirected graph γ = (υ, ε)
 [1], where υ represents the set of switches, and ε
represents the set of physical links. η= |υ| is the
number of the switches, κ denotes the number of
controllers. ρ (υi; εi) denotes cluster network. υi
represents the set of switches in a sub-network i,
while εi denotes the set of physical links in sub-
network i. MDPC uses the density peak clustering
based density. The density peak clustering depends
on giving two quantities for each point, (1) local
density and (2) distance to high local density point.
MDPC assumes that the cluster centres density is
higher than non-centric locations. MDPC takes
topology Φ = (υ, ε) as input topology. MDPC
calculates the distance among all inputs to be able to
compute the local density. MDPC then calculates
the largest distance. According to the graph
produced MDPC selects clusters’ centres; which
have the largest density and distance.

5 Controller Placement using Petri-

Nets for SDNs (CPPNSDN)

This section has the proposed model which is

referred to in this paper as controller placement
using petri-nets for SDNs (CPPNSDN). The first
subsection introduces important terms that are going
to be used while describing the CPPNSDN. The
following subsections discuss the theorem of
soundness then a proof is provided to show the
conditions under which the CPPNSDN framework is
considered to be sound.

5.1 Petri-net Terms & Definitions

This subsection has the terms and definitions that
are used throughout the CPPNSDN description in this
paper. Each network component is assumed to have
a set of capabilities. CPPNSDN validate the
soundness of each network component and verify
the model mathematically.

CPPNSDN is described by the tuple 〈ℵ, Ψ, Θ, Φ〉
where ℵ is the set of nodes in the network, Ψ is the
set of the network components’ capabilities. The
capabilities are defined as Ψ={Ψ1, Ψ2, Ψ3, ... Ψω}

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.65 Wael Hosny Fouad Aly

E-ISSN: 2224-2880 601 Volume 19, 2020

where ω is the number of capabilities, Θ is defined
as the network task coverage. The task coverage is
the capability of the system to comply with the
requested requirements of a given task. The
topology used is defined by the symbol Φ.

Assume that there are three different types of
capabilities for the network elements such as
capacity, propagation delay, packet loss, etc. The
task coverage is computed through the task
coverage matrix.

Ψ

ℵ �
1 1 0
0 1 1
0 0 1

�

The task coverage matrix shows the cross

product of ℵ and Ψ. The cross product tests if the
node covers the task specified parameter by setting
the boolean value of the parameter with either 1
(satisfied) or 0 (unsatisfied).

For example for if the Internet2 OS3E topology
 [19] is used. The Internet2 OS3E topology has 34
nodes and 42 links as shown in Fig. 5. Each node is
assumed to have a set of different capabilities. The
matrix in this example has 30 rows. Assuming that
the nodes have three capabilities (capacity, response
time, packet loss). In that example, the matrix has
three columns. The first of the matrix [1 1 0]
indicates that the first node (switch) has high
capacity and low propagation delay, but the packet
loss is high. Similarly this strategy holds for the
remaining 33 nodes of the topology Φ.

1

2

3

7

4

5

8

9

10

6
14

13

12
11

20

19

18

15
16

17

31

22

21

23

25

24

26

27

30

29

28

34

33

32

Fig. 5: Internet2 OS3E topology

By utilizing the concepts of petri-nets discussed

above to the SDN components, for CPPNSDN
framework, the places are considered to be either
controllers (master and/or slave), or switches.
Transitions are assumed to be the process of
transmitting data from one node to the other. Every
transition has a delay that depends on the
communication parameters and the latency between
the input and the output nodes.

5.2 Soundness Theorem

According to the proposed model, CPPNSDN, an

SDN is considered to be sound if and only if each
network component has its task coverage satisfied.
CPPNSDN defines the set of controllers
mathematically as Χ ={χ1, χ2,... χk). The cross
product of the set of controllers in the SDN is
defined by Ω. Therefore, Ω = Χ × Χ. Χ is
considered to be sound if and only if ∃Ω = Χ × Χ,
such that Ω≠ φ. Χ is distributed in an Internet2
OS3E topology Φ. As seen in Fig. 5 there are not
any unreachable controllers. CPPNSDN could
mathematically represent that the controllers are not
unreachable as ∀χi, χj, χi ∈Ω and χj∈Ω, ∃Ω such
that χi ∈ [χj〉 and χj ∈[χi〉. This means that there is
not any isolated nodes in the network and all nodes
are interconnected. If ∃Ω such that χj∈ Ω and Ω ≠
φ, then ∃χi such that Ψ(χi) is equal to Ψ(χj) and
Ψ(χi) belongs to Θ.

5.3 Proof of the Soundness Theorem

To proof the “if and only if” soundness theorem,

the proof is divided into two halves. The first half is
to proof the theorem forward and the second half is
to proof the theorem backwards. The first half of the
proof states that if Ω is sound, then the three
necessary conditions should apply. The conditions
are:

Item 1: ∃Ω = Χ × Χ such that Ω≠ φ.

Item 2: ∀χi, χj, χi ∈Ω, χj∈Ω, ∃Ω such that χi ∈ [χj〉
and χj ∈[χi〉, That implies that there are no isolated
controllers and hence all controllers are connected.

Item 3: If ∃Ω such that χj∈ Ω and Ω ≠ φ, then ∃χi
such that Ψ(χi) is equal to Ψ(χj) and Ψ(χi) ∈Θ.

Given that Ω is sound, therefore, any network

component can send any other network component
directly or indirectly.

∴ χi ∈ [χj 〉 and χj ∈[χi〉
∵χi ∈ [χj〉 and χj ∈[χi〉

∃Ω such that Ω = Χ × Χ and Ω≠ φ. For the SDN

to be sound then if χi=φ, then ∃Θ such that Ψ(χi)=
Ψ(χj). If ∃Ω such that cj∈S and S=φ, then ∃χi such
that Ψ(χi)= Ψ(χj) and Ψ(χi) ∈Θ is satisfied. ∴if Ω
is sound, then the three conditions hold.

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.65 Wael Hosny Fouad Aly

E-ISSN: 2224-2880 602 Volume 19, 2020

The second half of the proof seeks to proof the
backward condition. That is if the three conditions
are valid and satisfied then SDN is sound. Since
∃Ω=Χ × Χ such that Ω≠ φ, therefore χi ∈ [χj〉 ,
since χi ∈ [χj〉 and χj ∈[χi〉 and since if ∃Ω such that
χj∈Ω and Ω = φ, then ∃χi such that Ψ(χi)= Ψ(χj)
and Ψ(χi) ∈Θ. Therefore, SDN is always
functioning and hence the SDN is considered to be
sound.

At this point, the proof has been completed since
the two halves of the proof were proven
successfully. The mathematical prove discussed
above is one of the important strengths of using
petri-net in modelling various systems. CPPNSDN
has the ability to validate conditions mathematically
and prove it to be correct in both directions.

5.4 CPPNSDN Algorithm

This section discusses the CPPNSDN algorithm.

CPPNSDN algorithm is explained in Algorithm 5.1
CPPNSDN uses the overall GPV to deploy the
controller’s placement. The CPPNSDN algorithm
uses capacity, propagation delay, and packet loss to
compute the GlobalPerformanceValue (GPV).
Switches are assumed to be assigned to the
controller that has the highest GPV.

Algorithm 5.1: Controller Placement using Petri-

Nets for SDNs (CPPNSDN)

1: Input topology Φ = (υ, ε).
2: Compute capability matrix for all

controllers based on their
capacity, average propagation delay
to their associated switches, and
percentage of packet loss.

3: Select switch nodes with high
average capability using petri-net
mathematical model to form a new

sub topology Φ’ = (υ’, ε’).
4: Calculate local density for each

switch node i in Φ’.
5: Plot decision graph of Φ’ to select

sub-cluster centers where the

center sets Vcenter = {υ1; υ2; υk}.
6: Assign all switches to the nearest

cluster center to the associated
controller.

7: Each cluster center along with the

switch nodes form a sub-network Φi.

8: The sub-network sets Φsub = {Φ1;
Φ2; …; Φk}

9: For each sub-network Φi, find the
largest closeness centrality point

as the new center. Update υcenter.

10: Reassign all switch nodes in Φ to
the nearest cluster center, and

update υsub.
11: Repeat steps 9 and 10 until each

sub-network is no change.
12: Output result.

6 Experimental Results

This section has the experimental results of the

work conducted using the CPPNSDN. CPPNSDN is
compared to the reference models. Internet2 OS3E
topology is used during the evaluation process. The
topology consists of 34 nodes and 42 links as shown
in Fig. 6. The propagation delay among two
switches is computed by dividing the geographical
distance by 66.66% of the speed of light [20]. To
verify the strength of the CPPNSDN, CPPNSDN is
compared to two reference models. The optimized
Kmeans and the MDPC reference models. Fig. 6, Fig.
7, and Fig. 8 show the Internet2 OS3E network
which is partitioned with k=2, 3, and 4 respectively
by the CPPNSDN. The arrows in the figures indicate
the locations of the controllers. Fig. 9 and Fig. 10
have the average latency in the network on selected
controllers for the CPPNSDN when compared to the
optimized Kmeans.

1

2

3

7

4

5

8

9

10

6
14

13

12
11

20

19

18

15
16

17

31

22

21

23

25

24

26

27

30

29

28

34

33

32

`

Fig. 6: Network Partition (k=2)

1

2

3

7

4

5

8

9

10

6
14

13

12
11

20

19

18

15
16

17

31

22

21

23

25

24

26

27

30

29

28

34

33

32

`

Fig. 7: Network Partition (k=3)

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.65 Wael Hosny Fouad Aly

E-ISSN: 2224-2880 603 Volume 19, 2020

1

2

3

7

4

5

8

9

10

6
14

13

12
11

20

19

18

15
16

17

31

22

21

23

25

24

26

27

30

29

28

34

33

32

Fig. 8: Network Partition (k=4)

Fig. 9: Average Latency

Fig. 10: Worst-case Latency

Results are very promising since CPPNSDN has
shown significant improvement over two reference
models. CPPNSDN has improved by 17% over the
optimized Kmeans reference model and improved by
17% over the MDPC reference model. In the
CPPNSDN, the points with the maximum GPV are
selected as the initialization to split the subnetwork
into partitions. Because the CPPNSDN splits the
maximum distance each time to subnet, the
algorithm has good performance in terms of worst-
case latency. The experiments were replicated three
times with 90% confidence interval (CI). Standard
deviation was computed as well.

7 Conclusion and Future Work

Controller placement problem (CPP) is an
important problem when it comes to SDNs. CPP
affects directly the overall networks’ latency and
performance. In this paper, we propose a new
controller placement model that is based on the
concept of petri-nets. Petri-nets strengths are in its
generic modeling techniques. The proposed model
is called Controller Placement using Petri-Nets for
SDNs (CPPNSDN). CPPNSDN models the controller
placement problem to minimize the average
propagation latency among switches and their
associated controllers. CPPNSDN divides the network
into sub-networks. Each sub-networks is governed
through a controller. Experiments were conducted
on the Internet2 OS3E topology to evaluate the
performance of CPPNSDN. Experimental results
show that CPPNSDN reduces the average latency
significantly. The average latency can be reduced
when compared to reference models. Reference
models used in this paper are Modified Density
Peaks Clustering (MDPC) and Optimized Kmeans. In
terms of the average overall latency, the CPPNSDN
has shown very promising results as it outperformed
the optimized mean by 7% and also CPPNSDN
outperformed the MDPC reference model by 17%.

Experiments were repeated three times with
confidence interval of 90%. Standard deviation was
computed. This is an ongoing research, and different
metrics could be used to measure the goodput of the
proposed model such as the controller cost and the
calculation cost. On the other hand, another
direction of the future work is by adding other use
cases such as failover scenarios, and comparing the
results with the reference models.

References

[1] Jensen, K. (2013). “Coloured Petri nets: basic

concepts, analysis methods and practical use
(Vol. 1). Springer Science & Business Media.

[2] B. Heller, R. Sherwood, and N. McKeown,
“The controller placement problem,” in
Proceedings of the first workshop on Hot topics
in software defined networks. ACM, 2012, pp.
7–12

[3] S. Guo, S. Yang, Q. Li, and Y. Jiang, “Towards
controller placement for robust software-
defined networks,” in Computing and
Communications Conference (IPCCC), 2015
IEEE 34th International Performance. IEEE,
2015, pp. 1–8.

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.65 Wael Hosny Fouad Aly

E-ISSN: 2224-2880 604 Volume 19, 2020

[4] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q.
Zhang, M. F. Zhani, R. Ahmed, and R.
Boutaba, “Dynamic controller provisioning in
software defined networks,” in Network and
Service Management (CNSM), 2013 9th
International Conference on. IEEE, 2013, pp.
18–25.

[5] Y. Zhang, N. Beheshti, and M. Tatipamula,
“On resilience of split-architecture networks,”
in Global Telecommunications Conference
(GLOBECOM 2011), 2011 IEEE. IEEE, 2011,
pp. 1–6.

[6] J. MacQueen et al., “Some methods for
classification and analysis of multivariate
observations,” in Proceedings of the fifth
Berkeley symposium on mathematical statistics
and probability, vol. 1, no. 14. Oakland, CA,
USA, 1967, pp. 281–297

[7] A. Jalili, V. Ahmadi, M. Keshtgari, and M.
Kazemi, “Controller placement in software-
defined wan using multi objective genetic
algorithm,” in Knowledge Based Engineering
and Innovation (KBEI), 2015 2nd International
Conference on. IEEE, 2015, pp. 656–662.

[8] Wael Hosny Fouad Aly, Yehia Kotb, “Towards
SDN Fault Tolerance using Petri-Nets,” The
28th International Telecommunication
Networks and Application Conference (ITNAC
2018), Sydney, Australia, 21-23 Nov, 2018.

[9] Wael Hosny Fouad Aly, “LBFTFB Fault
Tolerance Mechanism for Software Defined
Networking”, The International Conference on
Electrical and Computing Technologies and
Applications, 2017 (ICECTA’2017), AURAK,
UAE, Nov 2017.

[10] Wael Hosny Fouad Aly, “A Novel Fault
Tolerance Mechanism for Software Defined
Networking”, European Modelling Symposium
on Mathematical Modelling and Computer
Simulation, Manchester, UK, Nov 2017.

[11] Wael Hosny Fouad Aly, Abeer Mohammad Ali
Al-anazi, “Enhanced Controller Fault Tolerant
(ECFT) Model for Software Defined
Networking,” The 5th IEEE International
Conference on Software Defined Systems
(SDS), Barcelona, Spain, April 2018.

[12] Kristensen, L. M., Christensen, S., & Jensen,
K. (1998). “The practitioner’s guide to
coloured Petri nets”. International Journal on
Software Tools for Technology Transfer
(STTT), 2(2), 98-132.

[13] Chang, X., Pang, H., & Hu, L. (2010, August),
“Distributed computer network model base on
petri nets”. In Computer, Mechatronics,
Control and Electronic Engineering (CMCE),

2010 International Conference on (Vol. 1, pp.
200-203)..

[14] Y. Zhang, S. Chen, and G. Yu, “Efficient
distributed density peaks for clustering large
data sets in mapreduce,” IEEE Transactions on
Knowledge and Data Engineering, vol. 28, no.
12, pp. 3218–3230, 2016

[15] Singh, S., Singh, G., Narasimhan, V. L., &
Pabla, H. S. (2014, January). “Petri net
modelling and analysis of mobile
communication protocols UMTS, LTE, GPRS
and MANET”. In Computer Communication
and Informatics (ICCCI), 2014 International
Conference on (pp. 1-9).

[16] A. Rodriguez and A. Laio, “Clustering by fast
search and find of density peaks,” Science, vol.
344, no. 6191, pp. 1492–1496, 2014.

[17] G. Wang, Y. Zhao, J. Huang, Q. Duan, and J.
Li, “A k-means-based network partition
algorithm for controller placement in software
defined network,” in Communications (ICC),
2016 IEEE International Conference on. IEEE,
2016, pp. 1–6.

[18] Yuezhen Qi, Dongbin Wang, Wenbin
Yao,Yuhua Cao, “Towards Multi-Controller
Placement for SDN Based on Density Peaks
Clustering,” ICC 2019 - 2019 IEEE
International Conference on Communications
(ICC) Shanghai, China, May 2019

[19] Internet2 open science, scholarship and
services exchange.
http://www.internet2.edu/network/ose/

[20] D. Klein and M. Jarschel, “An openflow
extension for the omnet++ inet framework,” in
Proceedings of the 6th International ICST
Conference on Simulation Tools and
Techniques. ICST (Institute for Computer
Sciences, Social-Informatics and
Telecommunications Engineering), 2013, pp.
322–329.

Contribution of individual authors to
the creation of a scientific article
(ghostwriting policy)
Dr. Wael Hosny Fouad Aly carried out the
following tasks:
• Modeling and simulation the CPPN.
• Implemented Algorithm 5.1.
• Organized and executed the experiments of

Section 6 .
• The paper is not funded by any organization. It

is my own work and efforts using simulation
tools.
 Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.65 Wael Hosny Fouad Aly

E-ISSN: 2224-2880 605 Volume 19, 2020

